Skip to main content
Log in

Time Evolution of a Cometary Spear of the Sun

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Some asteroids, comets, and planets (ACPs) are accelerated by giant planets and ejected from parent planetary systems with velocities of several kilometers per second. When leaving a disintegrating stellar cluster rather than only a parent star, ACPs form a spear-shaped cloud in space. Thereby, ACP spears are formed at the Sun, stars, and stellar clusters. Consequently, due to ACP spears, the boundaries of planetary systems are expanded to dozens of kiloparsecs in the course of time. This paper is focused on the numerical analysis of the orbital evolution of unbound ACPs in the Galaxy, which leads to their transformation to “cometary spears” near the Sun, stars, and stellar clusters. It has been shown that, over time, the ACP spears of stars are transformed to the rings around a center of the Galaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. http://www.exoplanetkyoto.org/exohtml/PTFO_8-8695_c.html

REFERENCES

  1. V. G. Safronov, Evolution of the Preplanetary Cloud and the Formation of the Earth and Planets (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  2. A. V. Tutukov, Astron. Rep. 46, 691 (2002).

    Article  ADS  Google Scholar 

  3. B. S. Gaudi, M. D. Albrow, J. An, J.-P. Beaulieu, et al., Astrophys. J. 566, 463 (2002).

    Article  ADS  Google Scholar 

  4. A. Hales, S. Perez, C. Gonzalez-Ruilova, L. A. Cieza, et al., Astrophys. J. 900, 7 (2020).

    Article  ADS  Google Scholar 

  5. A. Tutukov, Sov. Astron. 31, 663 (1987).

    ADS  Google Scholar 

  6. A. Natta, ASP Conf. Ser. 324, 20 (2004).

  7. S. Muller, R. Heiled, and L. Mayer, Astrophys. J. 854, 112 (2018).

    Article  ADS  Google Scholar 

  8. A. Tutukov and M. Smirnov, Sol. Syst. Res. 38, 279 (2004).

    Article  ADS  Google Scholar 

  9. A. V. Tutukov, G. N. Dremova, and V. V. Dremov, Astron. Rep. 64, 9336 (2020).

    Google Scholar 

  10. M. Faintich, PhD Thesis (1971).

  11. J. Correa-Otto M. Calandra, Mon. Not. R. Astron. Soc. 490, 2495 (2019).

    Article  ADS  Google Scholar 

  12. G. Borisov, I. Ionov, O. Bryzgalov, et al., in Minor Planet Electronic Circ., No. 2013-N51 (2013).

  13. T. Hallatt and P. Weigert, Bull. Am. Astron. Soc. 52, 2020n4i201p03 (2020).

  14. P. Mróz, R. Poleski, A. Gould, A. Udalski, et al., Astrophys. J. Lett. 903, L11 (2020).

    Article  ADS  Google Scholar 

  15. M. Froncisz, P. Brown, and R. J. Weryk, Planet. Space Sci. 190, 104980 (2020).

    Article  Google Scholar 

  16. A. Bajkova and V. Bobylev, astro-ph/2008.13624 (2020).

  17. J. Oort, Bull. Astron. Inst. Netherlands 11, 91 (1950).

    ADS  Google Scholar 

  18. J. Oort, Observatory 71, 129 (1951).

    ADS  Google Scholar 

  19. E. Ashton, M. Beaudoin, and B. Gladman, astro-ph/2009.03382 (2020).

  20. B. Boe, R. Jedicke, K. J. Meech, P. Wiegert, et al., Icarus 333, 252 (2019).

    Article  ADS  Google Scholar 

  21. A. N. Cox, Allen’s Astrophysical Quantities (AIP Press, Springer, New York, 2000).

    Google Scholar 

  22. S. Röser, E. Schilbach, and B. Goldman, Astron. Astrophys. 621, L2 (2019).

    Article  ADS  Google Scholar 

  23. S. Meingast and J. Alves, Astron. Astrophys. 621, L3 (2019).

    Article  ADS  Google Scholar 

  24. N. Lodieu, R. L. Smart, A. Pérez-Garrido, and R. A. Silvotti, Astron. Astrophys. 623, A35 (2019).

    Article  ADS  Google Scholar 

  25. A. E. Piskunov, N. V. Kharchenko, and S. Röser, Astron. Astrophys. 445, 545 (2006).

    Article  ADS  Google Scholar 

  26. S. V. Vereshchagin and E. S. Postnikova, in Selected Papers of the 19th International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2017), Moscow, Russia, October 9–13, 2017, Ed. by L. Kalinichenko, Y. Manolopoulos, N. Skvortsov, and V. Sukhomlin, CEUR Workshop Proc. 2022, 30 (2017).

  27. A. V. Tutukov, Astron. Astrophys. 70, 57 (1978).

    ADS  Google Scholar 

  28. T. M. Eubanks, Astrophys. J. Lett. 874, L11 (2019).

    Article  ADS  Google Scholar 

  29. E. Gaidos, J. Williams, and A. Kraus, Res. Not. Am. Astron. Soc. 1, 13 (2017).

    ADS  Google Scholar 

  30. F. Feng and H. R. A. Jones, Astrophys. J. Lett. 852, L27 (2018).

    Article  ADS  Google Scholar 

  31. D. P. Sariya, I.-G. Jiang, M. D. Sizova, E. S. Postnikova, et al., Astron. J. (2021, in press).

  32. J. Bovy, Astrophys. J. Suppl. Ser. 216, 2 (2015).

    Article  Google Scholar 

  33. P. J. McMillan, Mon. Not. R. Astron. Soc. 465, 1 (2017).

    Article  Google Scholar 

  34. R. Abuter, A. Amorim, M. Bauböck, J. P. Berger, et al. (Gravity Collab.), Astron. Astrophys. 625, L10 (2019).

    Article  ADS  Google Scholar 

  35. M. Miyamoto and R. Nagai, Publ. Astron. Soc. Jpn. 27, 533 (1975).

    ADS  Google Scholar 

  36. J. Navarro, C. Frenk, and S. White, Astrophys. J. 462, 563 (1996).

    Article  ADS  Google Scholar 

  37. A. V. Tutukov, M. D. Sizova, and S. V. Vereshchagin, Astron. Rep. 64, 827 (2020).

    Article  ADS  Google Scholar 

  38. G. Stringfellow, J. Bally, L. Allen, Astron. Astrophys. Suppl., 21115404S (2007).

  39. A. V. Tutukov and B. M. Shustov, Astrofizika (2020, in press).

  40. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  41. S. Torres, M. X. Cai, A. G. A. Brown, and S. P. Zwart, Astron. Astrophys. 629, A139 (2019).

    Article  Google Scholar 

  42. R. Darma, W. Hidayat, and M. I. Arifyanto, J. Phys.: Conf. Ser. 1245, 012028 (2019).

    Google Scholar 

  43. D. Bennett, S. Rhie, A. Udalski, A. Gould, et al., Astron. J. 152, 125 (2016).

    Article  ADS  Google Scholar 

  44. G. Dryomova, V. Dryomov, and A. Tutukov, Astron. Rep. 62, 97 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this analysis, to calculate the orbits in the Galaxy, we used the codes developed by Bovy [32]. We are grateful to Bovy (the Astronomy and Astrophysics Department of the Toronto University) for his useful advice, especially for guidance with the galpy software package. We thank the reviewer for helpful remarks.

Funding

Authors acknowledge the support of Ministry of Science and Higher Education of the Russian Federation under the grant 075-15-2020-780 (N13.1902.21.0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Vereshchagin.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutukov, A.V., Sizova, M.D. & Vereshchagin, S.V. Time Evolution of a Cometary Spear of the Sun. Astron. Rep. 65, 305–311 (2021). https://doi.org/10.1134/S1063772921040089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921040089

Navigation