Skip to main content

Abstract

The discovery of ultrasound waves dates back to 1793, when Lazzaro Spallanzani, an Italian biologist, observed the echolocation ability of bats in navigation [1]. Later on, in 1915, Pierre and Jacques Curie observed the phenomenon of piezoelectric effect, which refers to the generation of electric charges by specific crystals under mechanical pressure thereby generating pressure waves upon application of electricity. This significant finding led to the development of ultrasound transducers capable of emitting and receiving such waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 119.00
Price excludes VAT (USA)
Hardcover Book
USD 159.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaproth-Joslin KA, Nicola R, Dogra VS. The history of US: from bats and boats to the bedside and beyond: RSNA centennial article. RadioGraphics. 2015;35(3):960–70.

    Article  PubMed  Google Scholar 

  2. Dietrich CF, Bolondi L, Duck F, Evans DH, Ewertsen C, Fraser AG, et al. History of ultrasound in medicine from its birth to date (2022), on occasion of the 50 Years Anniversary of EFSUMB. A publication of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB), designed to record the historical development of medical ultrasound. Med Ultrasonogr. 2022;24(4):434.

    Article  Google Scholar 

  3. Edler I, Hertz CH. The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. Clin Physiol Funct Imaging. 2004;24(3):118–36.

    Article  CAS  PubMed  Google Scholar 

  4. Coman IM, Popescu BA. Shigeo Satomura: 60 years of Doppler ultrasound in medicine. Cardiovasc Ultrasound. 2015;13(1)

    Google Scholar 

  5. Campbell S. A short history of sonography in obstetrics and gynaecology. Facts, Views Vision in ObGyn [Internet]. 2013;5(3):213–29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987368/

    CAS  PubMed  Google Scholar 

  6. Lichtenstein D, Axler O. Intensive use of general ultrasound in the intensive care unit. Intensive Care Med. 1993;19(6):353–5.

    Article  CAS  PubMed  Google Scholar 

  7. Lichtenstein D. Lung ultrasound in the critically ill. Curr Opin Crit Care. 2014;20(3):315–22.

    Article  PubMed  Google Scholar 

  8. Singh S, Goyal A. The origin of echocardiography: a tribute to Inge Edler. Texas Heart Inst J. 2007;34(4):431–8.

    Google Scholar 

  9. Frazin L, Talano JV, Stephanides L, Loeb HS, Kopel L, Gunnar RM. Esophageal echocardiography. Circulation. 1976;54(1):102–8.

    Article  CAS  PubMed  Google Scholar 

  10. DiMagno EP, Buxton JL, Regan PT, Hattery RR, Wilson DA, Suarez JR, et al. Ultrasonic endoscope. Lancet (London, England). 1980;1(8169):629–31.

    Article  CAS  PubMed  Google Scholar 

  11. Goldberg BB, Goodman GR, Clearfield HR. Evaluation of ascites by ultrasound. Radiology. 1970;96(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  12. Kristensen JK, Buemann B, Kühl E. Ultrasonic scanning in the diagnosis of splenic haematomas. Acta Chir Scand. 1971;137(7):653–7.

    CAS  PubMed  Google Scholar 

  13. Michael Asher W, Parvin S, Virgilio RW, Haber K. Echographic evaluation of splenic injury after blunt trauma. Radiology. 1976;118(2):411–5.

    Article  Google Scholar 

  14. Tso P, Rodriguez A, Cooper C, Militello P, Mirvis S, Badellino MM, Boulanger BR, Foss FA Jr, Hinson DM, Mighty HE, Nasrallah DV, Raimonde AJ, Yates WD, Yuschak JV. Sonography in blunt abdominal trauma: a preliminary progress report. J Trauma 33(1):p 39–44, July 1992.

    Google Scholar 

  15. Scalea TM, Rodriguez A, Chiu WC, Brenneman FD, Fallon WF Jr, Kato K, McKenney MG, Nerlich ML, Ochsner MG, Yoshii H. Focused assessment with sonography for trauma (FAST): results from an international consensus conference. J Trauma. 1999 Mar;46(3):466–72.

    Article  CAS  PubMed  Google Scholar 

  16. Ullman JI, Stoelting RK. Internal jugular vein location with the ultrasound Doppler blood flow detector. Anesth Analg. 1978;57(1):118.

    Article  CAS  PubMed  Google Scholar 

  17. Yonei A, Nonoue T, Sari A. Real-time ultrasonic guidance for percutaneous puncture of the internal jugular vein. Anesthesiology. 1986;64(6):830–1.

    Article  CAS  PubMed  Google Scholar 

  18. Lamperti M, Bodenham AR, Pittiruti M, Blaivas M, Augoustides JG, Elbarbary M, et al. International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Med. 2012;38(7):1105–17.

    Article  PubMed  Google Scholar 

  19. Practice Guidelines for Central Venous Access 2020. Anesthesiology. 2020;132(1):8–43.

    Google Scholar 

  20. Guidance | Guidance on the use of ultrasound locating devices for placing central venous catheters | Guidance | NICE [Internet]. Nice.org.uk. NICE; 2002. https://www.nice.org.uk/guidance/ta49/chapter/1-guidance

  21. Bodenham Chair A, Babu S, Bennett J, Binks R, Fee P, Fox B, et al. Association of anaesthetists of Great Britain and Ireland: safe vascular access 2016. Anaesthesia [Internet]. 2016;71(5):573–85. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067617/

    Article  CAS  PubMed  Google Scholar 

  22. Ting PL, Sivagnanaratnam V. Ultrasonographic study of the spread of local anaesthetic during axillary brachial plexus block. Br J Anaesth. 1989;63(3):326–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kapral S, Krafft P, Eibenberger K, Fitzgerald R, Gosch M, Weinstabl C. Ultrasound-guided supraclavicular approach for regional anesthesia of the brachial plexus. Anesth Analg [Internet]. 1994;78(3):507–13. [cited 2022 Mar 31] https://pubmed.ncbi.nlm.nih.gov/8109769/

    CAS  PubMed  Google Scholar 

  24. Neal JM, Brull R, Horn JL, Liu SS, McCartney CJL, Perlas A, et al. The second american society of regional anesthesia and pain medicine evidence-based medicine assessment of ultrasound-guided regional anesthesia. Reg Anesth Pain Med. 2016;41(2):181–94.

    Article  CAS  PubMed  Google Scholar 

  25. Narouze SN, Provenzano D, Peng P, Eichenberger U, Lee SC, Nicholls B, et al. The American Society of Regional Anesthesia and Pain Medicine, the European Society of Regional Anaesthesia and Pain Therapy, and the Asian Australasian Federation of Pain Societies Joint Committee Recommendations for Education and Training in Ultrasound-Guided Interventional Pain Procedures. Reg Anesth Pain Med. 2012;37(6):657–64.

    Article  CAS  PubMed  Google Scholar 

  26. Turbitt LR, Mariano ER, El-Boghdadly K. Future directions in regional anaesthesia: not just for the cognoscenti. Anaesthesia. 2019;75(3):293–7.

    Article  PubMed  Google Scholar 

  27. Moore CL, Copel JA. Point-of-care ultrasonography. N Engl J Med. 2011;364(8):749–57.

    Article  CAS  PubMed  Google Scholar 

  28. Díaz-Gómez JL, Mayo PH, Koenig SJ. Point-of-Care Ultrasonography. Ingelfinger JR, editor. N Engl J Med. 2021;385(17):1593–602.

    Article  PubMed  Google Scholar 

  29. Sonko ML, Arnold C. Machine learning in point of care ultrasound. POCUS J. 2022;07:78; Kidney.

    Google Scholar 

  30. Shokoohi H, LeSaux MA, Roohani YH, Liteplo A, Huang C, Blaivas M. Enhanced point-of-care ultrasound applications by integrating automated feature-learning systems using deep learning. J Ultrasound Med. 2018;38(7):1887–97.

    Article  PubMed  Google Scholar 

  31. Recker F, Höhne E, Damjanovic D, Schäfer VS. Ultrasound in telemedicine: a brief overview. Appl Sci. 2022;12(3):958.

    Article  CAS  Google Scholar 

  32. Shriki J. Ultrasound physics. Crit Care Clin. 2014;30(1):1–24. https://doi.org/10.1016/j.ccc.2013.08.004.

    Article  PubMed  Google Scholar 

  33. Meng Y, Chen G, Huang M. Piezoelectric materials: properties, advancements, and design strategies for high-temperature applications. Nanomaterials. 2022;12(7) https://doi.org/10.3390/nano12071171.

  34. Lawrence JP. Physics and instrumentation of ultrasound. Crit Care Med. 2007;35(8 Suppl) https://doi.org/10.1097/01.CCM.0000270241.33075.60.

  35. Enriquez JL, Wu TS. An introduction to ultrasound equipment and knobology. Crit Care Clin. 2014;30(1):25–45. https://doi.org/10.1016/j.ccc.2013.08.006.

    Article  PubMed  Google Scholar 

  36. Lopez-Haro SA, Vera A, Leija L. Evaluation of an ultrasonic propagation speed measurement system in the temperature range from 20°C to 45°C. In: Pan American Health Care Exchanges, PAHCE 2010; 2010, pp. 85–89. doi: https://doi.org/10.1109/PAHCE.2010.5474594

  37. Docker MM, Duck FA, British Institute of Radiology (1958), British Medical Ultrasound Society. The safe use of diagnostic ultrasound. British Institute of Radiology; 1991

    Google Scholar 

  38. Ho CY, Solomon SD. A clinician’s guide to tissue doppler imaging. Circulation. 2006;113(10) https://doi.org/10.1161/CIRCULATIONAHA.105.579268.

  39. Chakraborty A, Ashokka B, editors. A practical guide to point of care ultrasound (POCUS); 2022. ISBN: 978-981-16-7686-4.

    Google Scholar 

  40. Brown SM, Blaivas M, Hirshberg EL, Kasal J, Pustavoitau A, editors. Comprehensive critical care ultrasound. Society of Critical Care Medicine; 2015. ISBN: 9781620750322.

    Google Scholar 

  41. Díaz-Gómez JL, Nikravan S, Conlon T, editors. Comprehensive Critical Care Ultrasound. 2nd ed. Society of Critical Care Medicine; 2020.

    Google Scholar 

  42. Zander D, Hüske S, Hoffmann B, Cui XW, Dong Y, Lim A, Jenssen C, Löwe A, Koch JBH, Dietrich CF. Ultrasound image optimization (“Knobology”): B-mode. Ultrasound Int Open. 2020;6(1):E14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Amo Wiafe Y, Badu-Peprah A. The influence of ultrasound equipment knobology in abdominal sonography [Internet]. Essentials of Abdominal Ultrasound. Intech Open; 2019. doi: https://doi.org/10.5772/intechopen.83713.

  44. What Is Ergonomics (HFE)? | The International Ergonomics Association is a global federation of human factors/ergonomics societies, registered as a non-profit organization in Geneva, Switzerland. What Is Ergonomics (HFE)? | The International Ergonomics Association Is a Global Federation of Human Factors/Ergonomics Societies, Registered as a Nonprofit Organization in Geneva, Switzerland n.d. https://iea.cc/what-is-ergonomics/. Accessed 1 May 2023.

  45. Ergonomics—Overview | Occupational Safety and Health Administration. Ergonomics—Overview | Occupational Safety and Health Administration; n.d. https://www.osha.gov/SLTC/ergonomics/. Accessed 30 April 2023.

  46. Baker JP, Coffin CT. The importance of an ergonomic workstation to practicing sonographers. J Ultrasound Med. 2013;32:1363–75. https://doi.org/10.7863/ultra.32.8.1363.

    Article  PubMed  Google Scholar 

  47. Coffin C. Work-related musculoskeletal disorders in sonographers: a review of causes and types of injury and best practices for reducing injury risk. Rep Med Imaging. 2014:15. https://doi.org/10.2147/rmi.s34724.

  48. Murphy C. Brief ergonomic review cardiac ultrasound [Internet]. 2012 [cited 2023 Apr 28]. https://www.hsabc.org/sites/default/files/uploads/ohs%20sono%20Cardiac_ultrasonographers__Debrief_June_14_amended_2012.pdf

  49. Deb S, Venkateshvaran A. Essential ergonomics to minimise work-related musculoskeletal disorders in echocardiography. J Indian Acad Echocardiogr Cardiovasc Imaging. 2018;2:49–52.

    Article  Google Scholar 

  50. Evans K, Roll S, Baker J. Work-related musculoskeletal disorders (WRMSD) among registered diagnostic medical sonographers and Vascular Technologists. J Diagn Med Sonogr. 2009;25(6):287–99.

    Article  Google Scholar 

  51. Murphey S. Work-related musculoskeletal disorders in Sonography. J Diagn Med Sonogr. 2017;33(5):354–69.

    Article  Google Scholar 

  52. Sommerich CM, Lavender SA, Evans K, Sanders E, Joines S, Lamar S, et al. Collaborating with cardiac sonographers to develop work-related musculoskeletal disorder interventions. Ergonomics. 2016;59(9):1193–204.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Work-related Musculoskeletal Disorders (WMSDs). CCOHS: Work-Related Musculoskeletal Disorders (WMSDs) 2023. https://www.ccohs.ca/oshanswers/diseases/rmirsi.html. Accessed 30 April 2023.

  54. Village J, Trask C. Ergonomic analysis of postural and muscular loads to diagnostic sonographers. Int J Industr Ergon. 2007;37:781–9. https://doi.org/10.1016/j.ergon.2007.06.005.

    Article  Google Scholar 

  55. Cursaro M, Rich J, Alvaro V, Bradley J, Shirazi M, Edwards S. Ergonomics-taking care of yourself. J Am Soc Echocardiogr [Internet]. 2014;27(3):A36–7. https://doi.org/10.1016/j.echo.2014.01.008.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fathil, S.b.M. et al. (2024). Principle of Ultrasound. In: Bouarroudj, N., Cano, P.C., Fathil, S.b.M., Hemamid, H. (eds) POCUS in Critical Care, Anesthesia and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-43721-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43721-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43720-5

  • Online ISBN: 978-3-031-43721-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics