Skip to main content
Log in

Anders Retzius and his gyri

  • History of Neurology
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Anders Retzius (1796–1860), a renowned Swedish scientist, left important contributions to human and animal anatomy. He was the first to discover, in 1856, two small bulges as part of the medial segment of the hippocampal tail. These convolutions were named “gyri Andreae Retzii” by his son, Gustaf Retzius (1842–1919), in honor of their discoverer, his father. The gyri of Anders Retzius consist of a CA1 subfield and the subiculum. These areas feature marked connections with the entorhinal cortex and other hippocampal subfields. Only assumptions can be made at present regarding the physiological role of the gyri of Anders Retzius, in conjunction with the involvement of the CA1 hippocampal field in neuropathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Larsell O (1924) Anders A. Retzius (1796–1860). Ann Med Hist 6:16–24

    Google Scholar 

  2. Triarhou LC (2013) Anders Retzius (1796–1860). J Neurol 260:1445–1446

    Article  PubMed  Google Scholar 

  3. Grant G (2011) Gustaf Retzius (1842–1919). J Neurol 258:706–707

    Article  PubMed  Google Scholar 

  4. Retzius A (1856) Om grå vindlar (gyri) på undre sidan af Hvalfvet (fornix) och valken (splenium) i hjernan hos menniskan och djur (Forhandlinger ved de Skandinaviske Naturforskeres Syvende Möde i Christiania den 12–18 Juli 1856). Trykt hos Carl C. Werner & Comp, Christiania, pp 430–432

    Google Scholar 

  5. Retzius A (1859) On grey convolutions on the under surface of the fornix and the so-called splenium corporis callosi in man and animals (translated by W. D. Moore). Dublin Med Press 13:388–389

    Google Scholar 

  6. Retzius G (1878) Notiz über die Windungen an der unteren Fläche des Splenium corporis callosi beim Menschen und bei Thieren. Arch Anat Physiol Anat Abthlg 1877:474–479

    Google Scholar 

  7. Retzius G (1896) Das Menschenhirn: Studien in der makroskopischen Morphologie, 2 vols. Königliche Buchdruckerei P. A. Norstedt & Söner, Stockholm

    Google Scholar 

  8. Retzius G (1898) Zur Morphologie der Fascia dentata und ihrer Umgebungen. Biol Untersuch N Folge (Jena) 8:49–58

    Google Scholar 

  9. Santee HE (1915) Anatomy of the brain and spinal cord with special reference to mechanism and function for students and practitioners, 5th edn. P. Blakiston’s Son & Company, Philadelphia

    Google Scholar 

  10. Zuckerkandl E (1877) Beitrag zur Morphologie des Gehirnes. Z Anat Entwickel Gesch 2:442–450

    Google Scholar 

  11. Zuckerkandl E (1887) Über das Riechcentrum: eine vergleichend-anatomische Studie. Ferdinand Enke, Stuttgart

    Google Scholar 

  12. Giacomini C (1883) Fascia dentata del grande ippocampo nel cervello umano. Giorn Reg Accad Med Torino (3 ser) 31:674–742

    Google Scholar 

  13. von Economo C, Koskinas GN (2008) Atlas of cytoarchitectonics of the adult human cerebral cortex (revised, translated and edited by L.C. Triarhou). Karger, Basel

    Google Scholar 

  14. von Economo C (2009) Cellular structure of the human celebral cortex (translated and edited by L.C. Triarhou). Karger, Basel

    Google Scholar 

  15. Hirsch MC (1999) Dictionary of human neuroanatomy. Springer, Berlin, p 4

    Book  Google Scholar 

  16. Duvernoy H, Cattin F, Risold P-Y (2013) The human hippocampus: functional anatomy, vascularization and serial sections with MRI, 4th edn. Springer, Berlin, p 43

    Book  Google Scholar 

  17. Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2007) The hippocampus book. Oxford University Press, New York, p 51

    Google Scholar 

  18. Insausti R, Cebada-Sánchez S, Marcos P (2010) Postnatal development of the human hippocampal formation. Adv Anat Embryol Cell Biol 206:1–86

    Article  PubMed  Google Scholar 

  19. Riley HA (1960) An atlas of the basal ganglia. Brain stem and spinal cord. Hafner, New York

    Google Scholar 

  20. Naidich TP, Daniels DL, Haughton VM, Williams A, Pojunas K, Palacios E (1987) Hippocampal formation and related structures of the limbic lobe: anatomic-MR correlation. Part I. Surface features and coronal sections. Radiology 162:747–754

    Article  CAS  PubMed  Google Scholar 

  21. Canto CB, Wouterlood FG, Witter MP (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2008:381243. doi:10.1155/2008/381243

    PubMed  PubMed Central  Google Scholar 

  22. Cameron JL (2001) Effects of sex hormones on brain development. In: Nelson CA, Luciana M (eds) Handbook of developmental cognitive neuroscience. MIT Press, Cambridge, pp 59–77

    Google Scholar 

  23. Crozier RA, Philpot BD, Sawtell NB, Bear MF (2004) Long-term plasticity of glutamatergic synaptic transmission in the cerebral cortex. In: Gazzaniga MS (ed) The cognitive neurosciences III. MIT Press, Cambridge, pp 109–126

    Google Scholar 

  24. Wible CG (2013) Hippocampal physiology, structure and function and the neuroscience of schizophrenia: a unified account of declarative memory deficits, working deficits and schizophrenia symptoms. Behav Sci 3:298–315

    Article  PubMed  PubMed Central  Google Scholar 

  25. O’Mara S (2005) The subiculum: what it does, what it might do and what neuroanatomy has yet to tell us. J Anat 207:271–282

    Article  PubMed  PubMed Central  Google Scholar 

  26. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Res 34:171–175

    Article  PubMed  Google Scholar 

  27. Wilson MA, Tonegawa S (1997) Synaptic plasticity, place cells and spatial memory: study with second generation knockouts. Trends Neurosci 20:102–106

    Article  CAS  PubMed  Google Scholar 

  28. Ji J, Maren S (2008) Differential roles for hippocampal areas CA1 and CA3 in the contextual encoding and retrieval of extinguished fear. Learn Mem 15:244–251

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mizumori SJY, Smith DM, Puryear CB (2007) Mnemonic contributions of hippocampal place cells. In: Kesner RP, Martinez JL (eds) Neurobiology of learning and memory, 2nd edn. Academic Press, Burlington, pp 155–189

    Chapter  Google Scholar 

  30. Kesner RP, Hunsaker MR, Ziegler W (2010) The role of the dorsal CA1 and ventral CA1 in memory for the temporal order of a sequence of odors. Neurobiol Learn Mem 93:111–116

    Article  PubMed  Google Scholar 

  31. van Hoesen GW, Hyman BT (1990) Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Prog Brain Res 83:445–457

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazaros C. Triarhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziogas, I.A.K., Triarhou, L.C. Anders Retzius and his gyri. Neurol Sci 37, 1861–1866 (2016). https://doi.org/10.1007/s10072-016-2672-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2672-0

Keywords

Navigation