Skip to main content

Treatment: Lifestyle and Medication

  • Chapter
  • First Online:
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 775 Accesses

Abstract

Type 2 Diabetes (T2D) is often associated with overweight or obesity. Exercise, dietary intervention, and behavior modifications are strongly recommended for patients with type 2 diabetes and have been associated with significant improvement in insulin sensitivity, endothelial function, and improvements in several markers of inflammation and coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Softcover Book
USD 159.99
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Papers of particular interest, published recently, have been highlighted as: • Of importance • Of major importance.

Further Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance • Of major importance.

  1. Caballero B. The global epidemic of obesity: an overview. Epidemiol Rev. 2007;29(1):1–5.

    Article  PubMed  Google Scholar 

  2. Herman WH, Zimmet P. Type 2 diabetes: an epidemic requiring global attention and urgent action. Diabetes Care. 2012;35(5):943–4. https://doi.org/10.2337/dc12-0298.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Prevention CfDCa. Prevalence of overweight and obesity among adults with diagnosed diabetes—United States, 1988–1994 and 1999–2002. MMWR Morb Mortal Wkly Rep. 2004;53(45):1066–8.

    Google Scholar 

  4. Daousi C, Casson IF, Gill GV, MacFarlane IA, Wilding JP, Pinkney JH. Prevalence of obesity in type 2 diabetes in secondary care: association with cardiovascular risk factors. Postgrad Med J. 2006;82(966):280–4. https://doi.org/10.1136/pmj.2005.039032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res. 2016;118(11):1723–35. https://doi.org/10.1161/circresaha.115.306825. This study describes trends in the current obesity and diabetes epidemics in the USA and their associated health complications

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holmes MV, Pulit SL, Lindgren CM. Genetic and epigenetic studies of adiposity and cardiometabolic disease. Genome Med. 2017;9(1):82. https://doi.org/10.1186/s13073-017-0474-5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. ADA. Lifestyle management. Sec. 4. In standards of medical care in diabetes—2017. Diabetes Care. 2017;40(Supplement 1):S33–43. https://doi.org/10.2337/dc17-S007.

    Article  Google Scholar 

  8. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2018 executive summary. Endocr Pract. 2018;24(1):91–120. https://doi.org/10.4158/cs-2017-0153.

    Article  PubMed  Google Scholar 

  9. Chin MH, Cook S, Jin L, Drum ML, Harrison JF, Koppert J, et al. Barriers to providing diabetes care in Community Health Centers. Diabetes Care. 2001;24(2):268–74. https://doi.org/10.2337/diacare.24.2.268.

    Article  CAS  PubMed  Google Scholar 

  10. Wens J, Vermeire E, Royen PV, Sabbe B, Denekens JGP. ‘Perspectives of type 2 diabetes patients’ adherence to treatment: a qualitative analysis of barriers and solutions. BMC Fam Pract. 2005;6(1):20. https://doi.org/10.1186/1471-2296-6-20.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jansink R, Braspenning J, van der Weijden T, Elwyn G, Grol R. Primary care nurses struggle with lifestyle counseling in diabetes care: a qualitative analysis. BMC Fam Pract. 2010;11(1):41. https://doi.org/10.1186/1471-2296-11-41.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mitri J, Hamdy O. Diabetes medications and body weight. Expert Opin Drug Saf. 2009;8(5):573–84. https://doi.org/10.1517/14740330903081725.

    Article  CAS  PubMed  Google Scholar 

  13. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6. https://doi.org/10.1038/nature05482.

    Article  CAS  PubMed  Google Scholar 

  14. Hamdy O, Ledbury S, Mullooly C, Jarema C, Porter S, Ovalle K, et al. Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diabetes Care. 2003;26(7):2119–25.

    Article  PubMed  Google Scholar 

  15. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.

    Article  CAS  PubMed  Google Scholar 

  16. Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, Coday M, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145–54. https://doi.org/10.1056/NEJMoa1212914.

    Article  CAS  PubMed  Google Scholar 

  17. Hamdy O, Mottalib A, Morsi A, El-Sayed N, Goebel-Fabbri A, Arathuzik G, et al. Long-term effect of intensive lifestyle intervention on cardiovascular risk factors in patients with diabetes in real-world clinical practice: a 5-year longitudinal study. BMJ Open Diabetes Res Care. 2017;5(1):e000259. This study reported that long-term weight loss can be achieved by patients with diabetes and obesity through a lifestyle intervention program in real-world clinical practice

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yumuk V, Fruhbeck G, Oppert JM, Woodward E, Toplak H. An EASO position statement on multidisciplinary obesity management in adults. Obesity Facts. 2014;7(2):96–101. https://doi.org/10.1159/000362191.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Phelan S, Wyatt HR, Hill JO, Wing RR. Are the eating and exercise habits of successful weight losers changing? Obesity (Silver Spring). 2006;14(4):710–6. https://doi.org/10.1038/oby.2006.81.

    Article  PubMed  Google Scholar 

  20. Thomas JG, Bond DS, Phelan S, Hill JO, Wing RR. Weight-loss maintenance for 10 years in the National Weight Control Registry. Am J Prev Med. 2014;46(1):17–23. https://doi.org/10.1016/j.amepre.2013.08.019.

    Article  PubMed  Google Scholar 

  21. Montesi L, El Ghoch M, Brodosi L, Calugi S, Marchesini G, Dalle GR. Long-term weight loss maintenance for obesity: a multi-disciplinary approach. Diabetes Metab Syndr Obes. 2016;9:37–46. https://doi.org/10.2147/dmso.s89836.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hamdy O, Carver C. The Why WAIT program: improving clinical outcomes through weight management in type 2 diabetes. Curr Diab Rep. 2008;8(5):413–20.

    Article  PubMed  Google Scholar 

  23. Jennings A, Hughes CA, Kumaravel B, Bachmann MO, Steel N, Capehorn M, et al. Evaluation of a multidisciplinary Tier 3 weight management service for adults with morbid obesity, or obesity and comorbidities, based in primary care. Clin Obes. 2014;4(5):254–66. https://doi.org/10.1111/cob.12066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lih A, Pereira L, Bishay RH, Zang J, Omari A, Atlantis E, et al. A novel multidisciplinary intervention for long-term weight loss and glycaemic control in obese patients with diabetes. J Diabetes Res. 2015;2015:729567. https://doi.org/10.1155/2015/729567.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Romanova M, Liang LJ, Deng ML, Li Z, Heber D. Effectiveness of the MOVE! Multidisciplinary weight loss program for veterans in Los Angeles. Prev Chronic Dis. 2013;10:E112. https://doi.org/10.5888/pcd10.120325.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mauro M, Taylor V, Wharton S, Sharma AM. Barriers to obesity treatment. Eur J Int Med. 2008;19(3):173–80. https://doi.org/10.1016/j.ejim.2007.09.011.

    Article  Google Scholar 

  27. Mordes JP, Liu C, Xu S. Medications for weight loss. Curr Opin Endocrinol Diabetes Obes. 2015;22(2):91–7. https://doi.org/10.1097/med.0000000000000140.

    Article  CAS  PubMed  Google Scholar 

  28. Yki-Jarvinen H, Kauppila M, Kujansuu E, Lahti J, Marjanen T, Niskanen L, et al. Comparison of insulin regimens in patients with non-insulin-dependent diabetes mellitus. N Engl J Med. 1992;327(20):1426–33. https://doi.org/10.1056/nejm199211123272005.

    Article  CAS  PubMed  Google Scholar 

  29. Heller S, Buse J, Fisher M, Garg S, Marre M, Merker L, et al. Insulin degludec, an ultra-long acting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 1 diabetes (BEGIN Basal-Bolus Type 1): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet. 2012;379(9825):1489–97. https://doi.org/10.1016/s0140-6736(12)60204-9.

    Article  CAS  PubMed  Google Scholar 

  30. Mathieu C, Hollander P, Miranda-Palma B, Cooper J, Franek E, Russell-Jones D, et al. Efficacy and safety of insulin degludec in a flexible dosing regimen vs insulin glargine in patients with type 1 diabetes (BEGIN: Flex T1): a 26-week randomized, treat-to-target trial with a 26-week extension. J Clin Endocrinol Metab. 2013;98(3):1154–62. https://doi.org/10.1210/jc.2012-3249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Home PD, Bergenstal RM, Bolli GB, Ziemen M, Rojeski M, Espinasse M, et al. New insulin glargine 300 units/mL versus glargine 100 units/mL in people with type 1 diabetes: a randomized, phase 3a, open-label clinical trial (EDITION 4). Diabetes Care. 2015;38(12):2217–25. https://doi.org/10.2337/dc15-0249.

    Article  CAS  PubMed  Google Scholar 

  32. Garg SK, Rosenstock J, Ways K. Optimized basal-bolus insulin regimens in type 1 diabetes: insulin glulisine versus regular human insulin in combination with basal insulin glargine. Endocr Pract. 2005;11(1):11–7. https://doi.org/10.4158/ep.11.1.11.

    Article  PubMed  Google Scholar 

  33. Food and Drug Administration. FIASP® (insulin aspart injection) [label]. Bagsvaerd: Novo Nordisk A/S. 2017.

    Google Scholar 

  34. Food and Drug Administration. APIDRA® (insulin glulisine [rDNA origin] injection) [label]. Bridgewater, NJ: Sanofi-Aventis U.S. LLC; 2015.

    Google Scholar 

  35. Joslin EP. The treatment of diabetes mellitus. Can Med Assoc J. 1916;6(8):673–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Allen FM, Stillman E, Fitz R. Total dietary regulation in the treatment of diabetes, vol. 11. New York: Rockefeller Institute for Medical Research; 1919.

    Google Scholar 

  37. Mottalib A, Salsberg V, Mohd-Yusof B-N, Mohamed W, Carolan P, Pober DM, et al. Effects of nutrition therapy on A1C and cardio-vascular disease risk factors in overweight and obese patients with type 2 diabetes. Nutr J. 2018;17(1):42. https://doi.org/10.1186/s12937-018-0351-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. The Look AHEAD Research Group. Eight-year weight losses with an intensive lifestyle intervention: the look AHEAD study. Obesity (Silver Spring). 2014;22(1):5–13. https://doi.org/10.1002/oby.20662.

    Article  Google Scholar 

  39. Wadden TA, West DS, Delahanty L, Jakicic J, Rejeski J, Williamson D, et al. The Look AHEAD study: a description of the lifestyle intervention and the evidence supporting it. Obesity (Silver Spring). 2006;14(5):737–52. https://doi.org/10.1038/oby.2006.84.

    Article  PubMed  Google Scholar 

  40. Giusti J, Rizzotto JA. Interpreting the Joslin Diabetes Center and Joslin Clinic Clinical Nutrition Guideline for overweight and obese adults with type 2 diabetes. Curr Diab Rep. 2006;6(5):405–8.

    Article  PubMed  Google Scholar 

  41. Campbell A. Tackling “diabesity” head-on. Joslin Diabetes Center’s new nutrition guideline. Diabetes Self Manag. 2005;22(6):40–42–4.

    PubMed  Google Scholar 

  42. Hamdy O, Horton ES. Protein content in diabetes nutrition plan. Curr Diab Rep. 2011;11(2):111–9. https://doi.org/10.1007/s11892-010-0171-x.

    Article  CAS  PubMed  Google Scholar 

  43. Wadden TA, Neiberg RH, Wing RR, Clark JM, Delahanty LM, Hill JO, Krakoff J, Otto A, Ryan DH, Vitolins MZ. Look AHEAD Research Group Four-year weight losses in the look AHEAD study: factors associated with long-term success. Obesity (Silver Spring). 2011;19(10):1987–98. https://doi.org/10.1038/oby.2011.230.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cheskin LJ, Mitchell AM, Jhaveri AD, Mitola AH, Davis LM, Lewis RA, et al. Efficacy of meal replacements versus a standard food-based diet for weight loss in type 2 diabetes: a controlled clinical trial. Diabetes Educ. 2008;34(1):118–27. https://doi.org/10.1177/0145721707312463.

    Article  PubMed  Google Scholar 

  45. Heymsfield S, Van Mierlo C, Van der Knaap H, Heo M, Frier H. Weight management using a meal replacement strategy: meta and pooling analysis from six studies. Int J Obes. 2003;27(5):537–49.

    Article  CAS  Google Scholar 

  46. Li D, Zhang P, Guo H, Ling W. Taking a low glycemic index multi-nutrient supplement as breakfast improves glycemic control in patients with type 2 diabetes mellitus: a randomized controlled trial. Nutrients. 2014;6(12):5740–55. https://doi.org/10.3390/nu6125740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hamdy O, Zwiefelhofer D. Weight management using a meal replacement strategy in type 2 diabetes. Curr Diab Rep. 2010;10(2):159–64. https://doi.org/10.1007/s11892-010-0103-9.

    Article  PubMed  Google Scholar 

  48. Mottalib A, Mohd-Yusof BN, Shehabeldin M, Pober DM, Mitri J, Hamdy O. Impact of diabetes-specific nutritional formulas versus oatmeal on postprandial glucose, insulin, GLP-1 and postprandial Lipidemia. Nutrients. 2016;8(7):443. https://doi.org/10.3390/nu8070443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Capodaglio P, De Souza SA, Parisio C, Precilios H, Vismara L, Cimolin V, et al. Reference values for the 6-min walking test in obese subjects. Disabil Rehabil. 2013;35(14):1199–203. https://doi.org/10.3109/09638288.2012.726313.

    Article  PubMed  Google Scholar 

  50. Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Church TS. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis. 2014;56(4):441–7. https://doi.org/10.1016/j.pcad.2013.09.012.

    Article  PubMed  Google Scholar 

  51. Umegaki H. Sarcopenia and diabetes: hyperglycemia is a risk factor for age-associated muscle mass and functional reduction. J Diabetes Investig. 2015;6(6):623–4. https://doi.org/10.1111/jdi.12365.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jefferis BJ, Parsons TJ, Sartini C, Ash S, Lennon LT, Wannamethee SG, et al. Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older British men. Int J Behav Nutr Phys Act. 2016;13(36):36. https://doi.org/10.1186/s12966-016-0361-2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Glazer NL, Lyass A, Esliger DW, Blease SJ, Freedson PS, Massaro JM, et al. Sustained and shorter bouts of physical activity are related to cardiovascular health. Med Sci Sports Exerc. 2013;45(1):109–15. https://doi.org/10.1249/MSS.0b013e31826beae5.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wadden TA, Stunkard AJ. Handbook of obesity treatment. New York: Guilford Press; 2002.

    Google Scholar 

  55. Diabetes Prevention Program (DPP) Research Group. The Look AHEAD Research Group: description of lifestyle intervention. Diabetes Care. 2002;25(12):2165–71.

    Google Scholar 

  56. Nikolaou CK, Lean MEJ. Mobile applications for obesity and weight management: current market characteristics. Int J Obes. 2016;41(1):200–2. https://doi.org/10.1038/ijo.2016.186.

    Article  Google Scholar 

  57. Bonn SE, Alexandrou C, Steiner KH, Wiklander K, Östenson C, Löf M, et al. App-technology to increase physical activity among patients with diabetes type 2—the DiaCert-study, a randomized controlled trial. BMC Public Health. 2018;18(1):119. https://doi.org/10.1186/s12889-018-5026-4.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Carter MC, Burley VJ, Nykjaer C, Cade JE. Adherence to a smartphone application for weight loss compared to website and paper diary: pilot randomized controlled trial. J Med Internet Res. 2013;15(4):e32. https://doi.org/10.2196/jmir.2283.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pagoto S, Schneider K, Jojic M, DeBiasse M, Mann D. Evidence-based strategies in weight-loss mobile apps. Am J Prev Med. 2013;45(5):576–82. https://doi.org/10.1016/j.amepre.2013.04.025.

    Article  PubMed  Google Scholar 

  60. El Khoury L, Chouillard E, Chahine E, Saikaly E, Debs T, Kassir R. Metabolic surgery and diabesity: a systematic review. Obes Surg. 2018;28:2069–77. https://doi.org/10.1007/s11695-018-3252-6.

    Article  PubMed  Google Scholar 

  61. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ikramuddin S, Billington CJ, Lee W-J, Bantle JP, Thomas AJ, Connett JE, et al. Roux-en-Y gastric bypass for diabetes (the Diabetes Surgery Study): 2-year outcomes of a 5-year, randomised, controlled trial. Lancet Diabetes Endocrinol. 2015;3(6):413–22.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial–a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34.

    Article  PubMed  Google Scholar 

  64. Yska JP, van Roon EN, de Boer A, Leufkens HG, Wilffert B, de Heide LJ, et al. Remission of type 2 diabetes mellitus in patients after different types of bariatric surgery: a population-based cohort study in the United Kingdom. JAMA Surg. 2015;150(12):1126–33. https://doi.org/10.1001/jamasurg.2015.2398.

    Article  PubMed  Google Scholar 

  65. Peterli R, Borbely Y, Kern B, Gass M, Peters T, Thurnheer M, et al. Early results of the Swiss Multicentre Bypass or Sleeve Study (SM-BOSS): a prospective randomized trial comparing laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass. Ann Surg. 2013;258(5):690–4; discussion 5. https://doi.org/10.1097/SLA.

    Article  PubMed  Google Scholar 

  66. Patel P, Hartland A, Hollis A, Ali R, Elshaw A, Jain S, et al. Tier 3 multidisciplinary medical weight management improves outcome of Roux-en-Y gastric bypass surgery. Ann R Coll Surg Engl. 2015;97(3):235–7. https://doi.org/10.1308/003588414x14055925061838. This study demonstrates the benefits of a weight management program prior to gastric bypass surgery in improving weight loss outcomes in patients

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Goldfine AB, Patti ME. How common is hypoglycemia after gastric bypass? Obesity (Silver Spring). 2016;24(6):1210–1. https://doi.org/10.1002/oby.21520.

    Article  PubMed  Google Scholar 

  68. Abu Dayyeh BK, Rajan E, Gostout CJ. Endoscopic sleeve gastroplasty: a potential endoscopic alternative to surgical sleeve gastrectomy for treatment of obesity. Gastrointest Endosc. 2013;78(3):530–5. https://doi.org/10.1016/j.gie.2013.04.197.

    Article  PubMed  Google Scholar 

  69. Franco JV, Ruiz PA, Palermo M, Gagner M. A review of studies comparing three laparoscopic procedures in bariatric surgery: sleeve gastrectomy, Roux-en-Y gastric bypass and adjustable gastric banding. Obes Surg. 2011;21(9):1458–68. https://doi.org/10.1007/s11695-011-0390-5.

    Article  PubMed  Google Scholar 

  70. Cho JM, Kim HJ, Lo Menzo E, Park S, Szomstein S, Rosenthal RJ. Effect of sleeve gastrectomy on type 2 diabetes as an alternative treatment modality to Roux-en-Y gastric bypass: systemic review and meta-analysis. Surg Obes Relat Dis. 2015;11(6):1273–80. https://doi.org/10.1016/j.soard.2015.03.001.

    Article  PubMed  Google Scholar 

  71. Ding SA, Simonson DC, Wewalka M, Halperin F, Foster K, Goebel-Fabbri A, et al. Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial. J Clin Endocrinol Metab. 2015;100(7):2546–56. https://doi.org/10.1210/jc.2015-1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kjær IGH, Kolle E, Hansen BH, Anderssen SA, Torstveit MK. Obesity prevalence in Norwegian adults assessed by body mass index, waist circumference and fat mass percentage. Clin Obes. 2015;5(4):211–8. https://doi.org/10.1111/cob.12100.

    Article  PubMed  Google Scholar 

  73. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284–91. https://doi.org/10.1001/jama.2016.6458. This report utilizes data from the National Health and Nutrition Examination Survey (NHANES) to describe the alarming changes in obesity trends in the US

    Article  CAS  PubMed  Google Scholar 

  74. Ghosh A, Charlton KE, Batterham MJ. Socioeconomic disadvantage and its implications for population health planning of obesity and overweight, using cross-sectional data from general practices from a regional catchment in Australia. BMJ Open. 2016;6(5):e010405. https://doi.org/10.1136/bmjopen-2015-010405.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Szadkowska A, Madej A, Ziolkowska K, Szymanska M, Jeziorny K, Mianowska B, et al. Gender and age-dependent effect of type 1 diabetes on obesity and altered body composition in young adults. Ann Agric Environ Med. 2015;22(1):124–8. https://doi.org/10.5604/12321966.1141381.

    Article  PubMed  Google Scholar 

  76. Conway B, Miller RG, Costacou T, Fried L, Kelsey S, Evans RW, et al. Temporal patterns in overweight and obesity in type 1 diabetes. Diabet Med. 2010;27(4):398–404. https://doi.org/10.1111/j.1464-5491.2010.02956.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chillaron JJ, Benaiges D, Mane L, Pedro-Botet J, Flores Le-Roux JA. Obesity and type 1 diabetes mellitus management. Minerva Endocrinol. 2015;40(1):53–60.

    CAS  PubMed  Google Scholar 

  78. Burr JF, Shephard RJ, Riddell MC. Physical activity in type 1 diabetes mellitus: assessing risks for physical activity clearance and prescription. Can Fam Physician. 2012;58(5):533–5.

    PubMed  PubMed Central  Google Scholar 

  79. Francescato MP, Stel G, Stenner E, Geat M. Prolonged exercise in type 1 diabetes: performance of a customizable algorithm to estimate the carbohydrate supplements to minimize glycemic imbalances. PLoS One. 2015;10(4):e0125220. https://doi.org/10.1371/journal.pone.0125220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. ADA. Foundations of care and comprehensive medical evaluation. Sec. 3. In standards of medical care in diabetes—2016. Diabetes Care. 2016;39(Suppl 1):S23–35. https://doi.org/10.2337/dc16-S006.

    Article  Google Scholar 

  81. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359(3):229–41. https://doi.org/10.1056/NEJMoa0708681.

    Article  CAS  PubMed  Google Scholar 

  82. Barnard ND, Cohen J, Jenkins DJ, Turner-McGrievy G, Gloede L, Green A, et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr. 2009;89(5):1588S–96S. https://doi.org/10.3945/ajcn.2009.26736H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shirani F, Salehi-Abargouei A, Azadbakht L. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition. 2013;29(7–8):939–47. https://doi.org/10.1016/j.nut.2012.12.021.

    Article  PubMed  Google Scholar 

  84. Lee YM, Kim SA, Lee IK, Kim JG, Park KG, Jeong JY, et al. Effect of a brown rice based vegan diet and conventional diabetic diet on glycemic control of patients with type 2 diabetes: a 12-week randomized clinical trial. PLoS One. 2016;11(6):e0155918. https://doi.org/10.1371/journal.pone.0155918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yokoyama Y, Barnard ND, Levin SM, Watanabe M. Vegetarian diets and glycemic control in diabetes: a systematic review and meta-analysis. Cardiovasc Diagn Ther. 2014;4(5):373–82. https://doi.org/10.3978/j.issn.2223-3652.2014.10.04.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Liese AD, Nichols M, Sun X, D’Agostino RB Jr, Haffner SM. Adherence to the DASH diet is inversely associated with incidence of type 2 diabetes: the Insulin Resistance Atherosclerosis Study. Diabetes Care. 2009;32(8):1434–6. https://doi.org/10.2337/dc09-0228.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37(Supplement 1):S120–SS43. This is a position statement by the American Diabetes Association (ADA) outlining its recommendations for nutrition therapy in adults with diabetes.

    Google Scholar 

  88. Burger KN, Beulens JW, van der Schouw YT, Sluijs I, Spijkerman AM, Sluik D, et al. Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus. PLoS One. 2012;7(8):e43127. https://doi.org/10.1371/journal.pone.0043127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Parillo M, Annuzzi G, Rivellese AA, Bozzetto L, Alessandrini R, Riccardi G, et al. Effects of meals with different glycaemic index on postprandial blood glucose response in patients with type 1 diabetes treated with continuous subcutaneous insulin infusion. Diabet Med. 2011;28(2):227–9. https://doi.org/10.1111/j.1464-5491.2010.03176.x.

    Article  CAS  PubMed  Google Scholar 

  90. Wheeler ML, Dunbar SA, Jaacks LM, Karmally W, Mayer-Davis EJ, Wylie-Rosett J, et al. Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care. 2012;35(2):434–45. https://doi.org/10.2337/dc11-2216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Franz MJ, Boucher JL, Evert AB. Evidence-based diabetes nutrition therapy recommendations are effective: the key is individualization. Diabet Metab Syndr Obes. 2014;7:65–72. https://doi.org/10.2147/dmso.s45140.

    Article  Google Scholar 

  92. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90. https://doi.org/10.1056/NEJMoa1200303.

    Article  CAS  PubMed  Google Scholar 

  93. Miller CT, Fraser SF, Levinger I, Straznicky NE, Dixon JB, Reynolds J, et al. The effects of exercise training in addition to energy restriction on functional capacities and body composition in obese adults during weight loss: a systematic review. PLoS One. 2013;8(11):e81692. https://doi.org/10.1371/journal.pone.0081692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Washburn RA, Szabo AN, Lambourne K, Willis EA, Ptomey LT, Honas JJ, et al. Does the method of weight loss effect long-term changes in weight, body composition or chronic disease risk factors in overweight or obese adults? A systematic review. PLoS One. 2014;9(10):e109849. https://doi.org/10.1371/journal.pone.0109849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chimen M, Kennedy A, Nirantharakumar K, Pang TT, Andrews R, Narendran P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia. 2012;55(3):542–51. https://doi.org/10.1007/s00125-011-2403-2.

    Article  CAS  PubMed  Google Scholar 

  96. Fuchsjäger-Mayrl G, Pleiner J, Wiesinger GF, Sieder AE, Quittan M, Nuhr MJ, et al. Exercise training improves vascular endothelial function in patients with type 1 diabetes. Diabetes Care. 2002;25(10):1795–801. https://doi.org/10.2337/diacare.25.10.1795.

    Article  PubMed  Google Scholar 

  97. Hawley JA. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab Res Rev. 2004;20(5):383–93. https://doi.org/10.1002/dmrr.505.

    Article  CAS  PubMed  Google Scholar 

  98. Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13(1):68–91. https://doi.org/10.1111/j.1467-789X.2011.00931.x.

    Article  CAS  PubMed  Google Scholar 

  99. Hunter GR, Byrne NM, Sirikul B, Fernandez JR, Zuckerman PA, Darnell BE, et al. Resistance training conserves fat-free mass and resting energy expenditure following weight loss. Obesity (Silver Spring). 2008;16(5):1045–51. https://doi.org/10.1038/oby.2008.38.

    Article  PubMed  Google Scholar 

  100. Leenders M, Verdijk LB, van der Hoeven L, Adam JJ, van Kranenburg J, Nilwik R, et al. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc. 2013;14(8):585–92. https://doi.org/10.1016/j.jamda.2013.02.006.

    Article  PubMed  Google Scholar 

  101. Heydari M, Freund J, Boutcher SH. The effect of high-intensity intermittent exercise on body composition of overweight young males. J Obes. 2012;2012:480467. https://doi.org/10.1155/2012/480467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Madsen SM, Thorup AC, Overgaard K, Jeppesen PB. High intensity interval training improves glycaemic control and pancreatic β cell function of type 2 diabetes patients. PLoS One. 2015;10(8):e0133286. https://doi.org/10.1371/journal.pone.0133286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Trapp E, Chisholm D, Freund J, Boutcher S. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes. 2008;32(4):684–91.

    Article  CAS  Google Scholar 

  104. Keating SE, Machan EA, O’Connor HT, Gerofi JA, Sainsbury A, Caterson ID, et al. Continuous exercise but not high intensity interval training improves fat distribution in overweight adults. J Obes. 2014;2014:834865. https://doi.org/10.1155/2014/834865.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rabasa-Lhoret R, Bourque J, Ducros F, Chiasson JL. Guidelines for premeal insulin dose reduction for postprandial exercise of different intensities and durations in type 1 diabetic subjects treated intensively with a basal-bolus insulin regimen (ultralentelispro). Diabetes Care. 2001;24(4):625–30.

    Article  CAS  PubMed  Google Scholar 

  106. Riddell MC, Gallen IW, Smart CE, Taplin CE, Adolfsson P, Lumb AN, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5(5):377–90. https://doi.org/10.1016/s2213-8587(17)30014-1. This review provides new recommendations for exercise management in patients with T1D

    Article  PubMed  Google Scholar 

  107. Dornhorst A, Luddeke HJ, Sreenan S, Kozlovski P, Hansen JB, Looij BJ, et al. Insulin detemir improves glycaemic control without weight gain in insulin-naive patients with type 2 diabetes: subgroup analysis from the PREDICTIVE study. Int J Clin Pract. 2008;62(4):659–65. https://doi.org/10.1111/j.1742-1241.2008.01715.x.

    Article  CAS  PubMed  Google Scholar 

  108. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122(6):253–70. https://doi.org/10.1042/cs20110386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Burchardt P, Zawada A, Tabaczewski P, Naskret D, Kaczmarek J, Marcinkaniec J, et al. Metformin added to intensive insulin therapy reduces plasma levels of glycated but not oxidized low density lipoprotein in young patients with type 1 diabetes and obesity in comparison with insulin alone: a pilot study. Pol Arch Med Wewn. 2013;123(10):526–32.

    CAS  PubMed  Google Scholar 

  110. Varanasi A, Bellini N, Rawal D, Vora M, Makdissi A, Dhindsa S, et al. Liraglutide as additional treatment for type 1 diabetes. J Endocrinol. 2011;165(1):77–84. https://doi.org/10.1530/eje-11-0330.

    Article  CAS  Google Scholar 

  111. Kielgast U, Krarup T, Holst JJ, Madsbad S. Four weeks of treatment with liraglutide reduces insulin dose without loss of glycemic control in type 1 diabetic patients with and without residual beta-cell function. Diabetes Care. 2011;34(7):1463–8. https://doi.org/10.2337/dc11-0096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ghazi T, Rink L, Sherr JL, Herold KC. Acute metabolic effects of exenatide in patients with type 1 diabetes with and without residual insulin to oral and intravenous glucose challenges. Diabetes Care. 2014;37(1):210–6. https://doi.org/10.2337/dc13-1169.

    Article  CAS  PubMed  Google Scholar 

  113. Traina AN, Lull ME, Hui AC, Zahorian TM, Lyons-Patterson J. Once-weekly exenatide as adjunct treatment of type 1 diabetes mellitus in patients receiving continuous subcutaneous insulin infusion therapy. Can J Diabetes. 2014;38(4):269–72. https://doi.org/10.1016/j.jcjd.2013.10.006.

    Article  PubMed  Google Scholar 

  114. Hari Kumar KV, Shaikh A, Prusty P. Addition of exenatide or sitagliptin to insulin in new onset type 1 diabetes: a randomized, open label study. Diabetes Res Clin Pract. 2013;100(2):e55–8. https://doi.org/10.1016/j.diabres.2013.01.020.

    Article  CAS  PubMed  Google Scholar 

  115. Thule PM. Mechanisms of current therapies for diabetes mellitus type 2. Adv Physiol Educ. 2012;36(4):275–83. https://doi.org/10.1152/advan.00094.2012.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Herrmann K, Brunell SC, Li Y, Zhou M, Maggs DG. Impact of disease duration on the effects of pramlintide in type 1 diabetes: a post hoc analysis of three clinical trials. Adv Ther. 2016;33(5):848–61. https://doi.org/10.1007/s12325-016-0326-5. This study describes the effects of pramlintide treatment in patients with T1D across a wide range of disease duration

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ferrannini E. Sodium-glucose co-transporters and their inhibition: clinical physiology. Cell Metab. 2017;26(1):27–38. https://doi.org/10.1016/j.cmet.2017.04.011.

    Article  CAS  PubMed  Google Scholar 

  118. Abdul-Ghani MA, Norton L, DeFronzo RA. Renal sodiumglucose cotransporter inhibition in the management of type 2 diabetes mellitus. Am J Physiol Renal Physiol. 2015;309(11):F889–900. https://doi.org/10.1152/ajprenal.00267.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72. https://doi.org/10.1161/circulationaha.116.021887.

    Article  CAS  PubMed  Google Scholar 

  120. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 377:644–57. https://doi.org/10.1056/NEJMoa1611925.

  121. Perkins BA, Cherney DZ, Partridge H, Soleymanlou N, Tschirhart H, Zinman B, et al. Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care. 2014;37(5):1480–3. https://doi.org/10.2337/dc13-2338.

    Article  PubMed  Google Scholar 

  122. Henry RR, Rosenstock J, Edelman S, Mudaliar S, Chalamandaris AG, Kasichayanula S, et al. Exploring the potential of the SGLT2 inhibitor dapagliflozin in type 1 diabetes: a randomized, double-blind, placebo-controlled pilot study. Diabetes Care. 2015;38(3):412–9. https://doi.org/10.2337/dc13-2955.

    Article  CAS  PubMed  Google Scholar 

  123. Sands AT, Zambrowicz BP, Rosenstock J, Lapuerta P, Bode BW, Garg SK, et al. Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care. 2015;38(7):1181–8. https://doi.org/10.2337/dc14-2806. This study reports significant body weight reduction and improvement in glycemic control among patients with T1D treated with the SGLT2 inhibitor sotagliflozin

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Daneschvar HL, Aronson MD, Smetana GW. FDA-approved anti-obesity drugs in the United States. Am J Med. 2016;129(8):879.e1–6. https://doi.org/10.1016/j.amjmed.2016.02.009.

    Article  CAS  PubMed  Google Scholar 

  125. Petrie JR, Chaturvedi N, Ford I, Brouwers M, Greenlaw N, Tillin T, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017; https://doi.org/10.1016/s2213-8587(17)30194-8. This study describes long-term outcomes of metformin use in adults with T1D.

  126. Holst JJ. Incretin hormones and the satiation signal. International J Obes. 2013;37(9):1161–8. https://doi.org/10.1038/ijo.2012.208.

    Article  CAS  Google Scholar 

  127. Dejgaard TF, Frandsen CS, Holst JJ, Madsbad S. Liraglutide for treating type 1 diabetes. Expert Opin Biol Ther. 2016;16(4):579–90. https://doi.org/10.1517/14712598.2016.1160050.

    Article  CAS  PubMed  Google Scholar 

  128. Janzen KM, Steuber TD, Nisly SA. GLP-1 agonists in type 1 diabetes mellitus. Ann Pharmacother. 2016;50(8):656–65. https://doi.org/10.1177/1060028016651279. This article reviews all trials to date that used GLP-1 analogs in patients with T1D

    Article  PubMed  Google Scholar 

  129. Varanasi A, Bellini N, Rawal D, Vora M, Makdissi A, Dhindsa S, et al. Liraglutide as additional treatment for type 1 diabetes. Eur J Endocrinol. 2011 Jul;165(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  130. O’Neil PM, Smith SR, Weissman NJ, Fidler MC, Sanchez M, Zhang J, et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity (Silver Spring). 2012;20(7):1426–36. https://doi.org/10.1038/oby.2012.66.

    Article  CAS  PubMed  Google Scholar 

  131. Garvey WT, Ryan DH, Look M, Gadde KM, Allison DB, Peterson CA, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012;95(2):297–308. https://doi.org/10.3945/ajcn.111.024927.

    Article  CAS  PubMed  Google Scholar 

  132. Hollander P, Gupta AK, Plodkowski R, Greenway F, Bays H, Burns C, et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36(12):4022–9. https://doi.org/10.2337/dc13-0234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vasas P, Por F. Surgical options for reducing body weight. Orv Hetil. 2014;155(25):971–7. https://doi.org/10.1556/oh.2014.29844.

    Article  PubMed  Google Scholar 

  134. Gill RS, Majumdar SR, Rueda-Clausen CF, Apte S, Birch DW, Karmali S, et al. Comparative effectiveness and safety of gastric bypass, sleeve gastrectomy and adjustable gastric banding in a population-based bariatric program: prospective cohort study. Can J Surg. 2016;59(4):13315. https://doi.org/10.1503/cjs.013315.

    Article  Google Scholar 

  135. Praveenraj P, Gomes RM, Kumar S, Perumal S, Senthilnathan P, Parthasarathi R, et al. Comparison of weight loss outcomes 1 year after sleeve gastrectomy and Roux-en-Y gastric bypass in patients aged above 50 years. J Minim Access Surg. 2016;12(3):220–5. https://doi.org/10.4103/0972-9941.183481.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Adams TD, Arterburn DE, Nathan DM, Eckel RH. Clinical outcomes of metabolic surgery: microvascular and macrovascular complications. Diabetes Care. 2016;39(6):912–23. https://doi.org/10.2337/dc16-0157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee SK, Heo Y, Park JM, Kim YJ, Kim SM, Park DJ, et al. Rouxen-Y gastric bypass vs. sleeve gastrectomy vs. gastric banding: the first multicenter retrospective comparative cohort study in obese Korean patients. Yonsei Med J. 2016;57(4):956–62. https://doi.org/10.3349/ymj.2016.57.4.956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Grubnik VV, Ospanov OB, Namaeva KA, Medvedev OV, Kresyun MS. Randomized controlled trial comparing laparoscopic greater curvature plication versus laparoscopic sleeve gastrectomy. Surg Endosc. 2016;30(6):2186–91. https://doi.org/10.1007/s00464-015-4373-9.

    Article  CAS  PubMed  Google Scholar 

  139. Lager CJ, Esfandiari NH, Subauste AR, Kraftson AT, Brown MB, Cassidy RB, et al. Roux-en-Y gastric bypass vs. sleeve gastrectomy: balancing the risks of surgery with the benefits of weight loss. Obes Surg. 2017;27(1):154–61. https://doi.org/10.1007/s11695-016-2265-2.

    Article  PubMed  Google Scholar 

  140. Sabbagh C, Verhaeghe P, Dhahri A, Brehant O, Fuks D, Badaoui R, et al. Two-year results on morbidity, weight loss and quality of life of sleeve gastrectomy as first procedure, sleeve gastrectomy after failure of gastric banding and gastric banding. Obes Surg. 2010;20(6):679–84. https://doi.org/10.1007/s11695-009-0007-4.

    Article  PubMed  Google Scholar 

  141. Purnell JQ, Selzer F, Wahed AS, Pender J, Pories W, Pomp A, et al. Type 2 diabetes remission rates after laparoscopic gastric bypass and gastric banding: results of the longitudinal assessment of bariatric surgery study. Diabetes Care. 2016;39(7):1101–7. https://doi.org/10.2337/dc15-2138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kirwan JP, Aminian A, Kashyap SR, Burguera B, Brethauer SA, Schauer PR. Bariatric surgery in obese patients with type 1 diabetes. Diabetes Care. 2016;39(6):941–8. https://doi.org/10.2337/dc15-2732. A review of bariatric surgery outcomes conducted in patients with T1D and obesity

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Abdeen G, le Roux CW. Mechanism underlying the weight loss and complications of Roux-en-Y gastric bypass. Rev Obes Surg. 2016;26(2):410–21. https://doi.org/10.1007/s11695-015-1945-7.

    Article  CAS  Google Scholar 

  144. Holst JJ. Postprandial insulin secretion after gastric bypass surgery: the role of glucagon-like peptide 1. Diabetes. 2011;60(9):2203–5. https://doi.org/10.2337/db11-0798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Holst JJ, Madsbad S. Mechanisms of surgical control of type 2 diabetes: GLP-1 is key factor. Surg Obes Relat Dis. 2016;12(6):1236–42. https://doi.org/10.1016/j.soard.2016.02.033.

    Article  PubMed  Google Scholar 

  146. Kratz M, Hagman DK, Kuzma JN, Foster-Schubert KE, Chan CP, Stewart S, et al. Improvements in glycemic control after gastric bypass occur despite persistent adipose tissue inflammation. Obesity (Silver Spring). 2016;24(7):1438–45. https://doi.org/10.1002/oby.21524.

    Article  CAS  PubMed  Google Scholar 

  147. Smith BR, Hinojosa MW, Reavis KM, Nguyen NT. Remission of diabetes after laparoscopic gastric bypass. Am Surg. 2008;74(10):948–52.

    Article  PubMed  Google Scholar 

  148. Dixon JB, Chuang LM, Chong K, Chen SC, Lambert GW, Straznicky NE, et al. Predicting the glycemic response to gastric bypass surgery in patients with type 2 diabetes. Diabetes Care. 2013;36(1):20–6. https://doi.org/10.2337/dc12-0779.

    Article  CAS  PubMed  Google Scholar 

  149. Hara M, Fowler JL, Bell GI, Philipson LH. Resting beta-cells—a functional reserve? Diabetes Metab. 2016;42(3):157–61. https://doi.org/10.1016/j.diabet.2016.01.001.

    Article  CAS  PubMed  Google Scholar 

  150. Celio AC, Wu Q, Kasten KR, Manwaring ML, Pories WJ, Spaniolas K. Comparative effectiveness of Roux-en-Y gastric bypass and sleeve gastrectomy in super obese patients. Surg Endosc. 2017;31(1):317–23. https://doi.org/10.1007/s00464-016-4974-y.

    Article  PubMed  Google Scholar 

  151. Nannipieri M, Belligoli A, Guarino D, Busetto L, Moriconi D, Fabris R, et al. Risk factors for spontaneously self-reported post-prandial hypoglycemia after bariatric surgery. J Clin Endocrinol Metab. 2016;101(10):3600–7. https://doi.org/10.1210/jc.2016-1143.

    Article  CAS  PubMed  Google Scholar 

  152. Felsenreich DM, Langer FB, Kefurt R, Panhofer P, Schermann M, Beckerhinn P, et al. Weight loss, weight regain, and conversions to Roux-en-Y gastric bypass: 10-year results of laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2016;12(9):1655–62. https://doi.org/10.1016/j.soard.2016.02.021.

    Article  PubMed  Google Scholar 

  153. Lalor PF, Tucker ON, Szomstein S, Rosenthal RJ. Complications after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2008;4(1):33–8. https://doi.org/10.1016/j.soard.2007.08.015.

    Article  PubMed  Google Scholar 

  154. Yildiz B, Katar K, Hamamci O. Efficacy of laparoscopic sleeve gastrectomy for the treatment of obesity in a non-western society. Eat Weight Disord. 2016;21(4):695–9. https://doi.org/10.1007/s40519-016-0287-3.

    Article  PubMed  Google Scholar 

  155. Shah N, Greenberg JA, Leverson G, Statz AK, Jolles SA, Funk LM. Weight loss after bariatric surgery: a propensity score analysis. J Surg Res. 2016;202(2):449–54. https://doi.org/10.1016/j.jss.2016.01.041.

    Article  PubMed  Google Scholar 

  156. Faucher P, Poitou C, Carette C, Tezenas du Montcel S, Barsamian C, Touati E, et al. Bariatric surgery in obese patients with type 1 diabetes: effects on weight loss and metabolic control. Obes Surg. 2016;26(10):2370–8. https://doi.org/10.1007/s11695-016-2106-3.

    Article  PubMed  Google Scholar 

  157. Lannoo M, Dillemans B, Van Nieuwenhove Y, Fieuws S, Mathieu C, Gillard P, et al. Bariatric surgery induces weight loss but does not improve glycemic control in patients with type 1 diabetes. Diabetes Care. 2014;37(8):e173–4. https://doi.org/10.2337/dc14-0583.

    Article  PubMed  Google Scholar 

  158. Maraka S, Kudva YC, Kellogg TA, Collazo-Clavell ML, Mundi MS. Bariatric surgery and diabetes: implications of type 1 versus insulin-requiring type 2. Obesity (Silver Spring). 2015;23(3):552–7. https://doi.org/10.1002/oby.20992.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama Hamdy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A., Hamdy, O. (2023). Treatment: Lifestyle and Medication. In: Johnstone, M., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-13177-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13177-6_29

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-13176-9

  • Online ISBN: 978-3-031-13177-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics