Skip to main content

Isolation and In Vitro Culture of Germ Cells and Sertoli Cells from Human Fetal Testis

  • Protocol
  • First Online:
Germ Cell Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2770))

  • 524 Accesses

Abstract

In the human fetal testis, fetal germ cells (FGCs) are progressively surrounded by supporting Sertoli cells inside seminiferous cords. During the second trimester, the FGCs develop asynchronously and can be observed in several stages of development. However, the mechanism that regulates the transition between the different developmental stages as well as the formation of spermatogonia is currently not well understood. For this, it is necessary to develop suitable isolation protocols and a platform for in vitro culture of FGCs of different stages. Here, we report a method to isolate distinct populations of FGCs and Sertoli cells from second trimester human testis using a panel of conjugated antibodies for THY1, PDPN, ALPL, KIT, and SUSD2 for fluorescence-activated cell sorting (FACS) followed by in vitro culture up to 7 days. This platform provides the base for cellular and molecular characterization of the different testicular cell populations to investigate the transition between FGCs and spermatogonia and shed some light on crucial processes of early human gametogenesis unknown until now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen D, Sun N, Hou L, Kim R, Faith J, Aslanyan M et al (2019) Human primordial germ cells are specified from lineage-primed progenitors. Cell Rep 29(13):4568–82 e5. https://doi.org/10.1016/j.celrep.2019.11.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Popovic M, Bialecka M, Gomes Fernandes M, Taelman J, Van Der Jeught M, De Sutter P et al (2019) Human blastocyst outgrowths recapitulate primordial germ cell specification events. Mol Hum Reprod 25(9):519–526. https://doi.org/10.1093/molehr/gaz035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tyser RCV, Mahammadov E, Nakanoh S, Vallier L, Scialdone A, Srinivas S (2021) Single-cell transcriptomic characterization of a gastrulating human embryo. Nature. https://doi.org/10.1038/s41586-021-04158-y

  4. Gomes Fernandes M, Bialecka M, Salvatori DCF, de Sousa C, Lopes SM (2018) Characterization of migratory primordial germ cells in the aorta-gonad-mesonephros of a 4.5-week-old human embryo: a toolbox to evaluate in vitro early gametogenesis. Mol Hum Reprod 24(5):233–243. https://doi.org/10.1093/molehr/gay011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Czukiewska SM, de Sousa C, Lopes SM (2022) Fetal germ cell development in humans, a link with infertility. Semin Cell Dev Biol 131:58–65. https://doi.org/10.1016/j.semcdb.2022.03.035

    Article  CAS  PubMed  Google Scholar 

  6. Li L, Dong J, Yan L, Yong J, Liu X, Hu Y et al (2017) Single-cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20(6):858–73 e4. https://doi.org/10.1016/j.stem.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  7. Overeem AW, Chang YW, Spruit J, Roelse CM, De Sousa C, Lopes SM (2021) Ligand-receptor interactions elucidate sex-specific pathways in the trajectory from primordial germ cells to gonia during human development. Front Cell Dev Biol 9:661243. https://doi.org/10.3389/fcell.2021.661243

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mamsen LS, Lutterodt MC, Andersen EW, Byskov AG, Andersen CY (2011) Germ cell numbers in human embryonic and fetal gonads during the first two trimesters of pregnancy: analysis of six published studies. Hum Reprod 26(8):2140–2145. https://doi.org/10.1093/humrep/der149

    Article  PubMed  Google Scholar 

  9. Guo J, Sosa E, Chitiashvili T, Nie X, Rojas EJ, Oliver E et al (2021) Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 28(4):764–78 e4. https://doi.org/10.1016/j.stem.2020.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hwang YS, Suzuki S, Seita Y, Ito J, Sakata Y, Aso H et al (2020) Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nat Commun 11(1):5656. https://doi.org/10.1038/s41467-020-19350-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin-Inaraja M, Ferreira M, Taelman J, Eguizabal C, De Sousa C, Lopes SM (2021) Improving in vitro culture of human male fetal germ cells. Cells 10(8). https://doi.org/10.3390/cells10082033

  12. Mishra S, Taelman J, Chang YW, Boel A, De Sutter P, Heindryckx B et al (2021) Sex-specific isolation and propagation of human premeiotic fetal germ cells and germ cell-like cells. Cells 10(5). https://doi.org/10.3390/cells10051214

  13. De Felici M (2018) Prospermatogonia. In: Skinner MK (ed) Encyclopedia of reproduction, 2nd edn. Elsevier, Amsterdam, pp 19–23. https://doi.org/10.1016/B978-0-12-801238-3.64423-9

    Chapter  Google Scholar 

  14. Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortes L et al (2000) SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev 91(1–2):403–407. https://doi.org/10.1016/s0925-4773(99)00307-x

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Alonso L, Lorenzi V, Mazzeo CI, Alves-Lopes JP, Roberts K, Sancho-Serra C et al (2022) Single-cell roadmap of human gonadal development. Nature 607(7919):540–547. https://doi.org/10.1038/s41586-022-04918-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lei Q, van Pelt AMM, Hamer G (2023) In vitro spermatogenesis: why meiotic checkpoints matter. Curr Top Dev Biol 151:345–369. https://doi.org/10.1016/bs.ctdb.2022.04.009

    Article  CAS  PubMed  Google Scholar 

  17. Struijk RB, Mulder CL, van Daalen SKM, de Winter-Korver CM, Jongejan A, Repping S et al (2020) ITGA6+ human testicular cell populations acquire a mesenchymal rather than germ cell transcriptional signature during long-term culture. Int J Mol Sci 21(21). https://doi.org/10.3390/ijms21218269

  18. Forbes CM, Flannigan R, Schlegel PN (2018) Spermatogonial stem cell transplantation and male infertility: current status and future directions. Arab J Urol 16(1):171–180. https://doi.org/10.1016/j.aju.2017.11.015

    Article  PubMed  Google Scholar 

  19. Chen D, Liu W, Lukianchikov A, Hancock GV, Zimmerman J, Lowe MG et al (2017) Germline competency of human embryonic stem cells depends on eomesodermin. Biol Reprod 97(6):850–861. https://doi.org/10.1093/biolre/iox138

    Article  PubMed  PubMed Central  Google Scholar 

  20. Baazm M, Abolhassani F, Abbasi M, Habibi Roudkenar M, Amidi F, Beyer C (2013) An improved protocol for isolation and culturing of mouse spermatogonial stem cells. Cell Reprogram 15(4):329–336. https://doi.org/10.1089/cell.2013.0008

    Article  CAS  PubMed  Google Scholar 

  21. Lei Q, Lai X, Eliveld J, de Sousa C, Lopes SM, van Pelt AMM, Hamer G (2020) In vitro meiosis of male germline stem cells. Stem Cell Reports 15(5):1140–1153. https://doi.org/10.1016/j.stemcr.2020.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kobayashi T, Zhang H, Tang WWC, Irie N, Withey S, Klisch D et al (2017) Principles of early human development and germ cell program from conserved model systems. Nature 546(7658):416–420. https://doi.org/10.1038/nature22812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barker RA, Boer GJ, Cattaneo E, Charo RA, de Sousa C, Lopes SM, Cong Y et al (2022) The need for a standard for informed consent for collection of human fetal material. Stem Cell Reports 17(6):1245–1247. https://doi.org/10.1016/j.stemcr.2022.05.013

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the generous donors and the helpful staff of the Vrelingshuis in Utrecht for the human fetal material used in this study. We also thank S. Hillenius, T. van der Helm, and S. Czukiewska for processing human fetal material for cryopreservation and the LUMC Flowcytometry Core Facility and the LUMC Microscopy Core Facility for technical support. This work was supported by the Dutch Research Council (VICI-2018-91819642 to AWO, YWC, CMR, and SMCSL), the Dutch organization ZonMw (ZonMw PSIDER 10250022120001 to SMCSL), and the Novo Nordisk Foundationgrant (renew NNF21CC0073729 to AWO, MB, and SMCSL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meriam Boubakri or Susana M. Chuva de Sousa Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roelse, C.M., Overeem, A.W., Chang, Y.W., Boubakri, M., Chuva de Sousa Lopes, S.M. (2024). Isolation and In Vitro Culture of Germ Cells and Sertoli Cells from Human Fetal Testis. In: Barchi, M., De Felici, M. (eds) Germ Cell Development. Methods in Molecular Biology, vol 2770. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3698-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3698-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3697-8

  • Online ISBN: 978-1-0716-3698-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics