Skip to main content

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 206))

Abstract

At birth, infants have fully developed brains—at least from a macroscopic point of view—and the constituents of the brain are easily recognizable in both humans (Arnold and Trojanowski 1996) and nonhuman primates (Rakic and Nowakowski 1981). However, many events need to occur in various areas of the brain once the child is born in order for it to achieve full maturity, and the human hippocampal formation (HF) is no exception. Although the HF is almost completely developed—macroscopically and structurally—by the time of birth, it does mature. This process of maturation includes absolute growth through the expansion of its constituents (Gogtay et al. 2006; Evans 2006), and the functional refinement of its circuitry at both the anatomic and physiologic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel LA, Levin S, Holzman PS (1992) Abnormalities of smooth pursuit and saccadic control in schizophrenia and affective disorders. Vision Res 32:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  CAS  PubMed  Google Scholar 

  • Arnold SE, Trojanowski JQ (1996) Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol 367:274–292

    Article  CAS  PubMed  Google Scholar 

  • Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR (1991a) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48:625–632

    CAS  PubMed  Google Scholar 

  • Arnold SE, Franz BR, Gur RC, Gur RE, Shapiro RM, Moberg PJ, Trojanowski JQ (1995) Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. Am J Psychiatry 152:738–748

    CAS  PubMed  Google Scholar 

  • Bauman M, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874

    CAS  PubMed  Google Scholar 

  • Cannon TD, Mednick SA, Parnas J, Schulsinger F, Praestholm J, Vestergaard A (1994) Developmental brain abnormalities in the offspring of schizophrenic mothers. II. Structural brain characteristics of schizophrenia and schizotypal personality disorder. Arch Gen Psychiatry 51:955–962

    CAS  PubMed  Google Scholar 

  • Conrad AJ, Abebe T, Austin R, Forsythe S, Scheibel AB (1991) Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Arch Gen Psychiatry 48:413–417

    CAS  PubMed  Google Scholar 

  • de la Monte SM, Hedley-Whyte ET (1990) Small cerebral hemispheres in adults with Down’s syndrome: contributions of developmental arrest and lesions of Alzheimer’s disease. J Neuropathol Exp Neurol 49:509–520

    Article  PubMed  Google Scholar 

  • Debbane M, Glaser B, David MK, Feinstein C, Eliez S (2006a) Psychotic symptoms in children and adolescents with 22q11.2 deletion syndrome: Neuropsychological and behavioral implications. Schizoph Res 84:187–193

    Article  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Evans AC (2006) The NIH MRI study of normal brain development. NeuroImage 30:184–202

    Article  PubMed  Google Scholar 

  • Ferrer I, Gullotta F (1990) Down's syndrome and Alzheimer’s disease: dendritic spine counts in the hippocampus. Acta Neuropathol 79:680–685

    Article  CAS  PubMed  Google Scholar 

  • Galaburda AM, Wang PP, Bellugi U, Rossen M (1994) Cytoarchitectonic anomalies in a genetically based disorder: Williams syndrome. NeuroReport 5:753–757

    Article  CAS  PubMed  Google Scholar 

  • Gogtay N, Nugent TF 3rd, Herman DH, Ordonez A, Greenstein D, Hayashi KM, Clasen L, Toga AW, Giedd JN, Rapoport JL, Thompson PM (2006) Dynamic mapping of normal human hippocampal development. Hippocampus 16:664–672

    Article  PubMed  Google Scholar 

  • Heckers S, Heinsen H, Geiger B, Beckmann H (1991) Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry 48:1002–1008

    CAS  PubMed  Google Scholar 

  • Insausti R, Amaral DG (2004) Hippocampal formation. In: Paxinos and Mai (eds) The human nervous system, pp 871–906

    Google Scholar 

  • Insausti R, Insausti AM, Sobreviela MT, Salinas A, Martinez-Penuela JM (1998a) Human medial temporal lobe in aging: anatomical basis of memory preservation. Microsc Res Tech 43:8–15

    Article  CAS  PubMed  Google Scholar 

  • Lavenex P, Banta Lavenex P, Amaral DG (2007) Postnatal development of the primate hippocampal formation. Develop Neurosci 29:179–192

    Article  CAS  Google Scholar 

  • Rakic P, Nowakowski RS (1981) The time of origin of neurons in the hippocampal region of the rhesus monkey. J Comp Neurol 196:99–128

    Article  CAS  PubMed  Google Scholar 

  • Raymond GV, Bauman ML, Kemper TL (1996) Hippocampus in autism: a Golgi analysis. Acta Neuropathol 91:117–119

    Article  CAS  PubMed  Google Scholar 

  • Raz N, Torres IJ, Briggs SD, Spencer WD, Thornton AE, Loken WJ, Gunning FM, McQuain JD, Driesen NR, Acker JD (1995) Selective neuroanatomic abnormalities in Down’s syndrome and their cognitive correlates: evidence from MRI morphometry. Neurology 45:356–366

    CAS  PubMed  Google Scholar 

  • Saitoh O, Karns CM, Courchesne E (2001) Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain 124:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1–35

    Article  CAS  PubMed  Google Scholar 

  • Tanzi RE (1996) Neuropathology in the Down’s syndrome brain. Nat Med 2:31–32

    Article  CAS  PubMed  Google Scholar 

  • Weiss S (1991) Morphometry and magnetic resonance imaging of the human brain in normal controls and Down’s syndrome. Anat Rec 231:593–598

    Article  CAS  Google Scholar 

  • West JR, Chen WJ, Pantazis NJ (1994) Fetal alcohol syndrome: the vulnerability of the developing brain and possible mechanisms of damage. Met Brain Dis 9:291–322

    Article  CAS  Google Scholar 

  • Witter MP, Amaral DG (2004) Hippocampal formation. In: George Paxinos (ed) The rat nervous system, pp 635–393

    Google Scholar 

  • Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33:161–253

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Insausti .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Insausti, R., Cebada-Sánchez, S., Marcos, P. (2010). Introduction. In: Postnatal Development of the Human Hippocampal Formation. Advances in Anatomy, Embryology and Cell Biology, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03661-3_1

Download citation

Publish with us

Policies and ethics