Skip to main content
Log in

Upper Jurassic–Lower Cretaceous Deposits of the Eastern Part of the Oloy Zone: Stratigraphy, Geochemistry, Age, and Geodynamic Setting

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

This paper reports new data on the geology and stratigraphy of the Upper Jurassic–Lower Cretaceous deposits of the eastern part of the Oloy zone (upper reaches of the Oloy, Ilguveem, Aluchin rivers), including the description of sections, lithological-petrographic and paleontological characteristics of volcaniclastic sediments, the results of petrological-geochemical study of volcanic rocks, and their isotope dating. Two concordant dates were obtained using the zircon U–Pb method: 147 ± 2 Ma (Elom Formation) and 140 ± 2 Ma (Glukhovskaya Formation). The island-arc nature of the studied formations has been substantiated. The facies conditions and geodynamic settings of all stages of the formation of the volcanic-sedimentary complex in the various structural-facies zones have been characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. V. Akinin and E. L. Miller, “Evolution of calc-alkaline magmas of the Okhotsk–Chukotka Volcanic Belt,” Petrology 19 (3), 237–277 (2011).

  2. Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006), Vol. 1 [in Russian].

    Google Scholar 

  3. M. E. Gorodinskii, V. V. Gulevich, N. N. Neznanov, B. F. Palymskii, and A. Ya. Radzivill, “Geology and Metallogeny of the Anyui–Oloi interfluve,” Proc. Geology and Mineral Resources of the Northeastern USSR (Magadan, 1974), Vol. 21, pp. 31–41 [in Russian].

  4. State Geological Map of the Russian Federation on a Scale 1 : 1 000 000. Third Generation, Chukotskaya Series. Sheet Q-58 – Aliskerovo, Ed. by E. P. Isaeva, T. V. Zvizda, E. I. Lazareva, et al. (VSEGEI, St. Petersburg, 2019) [in Russian].

  5. V. V. Gulevich, “Late Jurassic volcanism of the Bol’shoi Anyui Upper Reaches,” Magmatism of Noreast Asia (Magadan, 1975), Vol. 2, pp. 81–88 [in Russian].

  6. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Tectonics of Lithospheric Plates of the USSR Territory (Nedra, Moscow, 1990), Vol. 2 [in Russian].

    Google Scholar 

  7. P. P. Lychagin, E. F. Dylevskii, V. I. Shpikerman, and V. B. Likman, Magmatism of Central Areas of Northeast USSR (DVO AN SSSR, Vladivostok, 1989) [in Russian].

    Google Scholar 

  8. B. A. Natal’in, Early Mesozoic Eugeosynclinal Systems of the Pacific Surrounding (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  9. V. S. Oksman, A. V. Ganelin, S. D. Sokolov, and O. L. Morozov, “Ophiolite belts of the Arctic regions of the Verkhoyansk–Chukchi orogenic area: geodynamic model of the formation,” Tikhookean. Geol. 22 (6), 62–75 (2003) [in Russian].

  10. K. V. Paraketsov and G. I. Paraketsova, Stratigraphy and Fauna of Late Jurassic and Lower Cretaceous Deposits of Northeast USSR (Nedra, Moscow, 1989) [in Russian].

    Google Scholar 

  11. L. M. Parfenov and B. A. Natal’in, “Tectonic evolution of Northeast Asia in the Mesozoic and Cenozoic,” Dokl. AN SSSR 235 (5), 1132–1135 (1977) [in Russian].

  12. L. M. Parfenov, Continental Margins and Island Arcs in the Mesozoides of Northeast Asia (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  13. L. M. Parfenov, L. M. Natapov, S. D. Sokolov, and N. V. Tsukanov, “Terranes and accretionary tectonics of Northeast Asia,” Geotektonika, No. 1, pp. 68–78 (1993) [in Russian].

  14. L. M. Parfenov, N. A. Berzin, A. I. Khanchuk, G. Badarch, V. G. Belichenko, A. N. Bulgatov, S. I. Dril’, G. L. Kirillova, M. I. Kuzmin, U. Nokleberg, A. V. Prokop’ev, V. F. Timofeev, O. Tomurtogoo, and H. Jahn, “Model of formation of orogenic belts of Central and Nortehast Asia,” Tikhookean. Geol. 22 (6), 7–41 (2003) [in Russian].

  15. Resolution of the Third Interdisciplinary Regional Stratigraphic Conference on Precambrian, Paleozoic, and Mesozoic of Northeast Russia, Ed. by T. N. Koren’ and G. V. Kotlyar (St. Petersburg, 2009) [in Russian].

  16. K. B. Seslavinskii, “Southern Anyui suture (Western Chukotka),” Dokl. Akad. Nauk SSSR 249 (5), 1181–1185 (1979) [in Russian].

  17. S. D. Sokolov, G. E. Bondarenko, O. L. Morozov, and V. N. Grigor’ev, “Asian Continent–Northwestern Pacific transition zone in the Late Jurassic–Early Cretaceous,” Theoretical and Regional Geodynamic Problems (Nauka, Moscow, 1999), pp. 30–82 [in Russian[.

  18. S. D. Sokolov, M. I. Tuchkova, A. V.Ganelin, G. E. Bondarenko, and P. Layer, “Tectonics of the South Anyui Suture, northeastern Asia,” Geotectonics 49 (1), 3–26 (2015).

  19. S. D. Sokolov, M. I. Tuchkova, G. V. Ledneva, M. V. Luchitskaya, A. V. Ganelin, E. V. Vatrushkina, and A. V. Moiseev, “Tectonic position of the South Anyui suture,” Geotectonics 55 (5), 697–717 (2021).

  20. Tectonics, Geodynamics, and Metallogeny of the Sakha of Republic (Yakutia), Ed. by L.M. Parfenov and M.I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001) [in Russian].

    Google Scholar 

  21. S. M. Til’man, “Tectonics and geodynamics of the northwestern Pacific margin,” Tikhookean. Geol., No. 1, pp. 26–34 (1982) [in Russian].

  22. P. L. Tikhomirov, Cretaceous Marginal–Continental Magmatism of Northeast Asian and Questions of Genesis of the Largest Phanerozoic Provinces of Siliceous Volcanism (GEOS, Moscow, 2020) [in Russia].

    Google Scholar 

  23. N. I. Filatova, Perioceanic Volcanogenic Belts (Nedra, Moscow, 1988) [in Russian].

    Google Scholar 

  24. N. A. Shilo, V. M. Merzlyakov, M. I. Terekhov, and S. M. Til’man, “Alazeya-Oloy eugeosynclinal system—a new element of Mesozoides of Northeast USSR,” Dokl. Akad. Nauk SSSR 210 (15), 1174–1176 (1973) [in Russian].

  25. J. M. Amato, J. Toro, V. V. Akinin, B. A. Hampton, A. S. Salnikov, and M. I. Tuchkova, “Tectonic evolution of the Mesozoic South Anyui Suture Zone, Eastern Russia: a critical component of paleogeographic reconstructions of the Arctic Region,” Geosphere 11 (5), 1530–1564 (2015).

  26. W. V. Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” Rare Earth Element Geochemistry (Elsevier, Amsterdam, 1984), pp. 63–114.

    Google Scholar 

  27. F. M. Gradstein, J. G. Ogg, M. D. Schmitz, et al., The Geologic Time Scale 2012 (Elsevier, Bosto, 2012).https://doi.org/10.1016/B978-0-444-59425-9.00004-4

  28. T. N. Irvine and W. R. A. Baragar, “A guide to the chemical classification of the common volcanic rocks,” Can. J. Earth Sci. 8, 523–548 (1971).

  29. P. B. Kelemen, K. Hangoj, and A. R. Greene, “One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust,” Treatise on Geochemistry. Volume 4. The Crust, Ed. by Holland H. D and K. K. Turekian (Elsevier, 2014), pp. 749–807.

  30. M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, and B. Zanettin, “A chemical classification of volcanic rocks based on the total alkali-silica diagram,” J. Petrol. 27 (3), 745–750 (1986).

  31. E. A. K. Middlemost, “The basalt clan,” Earth Sci. Rev. 11, 337–364 (1975).

  32. A. Miyashiro, “Volcanic rock series in island arcs and active continental margins,” Am. J. Sci. 274, 321–355 (1974).

  33. W. J. Nokleberg, L. M. Parfenov, J. W. H. Monger, I. O. Norton, A. I. Khanchuk, D. B. Stone, D. W. Scholl, and K. Fujita, “Phanerozoic tectonic evolution of the Circum-north Pacific,” U.S. Geol. Surv. Open-File Rept., No. 98-754, (1998).

  34. J. A. Pearce, N. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25, 956–983 (1984).

  35. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. London, Spec. Publ. 42 (1), 313–345 (1989).

  36. D. A. Wood, “The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).

Download references

ACKNOWLEDGMENTS

We are grateful to our colleagues, who participated in the field and laboratory works, processing and preparation of obtained material. We thank T.N. Surin for help and support during performance of works, consultations, and discussion of obtained results.

Funding

This work was supported by the 2019, 2021 government-financed program of VSEGEI in the framework of GPD-200 works in the Upper Oloy area, project no. 121031700312-1 SVKNII, and by the government-financed program of GIN RAS (project no. 0135-2019-0038). The final part of the work was partially supported by the Russian Science Foundation (project no. 20-17-00169).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Starikova, A. M. Gagieva, A. L. Konovalov, E. V. Vatrushkina or V. V. Akinin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Recommended for publishing by G.L. Kirillova

Translated by M. Bogina

SUPPLEMENTARY 1.

SUPPLEMENTARY 1.

Description of sections of the stratified units of the Oloy Zone

Section numbers correspond to those presented in Figs. 2, 3. Faunal determinations were made by V.A. Zakharov (GIN RAS) (bivalves) and M.A. Alekseev (VSEGEI) (foraminiferas).

Section I, Ukon Sequence, Umkuveem SFZ

Watershed of the left tributaries (the Aist and Razdvoennyi creeks) of the Pravyi Ilguveem River:

1. Alternation of basalts, basaltic andesites, their tuffs (xenotuffs), and tuffites of the intermediate composition, >30 m

2. Psephitic andesite tuffs (xenotuffs) with interlayers of psammitic and silty tuffites with remains of bivalves Buchia concentrica (Sow.), B. ischeriana (d’Orb.), and tuffstones, 120 m

3. Psammitic and silty tuffites intercalated with andesites and tuffstones with remains of bivalve shells Buchia tenuistriata (Lah.), Isocyprina (Venericyprina?) birkelundi (Für.), 80 m

4. Alternation of tuffstones with buchia remains (20–40-m thick) with tuffites, tuffaceous siltstones (thickness up to 5 m), and lenses of tuffaceous gravelstones (10–20-m thick), scarce interlayers of andesites and their tuffs (20–40-m thick); Foraminiferas Trochammina cf. minutissima (Dain), T. cf. quinquelocularis (Dain), T. cf. kumaensis (Levina), Meandrospira sp., Sacammina sp. Geinizinita ex gr. nodulosa (Furss. et Polen.) were extracted from tuffaceous interlayers, over 200-m thick.

Thickness of section >430 m.

Section II – Ukon Sequence, Ilguveem SFZ

Middle reaches of the Keiettyne River, near the mouth of its left tributary of the Mylka Creek:

1. Andesite and basaltic andesite tuffs of psammitic dimension, locally finely psephitic lithic crystal tuffs, >40 m

2. Alternation of basalts, basaltic andesites, and andesites with the predominance of the latter, more rarely andesitic dacites with thin tuff interlayers, 80–100 m

3. Lithic crystal tuffs of psephitic dimension, 50–60 m

4. Alternation of andesite covers (predominant), andesitic dacites, amygdaloidal basalts and basaltic andesites with thin intercalations of basaltic tuffs; facies transitions are possible, over 150 m

Thickness of the section of more than 350 m.

Section III, Elom Sequence, Umkuveem SFZ

Right bank of the Klin Creek (left tributary of the Ilguveem River):

1. Alternation of andesite and rhyolite tuffs with thin intercalations of lavas of the same composition, >140 m;

2. Massive rhyolite and rhyodacite tuffs, 70 m;

3. Andesite tuff with intercalations of andesite and andesitic dacite lavas, 120 m;

4. Massive, pseudofluidal rhyolite tuffs, 60 m;

5. Alternation of tuffs and lavas of basalts, basaltic andesites, dacites, and rhyodacites, 110 m

6. Hematized basalts, amygdaloidal at the base, their tuffs and tuffites, intercalations of andesitic dacite tuffs, 10–40 m;

7. Massive rhyolite and rhyodacite tuffs, 60–100 m;

8. Alternation of tuffs and lavas of andesites, dacites, and andesitic dacites, >70 m.

Thickness of section, 710 m.

Section IV, Elom Sequence, Ilguveem SFZ

Upper reaches of the Keiettyne River, western slope of Mt. Mylka:

1. Dacite, rhyodacite, more rarely andesitic dacite tuffs with thin interlayers of aphyric dacites, >170 m

2. Rhyolite and rhyodacite tuffs, 90 m;

3. Alternation of dacites and their tuffs with thin andesite intercalations, 80 m;

4. Dacite tuffs and xenotuffs, 20 m

5. Locally amygdaloidal basalts, basaltic andesites, 50 m;

6. Alternation of tuffs and lavas of basalts and andesites, with thin tuffstone intercalation in the upper part, >60 m;

Section thickness >470 m.

Section VI, Otelochnaya Formation, lower part, Umkuveem SFZ

Watershed of the upper reaches of the Krylo and Klin creeks (left tributary of the Ilguveem River):

1. Fine and medium-pebbled conglomerates with gravelstone interlayers, >140 m;

2. Members of flyschoid intercalation of fine-grained sandstones and siltstones (thickness 10–40 m) separated by units of monotonous medium- and fine-grained volcanomictic sandstones and tuffstones with scarce shells Buchia unschensis (Pavl.), B. fischeriana (d’Orb.), thin intercalations of conglomerates and gravelstones, 240 m;

3. Alternation of fine-grained sandstones (tuffstones) and siltstones with a gradual increase of siltstone fraction, >130 m;

Section thickness >510 m.

Section VII, Otelochnaya Formation, upper part, Umkuveem SFZ

Rosomakha River Basin (left tributary of the Ilguveem River):

4. Calcareous sandstones, 20 m;

5. Volcanomictic sandstones with bivalve shells Buchia fischeriana (d’Orb.), B. russiensis (Pavl.), 50 m;

6. Finely pebbled conglomerates , 15 m;

7. Siltstones, 25 m;

8. Volcanomictic sandstones with scarce thin (up to 20 cm) interlayers of vitric psammitic rhyolite tuffs. Finds of bivalves Buchia ex gr. fischeriana (d’Orb.), B. sp. juv in sandstones, 200 m;

9. Alternation of volcanomictic sandstones, calcareous sandstones (thickness of 10–15 m), tuffstones, siltstones (1–3 m), 90 m;

Section thickness >400 m.

Section VIII, Pereval’ninskaya Formation, Umkuveem SFZ

Right bank of the Pravyi Ilguveem River:

1. Medium- and coarse-pebbled (tuffaceous conglomerates), bouldery conglomerates, with intercalations of tuffaceous gravelstones with coalified plant detritus, >50 m;

2. Volcanomictic sandstones with intercalations of tuffstones, tuffaceous siltstones, coaly mudstones, and tuffites of andesites, lenses and interlayers of coalified plant detritus; interlayer of carbonaceous mudstones yielded foraminiferas Kutsevella cf. difficilis (Kusina), Cribrostomoides cf. concavoides (Bulynn.), C. cf. romanovae (Bulynn.), Recurvoides cf. obskiensis (Rom.), Verneuilinoides cf. pseudo- minusculus (Bystr.), Ammodiscus continentalis (Schar.), Mjatliukajena ex gr. gaultina (Berth.), Pylammina aff. dainae (Bulynn), Meandrospira sp., 40 m;

3. Volcanomictic sandstones with intercalations (5–10 m) of calcareous sandstones and sandy coquina made up of fragments of shells Buchia ex gr. sublaevis (Keys.), 190 m;

4. Volcanomictic sandstones with scarce remains of bivalves Buchia inflata (Lah.), B. sp. ind., 60 m;

5. Andesite tuffs and tuffites, 40 m;

6. Volcanomictic sandstones and tuffstones with remains of bivalves and coalified plant detritus, intercalations of shell sediments with Buchia ex gr. sublaevis (Keys.), 60 m;

7. Andesite tuffs, 10 m;

8. Tuffstones with coquina intercalations, 70 m;

9. Volcanomictic sandstones with coquina intercalations containing Buchia ex gr. sublaevis (Keys.), 50 m;

Section thickness >570 m.

Section IX, Glukhovskaya Formation, Vukvaam SFZ

Left bank of the Sablya Creek (right tributary of the Aluchin River):

1. Psephitic–silty andesite and andesitic dacite tuffs, >150 m;

2. Alternation of andesite and andesitic dacite tuffs of psephitic–silty dimensions and thin-bedded tuffaceous siltstones, 40 m;

3. Andesitic dacite tuff of silty-psephitic dimensions, 60 m;

4. Alternation of dacite and rhyodacite tuffs of psephitic, silty dimension, >320 m;

The thickness of the recovered part of the section, 570 m.

Section X, Prozrachnenskaya Formation, lower part, Vukvaam SFZ

Right bank of the Sablya Creek (right tributary of the Aluchin River):

1. Alternation of coarse-grained volcanomictic sandstones, psammitic and ash dacite tuffs, >50 m;

2. Coarse-grained volcanomictic sandstones with siltstone intercalations and with scarce fragments of bivalve shells Buchia sp. ind. (ex gr. fischeriana), 25 m;

3. Alternation of coarse-grained volcanomictic sandstones, ash tuffs of dacites and rhyolites, 75 m;

4. Thin-bedded ash dacite tuffs, 30 m;

5. Alternation of psammitic tuffites and ash tuffs of dacites, coarse-grained volcanomictic sandstones, and tuffstones, 45 m;

6. Alternation of tuffites, psammitic–psephitic dacite tuffs; with scarce thin intercalations (up to 0.3 m) of organogenic limestones (coquina deposits) with shells of Buchia ex gr. unschensis (Pavl.); B. ex gr. fischeriana (d’Orb.), 50 m;

7. Psephitic–psammitic and psephitic andesitic dacite and andesite tuffs with intercalations of welded tuffs, coarse-grained sandstones, and tuffstones, 80 m;

8. Alternation of psammitic and psephitic–psammitic dacite tuffs, 55 m;

9. Psephitic rhyolite tuffs with thin (1–2 m) intercalations of psammitic tuffites and ash dacite tuffs, 35 m;

10. Psephitic–psammitic tuffs of dacites, andesitic dacites, and rhyolites with intercalations of welded tuffs, 85 m;

Section thickness is 530 m.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikova, E.V., Gagieva, A.M., Konovalov, A.L. et al. Upper Jurassic–Lower Cretaceous Deposits of the Eastern Part of the Oloy Zone: Stratigraphy, Geochemistry, Age, and Geodynamic Setting. Russ. J. of Pac. Geol. 17, 297–321 (2023). https://doi.org/10.1134/S181971402304005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181971402304005X

Keywords:

Navigation