Skip to main content

Preimplantation Genetic Testing

  • Chapter
  • First Online:
Genetic Testing in Reproductive Medicine

Abstract

The two most crucial factors limiting the success of assisted reproduction are the quality of the embryo and the endometrium. The lacuna in the present morphology-based embryo selection techniques has led to the pursuit of alternative means of identifying healthy embryos and aid their selection for transfer. Preimplantation genetic testing (PGT) is a technique used in assisted reproduction technology (ART) to assess the genetic composition of embryos before transfer. PGT has been instrumental in improving pregnancy rates, live birth rates, and reducing time to pregnancy in couples at high risk of chromosomal abnormalities and genetic disorders. PGT has aided the implementation of single embryo transfer (sET) programs as a selection tool to identify the best embryo for transfer and has led to significant improvements in fertility treatments worldwide. This chapter details various sampling techniques, indications, and the evolution of analytical techniques that made PGT available to infertile patients. Applications of PGT are now expanding to include polygenic diseases and de novo conditions. This chapter aims at providing an update on preimplantation genetic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 89.00
Price excludes VAT (USA)
Hardcover Book
USD 119.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhari S, Kawwass JF (2021) Pregnancy and neonatal outcomes after transfer of mosaic embryos: a review. J Clin Med 10(7):1369

    Article  PubMed  PubMed Central  Google Scholar 

  • Bielanska M, Tan SL, Ao A (2002) Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod 17(2):413–419

    Article  PubMed  Google Scholar 

  • Bolton H, Graham SJ, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E et al (2016) Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun 7(1):11165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley CK, Livingstone M, Traversa MV, McArthur SJ (2017) Impact of multiple blastocyst biopsy and vitrification-warming procedures on pregnancy outcomes. Fertil Steril 108(6):999–1006

    Article  PubMed  Google Scholar 

  • Chan YM, Li TC, Poon LC (2019) Impact of preimplantation genetic testing for aneuploidy on obstetrical practice. Curr Opin Obstet Gynecol 31(2):127–131

    Article  PubMed  Google Scholar 

  • Chavez SL, Loewke KE, Han J, Moussavi F, Colls P, Munne S, Behr B, Reijo Pera RA (2012) Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun 3:1251

    Google Scholar 

  • Chow JF, Yeung WS, Lau EY, Lee VC, Ng EH, Ho PC (2014) Array comparative genomic hybridization analyses of all blastomeres of a cohort of embryos from young IVF patients revealed significant contribution of mitotic errors to embryo mosaicism at the cleavage stage. Reprod Biol Endocrinol 24(12):105

    Google Scholar 

  • Cornelisse S, Zagers M, Kostova E, Fleischer K, van Wely M, Mastenbroek S (2020) Preimplantation genetic testing for aneuploidies (abnormal number of chromosomes) in in vitro fertilisation. Cochrane Database Syst Rev 9

    Google Scholar 

  • Fragouli E, Alfarawati S, Spath K, Wells D (2014) Morphological and cytogenetic assessment of cleavage and blastocyst stage embryos. Mol Hum Reprod 20(2):117–126

    Article  CAS  PubMed  Google Scholar 

  • Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, Scott RT Jr (2014) The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril 101(3):656–663

    Article  PubMed  Google Scholar 

  • Gleicher N, Vidali A, Braverman J, Kushnir VA, Albertini DF, Barad DH (2015) Further evidence against use of PGS in poor prognosis patients: report of normal births after transfer of embryos reported as aneuploid. Fertil Steril 104(3):e59

    Article  Google Scholar 

  • Grati FR, Malvestiti F, Ferreira JC, Bajaj K, Gaetani E, Agrati C et al (2014) Fetoplacental mosaicism: potential implications for false-positive and false-negative noninvasive prenatal screening results. Genet Med 16(8):620–624

    Article  PubMed  Google Scholar 

  • Greco E, Minasi MG, Fiorentino F (2015) Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med 373(21):2089–2090

    Article  PubMed  Google Scholar 

  • Handyside AH, Kontogianni EH, Hardy KRML, Winston RM (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344(6268):768–770

    Article  CAS  PubMed  Google Scholar 

  • Hardy K, Winston RML, Handyside AH (1993) Binueleate Mastomeres in preimplantation human embryos in vitro: failure of cytokioesis during early cleavage. J Reprod Fertil 9812:549–558

    Article  Google Scholar 

  • Lathi RB, Westphal LM, Milki AA (2008) Aneuploidy in the miscarriages of infertile women and the potential benefit of preimplanation genetic diagnosis. Fertil Steril 89(2):353–357

    Article  PubMed  Google Scholar 

  • Li S, Ma S, Zhao J, Hu J, Li H, Zhu Y, Jiang W, Cui L, Yan J, Chen ZJ (2022) Non-assisted hatching Trophectoderm biopsy does not increase the risks of Most adverse maternal and neonatal outcome and may be more practical for busy clinics: evidence from China. Front Endocrinol 13:819963

    Article  Google Scholar 

  • Lledo B, Morales R, Ortiz JA, Rodriguez-Arnedo A, Ten J, Castillo JC, Bernabeu R (2021) Consistent results of non-invasive PGT-A of human embryos using two different techniques for chromosomal analysis. Reprod Biomed Online 42(3):555–563

    Article  CAS  PubMed  Google Scholar 

  • Maurer M, Ebner T, Puchner M, Mayer RB, Shebl O, Oppelt P, Duba HC (2015) Chromosomal aneuploidies and early embryonic developmental arrest. International journal of fertility & sterility 9(3):346

    CAS  Google Scholar 

  • Mertzanidou A, Wilton L, Cheng J, Spits C, Vanneste E, Moreau Y, Vermeesch JR, Sermon K (2-13) Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos. Hum Reprod 28(1):256-64

    Google Scholar 

  • Mostafa Nayel D, El Din S, Mahrous H, El Din Khalifa E, Kholeif S, Mohamed Elhady G (2021) The effect of teratozoospermia on sex chromosomes in human embryos. Appl Clin Genet Volume 14:125–144

    Article  Google Scholar 

  • Munné S, Spinella F, Grifo J, Zhang J, Beltran MP, Fragouli E, Fiorentino F (2020) Clinical outcomes after the transfer of blastocysts characterized as mosaic by high resolution next generation sequencing- further insights. Eur J Med Genet 63(2):103741

    Article  PubMed  Google Scholar 

  • Palmerola KL, Vitez SF, Amrane S, Fischer CP, Forman EJ (2019) Minimizing mosaicism: assessing the impact of fertilization method on rate of mosaicism after next-generation sequencing (NGS) preimplantation genetic testing for aneuploidy (PGT-A). J Assist Reprod Genet 36:153–157

    Article  PubMed  Google Scholar 

  • Patrizio P, Shoham G, Shoham Z, Leong M, Barad DH, Gleicher N (2019) Worldwide live births following the transfer of chromosomally “abnormal” embryos after PGT/a: results of a worldwide web-based survey. J Assist Reprod Genet 36:1599–1607

    Article  PubMed  PubMed Central  Google Scholar 

  • PGDIS Position statement on the transfer of mosaic embryos 2019

    Google Scholar 

  • Rubio C, Castillón G, Rodrigo L, Bellver J, Guillen A, Remohí J et al (2014) Improvement of clinical outcome in severe male factor infertility with embryo selection based on array-CGH: a randomized controlled trial. Fertil Steril 102(3):e24–e25

    Article  Google Scholar 

  • Rubio C, Pehlivan T, Rodrigo L, Simón C, Remohí J, Pellicer A (2005) Embryo aneuploidy screening for unexplained recurrent miscarriage: a minireview. Am J Reprod Immunol 53(4):159–165

    Article  PubMed  Google Scholar 

  • Sacchi L, Albani E, Cesana A, Smeraldi A, Parini V, Fabiani M et al (2019) Preimplantation genetic testing for aneuploidy improves clinical, gestational, and neonatal outcomes in advanced maternal age patients without compromising cumulative live-birth rate. J Assist Reprod Genet 36:2493–2504

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR (2013) Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril 100(3):624–630

    Article  PubMed  Google Scholar 

  • Tšuiko O, Jatsenko T, Grace LKP, Kurg A, Vermeesch JR, Lanner F et al (2019) A speculative outlook on embryonic aneuploidy: can molecular pathways be involved? Dev Biol 447(1):3–13

    Article  PubMed  Google Scholar 

  • Victor AR, Griffin DK, Brake AJ, Tyndall JC, Murphy AE, Lepkowsky LT et al (2019a) Assessment of aneuploidy concordance between clinical trophectoderm biopsy and blastocyst. Hum Reprod 34(1):181–192

    Article  CAS  PubMed  Google Scholar 

  • Victor AR, Tyndall JC, Brake AJ, Lepkowsky LT, Murphy AE, Griffin DK et al (2019b) One hundred mosaic embryos transferred prospectively in a single clinic: exploring when and why they result in healthy pregnancies. Fertil Steril 111(2):280–293

    Article  PubMed  Google Scholar 

  • Voullaire L, Slater H, Williamson R, Wilton L (2000) Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridization. Hum Genet 106(2):210–217

    Article  CAS  PubMed  Google Scholar 

  • Wartosch L, Schindler K, Schuh M, Gruhn JR, Hoffmann ER, McCoy RC, Xing J (2021) Origins and mechanisms leading to aneuploidy in human eggs. Prenat Diagn 41:620–630

    Article  PubMed  PubMed Central  Google Scholar 

  • Wells D, Delhanty J (2000) Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod 6(11):1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Lin J, Zhang J, Fong WI, Li P, Zhao R et al (2015) Randomized comparison of next-generation sequencing and array comparative genomic hybridization for preimplantation genetic screening: a pilot study. BMC Med Genet 8:1–13

    Google Scholar 

  • Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, De Mouzon J, Sokol R et al (2017) The international glossary on infertility and fertility care, 2017. Hum Reprod 32(9):1786–1801

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., D’Souza, F.O. (2023). Preimplantation Genetic Testing. In: Singh, R. (eds) Genetic Testing in Reproductive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-99-7028-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7028-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7027-8

  • Online ISBN: 978-981-99-7028-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics