Skip to main content
Log in

A Three-Dimensional Analytical Model of the Interstellar Extinction within the Nearest Kiloparsec

  • Published:
Astronomy Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a new version of our analytical model of the spatial interstellar extinction variations within the nearest kiloparsec from the Sun. This model treats the three-dimensional (3D) dust distribution as a superposition of three overlapping layers: (1) the layer along the Galactic midplane, (2) the layer in the Gould Belt, and (3) the layer passing through the Cepheus and Chamaeleon dust cloud complexes. In each layer the dust density decreases exponentially with increasing distance from the midplane of the layer. In addition, there are sinusoidal longitudinal extinction variations along the midplane of each layer. We have found the most probable values of 29 parameters of our model using four data sets: the 3D stellar reddening maps by Gontcharov and Mosenkov (2017), Lallement et al. (2019), and Green et al. (2019) and the extinctions inferred by Anders et al. (2022) for 993 291 giants from the Gaia Early Data Release 3. All of the data give similar estimates of the model parameters. The extinction for a star or a point in space is predicted by our model with an accuracy from \(\sigma(A_{\textrm{V}})=0.07\) to 0.37 for high and low Galactic latitudes, respectively. The natural fluctuations of the dust medium dominate in these values. When ignoring the fluctuations of the medium, the average extinction for an extended object (a galaxy, a star cluster, a dust cloud) or a small region of space is predicted by our model with an accuracy from \(\sigma(A_{\textrm{V}})=0.04\) to 0.15 for high and low Galactic latitudes, respectively. Green et al. (2019) and Anders et al. (2022) give in unison an estimate of \(A_{\textrm{V}}=0.12^{m}\) for the extinction at high latitudes across the whole Galactic dust half-layer above or below the Sun with the natural fluctuations of the medium \(\sigma(A_{\textrm{V}})=0.06^{m}\). If such a high estimate is subsequently confirmed, then it will require to explain how a substantial amount of dust ended up far from the Galactic midplane. Our model is a step in this explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. https://data.aip.de/projects/starhorse2021.html or https://cdsarc.cds.unistra.fr/viz-bin/cat/I/354

  2. http://argonaut.skymaps.info/

  3. https://cdsarc.cds.unistra.fr/viz-bin/cat/J/PAZh/43/521

  4. https://astro.acri-st.fr/gaia_dev/

  5. The Galactic rectangular coordinate system with the origin in the Sun and the \(X\), \(Y\), and \(Z\) axes directed toward the Galactic center, in the direction of Galactic rotation, and toward the Galactic north pole, respectively, is considered.

  6. Only 12 921 of the 993 291 AKQ22 giants (1.3\(\%\)) exhibit such a high extinction that is not predicted by our model.

  7. Figures 3 and 6 have different scale heights along the vertical axis.

  8. Nulling the extinctions within 40 pc of the Sun does not change the standard deviations of the \(A_{\textrm{V}}\) residuals and the correlation coefficients at all, since the extinctions here anyway are very close to zero.

REFERENCES

  1. E. B. Amôres and J. R. D. Lépine, Astron. J. 130, 659 (2005).

    Article  ADS  Google Scholar 

  2. E. B. Amôres and J. R. D. Lépine, Astron. J. 133, 1519 (2007).

    Article  ADS  Google Scholar 

  3. F. Anders, A. Khalatyan, A. B. A. Queiroz, C. Chiappini, J. Ardèvol, L. Casamiquela, F. Figueras, Ó. Jiménez-Arranz, C. Jordi, et al., Astron. Astrophys. 658, A91 (2022).

    Article  Google Scholar 

  4. F. Arenou, M. Grenon, and A. Gomez, Astron. Astrophys. 258, 104 (1992).

    ADS  Google Scholar 

  5. M. Bellazzini, F. R. Ferraro, and R. Ibata, Astron. J. 124, 915 (2002).

    Article  ADS  Google Scholar 

  6. V. V. Bobylev, Astrophysics 57, 583 (2014).

    ADS  Google Scholar 

  7. D. Burger, K. G. Stassun, J. Pepper, R. J. Siverd, M. Paegert, N. M. de Lee, and W. H. Robinson, Astron. Comput. 2, 40 (2013).

    Article  ADS  Google Scholar 

  8. J. A. Cardelli, G. C. Clayton, and J. S. Mathis, Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  9. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z. Waters, L. Denneau, P. W. Draper, D. Farrow, et al., arXiv: 1612.05560 (2016).

  10. B.-Q. Chen, G.-X. Li, H.-B. Yuan, Y. Huang, Z.-J. Tian, H.-F. Wang, H.-W. Zhang, C. Wang, and X.-W. Liu, Mon. Not. R. Astron. Soc. 493, 351 (2020).

    Article  ADS  Google Scholar 

  11. I. V. Chilingarian and I. Yu. Zolotukhin, Mon. Not. R. Astron. Soc. 419, 1727 (2012).

    Article  ADS  Google Scholar 

  12. I. V. Chilingarian, I. Yu. Zolotukhin, I. Yu. Katkov, A.-L. Melchior, E. V. Rubtsov, and K. A. Grishin, Astrophys. J. Suppl. Ser. 228, 14 (2017).

    Article  ADS  Google Scholar 

  13. G. Clementini, V. Ripepi, A. Garofalo, R. Molinaro, T. Muraveva, S. Leccia, L. Rimoldini, B. Holl, G. Jevardat de Fombelle, et al., arXiv: 2206.06278 (2022).

  14. M. A. Czekaj, A.C.Robin, F. Figueras, X. Luri, and M. Haywood, Astron. Astrophys. 564, 102 (2014).

    Article  ADS  Google Scholar 

  15. A. K. Dambis, L. N. Berdnikov, A. Y. Kniazev, V. V. Kravtsov, A. S. Rastorguev, R. Sefako, and O. V. Vozyakova, Mon. Not. R. Astron. Soc. 435, 3206 (2013).

    Article  ADS  Google Scholar 

  16. T. M. Dame, Dap Hartmann, and P. Thaddeus, Astrophys. J. 547, 792 (2001).

    Article  ADS  Google Scholar 

  17. A. Dotter, A. Sarajedini, J. Anderson, A. Aparicio, L. R. Bedin, B. Chaboyer, S. Majewski, A. Marín-Franch, A. Milone, et al., Astrophys. J. 708, 698 (2010).

    Article  ADS  Google Scholar 

  18. A. Dotter, A. Sarajedini, and J. Anderson, Astrophys. J. 738, 74 (2011).

    Article  ADS  Google Scholar 

  19. R. Drimmel and D. N. Spergel, Astrophys. J. 556, 181 (2001).

    Article  ADS  Google Scholar 

  20. R. Drimmel, A. Cabrera-Lavers, and M. López-Corredoira, Astron. Astrophys. 409, 205 (2003).

    Article  ADS  Google Scholar 

  21. Gaia Collab., Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  22. Gaia Collab., Astron. Astrophys. 649, A1 (2021a).

    Article  Google Scholar 

  23. Gaia Collab., Astron. Astrophys. 649, A3 (2021b).

    Article  Google Scholar 

  24. G. A. Gontcharov, Astron. Lett. 35, 780 (2009).

    Article  ADS  Google Scholar 

  25. G. A. Gontcharov, Astron. Lett. 36, 584 (2010).

    Article  ADS  Google Scholar 

  26. G. A. Gontcharov, Astron. Lett. 38, 12 (2012a).

    Article  ADS  Google Scholar 

  27. G. A. Gontcharov, Astron. Lett. 38, 87 (2012b).

    Article  ADS  Google Scholar 

  28. G. A. Gontcharov, Astron. Lett. 38, 694 (2012c).

    Article  ADS  Google Scholar 

  29. G. A. Gontcharov, Astron. Lett. 43, 472 (2017).

    Article  ADS  Google Scholar 

  30. G. A. Gontcharov, Astron. Lett. 45, 605 (2019).

    Article  ADS  Google Scholar 

  31. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 470, L97 (2017a).

    Article  ADS  Google Scholar 

  32. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 472, 3805 (2017b).

    Article  ADS  Google Scholar 

  33. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 475, 1121 (2018).

    Article  ADS  Google Scholar 

  34. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 483, 299 (2019).

    Article  ADS  Google Scholar 

  35. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 500, 2590 (2021a).

    Article  ADS  Google Scholar 

  36. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 500, 2607 (2021b).

    Article  ADS  Google Scholar 

  37. G. M. Green, E. F. Schlafly, D. P. Finkbeiner, H.-W. Rix, N. Martin, W. Burgett, P. W. Draper, H. Flewelling, K. Hodapp, et al., Astrophys. J. 810, 25 (2015).

    Article  ADS  Google Scholar 

  38. G. M. Green, E. F. Schlafly, D. P. Finkbeiner, H.-W. Rix, N. Martin, W. Burgett, P. W. Draper, H. Flewelling, K. Hodapp, et al., Mon. Not. R. Astron. Soc. 478, 651 (2018).

    Article  ADS  Google Scholar 

  39. G. M. Green, E. F. Schlafly, C. Zucker, J. S. Speagle, and D. P. Finkbeiner, Astrophys. J. 887, 93 (2019).

    Article  ADS  Google Scholar 

  40. K. M. Hamren, G. H. Smith, P. Guhathakurta, A. E. Dolphin, D. R. Weisz, A. Rajan, and C. J. Grillmair, Astron. J. 146, 116 (2013).

    Article  ADS  Google Scholar 

  41. P. Hamrick, A. Bansal, and K. Tock, J. Am. Assoc. Var. Star Observ. 49, 192 (2021).

    Google Scholar 

  42. W. E. Harris, Astron. J. 112, 1487 (1996).

    Article  ADS  Google Scholar 

  43. Z.-H. He, Y. Xu, C.-J. Hao, Z.-Y. Wu, and J.-J. Li, Res. Astron. Astrophys. 21, 093 (2021).

  44. R. J. Jackson, R. D. Jeffries, N. J. Wright, S. Randich, G. Sacco, A. Bragaglia, A. Hourihane, E. Tognelli, S. Degl’Innocenti, et al., Mon. Not. R. Astron. Soc. 509, 1664 (2022).

    Article  ADS  Google Scholar 

  45. J. M. Kirk, D. Ward-Thompson, J. Di Francesco, T. L. Bourke, N. J. Evans II, B. Merín, L. E. Allen, L. A. Cieza, M. M. Dunham, et al., Astrophys. J. Suppl. Ser. 185, 198 (2009).

    Article  ADS  Google Scholar 

  46. A. Koch and A. McWilliam, Astron. Astrophys. 565, A23 (2014).

    Article  ADS  Google Scholar 

  47. V. V. Kovtyukh, C. Soubiran, R. E. Luck, D. G. Turner, S. I. Belik, S. M. Andrievsky, and F. A. Chekhonadskikh, Mon. Not. R. Astron. Soc. 389, 1336 (2008).

    Article  ADS  Google Scholar 

  48. M. Kun, Z. T. Kiss, and Z. Balog, Handbook of Star Forming Regions, Vol. 1: The Northern Sky, Vol. 4 of Astronomical Society of the Pacific Monograph Publications, Ed. by Bo Reipurth (ASP, 2008), p. 136.

  49. R. Lallement, C. Babusiaux, J. L. Vergely, D. Katz, F. Arenou, B. Valette, C. Hottier, and L. Capitanio, Astron. Astrophys. 625, A135 (2019).

    Article  ADS  Google Scholar 

  50. Y. A. Lazovik and A. S. Rastorguev, Astron. J. 160, 136 (2020).

    Article  ADS  Google Scholar 

  51. A. M. Meisner and D. P. Finkbeiner, Astrophys. J. 798, 88 (2015).

    Article  ADS  Google Scholar 

  52. H. Monteiro, W. S. Dias, A. Moitinho, T. Cantat-Gaudin, J. R. D. Lépine, G. Carraro, and E. Paunzen, Mon. Not. R. Astron. Soc. 499, 1874 (2020).

    Article  ADS  Google Scholar 

  53. H. Niu, J. Wang, and J. Fu, Astrophys. J. 903, 93 (2020).

    Article  ADS  Google Scholar 

  54. S. Ortolani and R. Gratton, Astron. Astrophys. Suppl. Ser. 82, 71 (1990).

    ADS  Google Scholar 

  55. P. P. Parenago, Course of Stellar Astronomy (GITTL, Moscow, 1954) [in Russian].

    Google Scholar 

  56. M. Perryman, Astronomical Applications of Astrometry: Ten Years of Exploitation of the Hipparcos Satellite Data (Cambridge Univ. Press, Cambridge, UK, 2009).

    Google Scholar 

  57. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. 500, 525 (1998).

    Article  ADS  Google Scholar 

  58. M. F. Skrutskie, R. M. Cutri, R. Stiening, M. D. Weinberg, S. Schneider, J. M. Carpenter, C. Beichman, R. Capps, T. Chester, et al., Astron. J. 131, 1163 (2006).

    Article  ADS  Google Scholar 

  59. A. Spilker, J. Kainulainen, and J. Orkisz, Astron. Astrophys. 653, 63 (2021).

    Article  ADS  Google Scholar 

  60. R. Wagner-Kaiser, D. C. Stenning, A. Sarajedini, T. von Hippel, D. A. van Dyk, E. Robinson, N. Stein, and W. H. Jefferys, Mon. Not. R. Astron. Soc. 463, 3768 (2016).

    Article  ADS  Google Scholar 

  61. R. Wagner-Kaiser, A. Sarajedini, T. von Hippel, D. C. Stenning, D. A. van Dyk, E. Jeffery, E. Robinson, N. Stein, J. Anderson, and W. H. Jefferys, Mon. Not. R. Astron. Soc. 468, 1038 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Gontcharov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontcharov, G.A., Mosenkov, A.V., Savchenko, S.S. et al. A Three-Dimensional Analytical Model of the Interstellar Extinction within the Nearest Kiloparsec. Astron. Lett. 48, 578–600 (2022). https://doi.org/10.1134/S1063773722100024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773722100024

Keywords:

Navigation