Skip to main content
Log in

Surface Thermal Inertia of Near-Earth Asteroid (469219) Kamo`oalewa: Statistical Estimation and Implications

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The Chinese small body exploration mission Tianwen-2 is aimed at sampling the near-Earth, fast-rotating asteroid (469219) Kamo`oalewa and returning the samples to Earth. Characterisation of the currently unknown physical properties of Kamo`oalewa in the pre-mission phase would support mission implementation. In this study, we preliminarily estimate the surface thermal inertia of Kamo`oalewa using a statistical method, based on the Yarkovsky-related orbital drift of (–6.155 ± 1.758) × 10-3 au/Myr for Kamo`oalewa obtained in our previous work. A reasonable estimate of the surface thermal inertia obtained is \(402.05_{{ - 194.37}}^{{ + 376.29}}\) J K–1 m–2 s–1/2. This low value suggests the presence of coarse regolith on the surface of Kamo`oalewa or its nature as a porous rock. The regolith potentially present on the surface of Kamo`oalewa may have millimetre- to decimetre-sized grains with cohesive strengths varying from ~0.76 to ~0.045 Pa. If Kamo`oalewa is a porous rock, its porosity is expected to range from ~20 to 50%, corresponding to tensile strengths of ~1.3 to 11.5 MPa. This study provides preliminary insights into the surface thermal inertia of Kamo`oalewa from a statistical viewpoint, which may facilitate the Tianwen-2 mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bottke, W.F., Vokrouhlický, D., Rubincam, D.P., et al., The Yarkovsky and YORP effects: Implications for asteroid dynamics, Annu. Rev. Earth Planet. Sci., 2006, vol. 34, pp. 157–191. https://doi.org/10.1146/annurev.earth.34.031405.125154

    Article  ADS  Google Scholar 

  2. Carpino, M., Milani, A., and Chesley, S.R., Error statistics of asteroid optical astrometric observations, Icarus, 2003, vol. 166, no. 2, pp. 248–270. https://doi.org/10.1016/S0019-1035(03)00051-4

    Article  ADS  Google Scholar 

  3. Carry, B., Density of asteroids, Planet. Space Sci., 2012, vol. 73, no. 1, pp. 98–118. https://doi.org/10.1016/j.pss.2012.03.009

    Article  ADS  Google Scholar 

  4. Cheng, D.C.H., The tensile strength of powders, Chem. Eng. Sci., 1968, vol. 23, no. 12, pp. 1405–1420. https://doi.org/10.1016/0009-2509(68)89051-7

    Article  Google Scholar 

  5. Chesley, S.R., Farnocchia, D., and Naidu, Shantanu, Asteroid (65803) Didymos ephemeris delivery, JPL Solution 181, Interoffice Memorandum, IOM 392R-2, 2021. https://doi.org/10.1007/978-94-015-8352-7_8

  6. Chesley, S.R., Farnocchia, D., Nolan, M.C., et al., Orbit and bulk density of the OSIRIS-REx target asteroid (101955) Bennu, Icarus, 2014, vol. 235, pp. 5–22. https://doi.org/10.1016/j.icarus.2014.02.020

    Article  ADS  Google Scholar 

  7. Chesley, S.R., Farnocchia, D., Pravec, P., et al., Direct detections of the Yarkovsky effect: Status and outlook, Proc. Int. Astron. Union, 2016, vol. 10, no. 318, pp. 250–258. https://doi.org/10.1017/S1743921315008790

    Article  Google Scholar 

  8. CNSA, Announcement of Opportunities for Scientific Payloads and Projects onboard Asteroid Exploration Mission, 2019.

  9. De La Fuente Marcos, C. and De La Fuente Marcos, R., Asteroid (469219) 2016 HO3, the smallest and closest Earth quasi-satellite, Mon. Not. R. Astron. Soc., 2016, vol. 462, no. 4, pp. 3441–3456. https://doi.org/10.1093/mnras/stw1972

    Article  ADS  Google Scholar 

  10. Del Vigna, A., Faggioli, L., Milani, A., et al., Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data, Astron. Astrophys., 2018, vol. 617. https://doi.org/10.1051/0004-6361/201833153

  11. Delbo, M., Dell’Oro, A., Harris, A.W., et al., Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect, Icarus, 2007, vol. 190, no. 1, pp. 236–249. https://doi.org/10.1016/j.icarus.2007.03.007

    Article  ADS  Google Scholar 

  12. Delbo, M., Mueller, M., Emery, J.P., et al., Asteroid thermophysical modeling, in Asteroids IV, 2015, pp. 107–128. https://doi.org/10.2458/azu_uapress_9780816532131-ch006

  13. Eggl, S., Farnocchia, D., Chamberlin, A.B., et al., Star catalog position and proper motion corrections in asteroid astrometry II: The Gaia era, Icarus, 2020, vol. 339, p. 113596. https://doi.org/10.1016/j.icarus.2019.113596

    Article  Google Scholar 

  14. Farnocchia, D., Small-body perturber files SB441-N16 and SB441-N343, Interoffice Memorandum IOM 392R-21-005, 2021.

  15. Farnocchia, D., Chesley, S.R., Vokrouhlický, D., et al., Near Earth Asteroids with measurable Yarkovsky effect, Icarus, 2013, vol. 224, no. 1, pp. 1–13. https://doi.org/10.1016/j.icarus.2013.02.004

    Article  ADS  Google Scholar 

  16. Fenucci, M. and Novaković, B., The role of the Yarkovsky effect in the long-term dynamics of asteroid (469219) Kamo`oalewa, Astron. J., 2021, vol. 162, no. 6, pp. 227. https://doi.org/10.3847/1538-3881/ac2902

    Article  ADS  Google Scholar 

  17. Fenucci, M., Novaković, B., Vokrouhlický, D., et al., Low thermal conductivity of the superfast rotator (499998) 2011 PT, Astron. Astrophys., 2021, vol. 647. https://doi.org/10.1051/0004-6361/202039628

  18. Granvik, M., Morbidelli, A., Jedicke, R., et al., Debiased orbit and absolute-magnitude distributions for near-Earth objects, Icarus, 2018, vol. 312. https://doi.org/10.1016/j.icarus.2018.04.018

  19. Greenberg, A.H., Margot, J.L., Verma, A.K., et al., Yarkovsky drift detections for 247 near-Earth asteroids, Astron. J., 2020, vol. 159, no. 3, pp. 92. https://doi.org/10.3847/1538-3881/ab62a3

    Article  ADS  Google Scholar 

  20. Grott, M., Knollenberg, J., Hamm, M., et al., Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu, Nat. Astron., 2019, vol. 3, no. 11, pp. 971–976. https://doi.org/10.1038/s41550-019-0832-x

    Article  ADS  Google Scholar 

  21. Gundlach, B. and Blum, J., A new method to determine the grain size of planetary regolith, Icarus, 2013, vol. 223, no. 1, pp. 479–492. https://doi.org/10.1016/j.icarus.2012.11.039

    Article  ADS  Google Scholar 

  22. Gundlach, B. and Blum, J., Regolith grain size and cohesive strength of near-Earth Asteroid (29075) 1950 DA, Icarus, 2015, vol. 257, pp. 126–129. https://doi.org/10.1016/j.icarus.2015.04.032

    Article  ADS  Google Scholar 

  23. Hayne, P.O., Bandfield, J.L., Siegler, M.A., et al., Global regolith thermophysical properties of the Moon from the Diviner Lunar Radiometer Experiment, J. Geophys. Res. Planets, 2017, vol. 122, no. 12, pp. 2371–2400. https://doi.org/10.1002/2017JE005387

    Article  ADS  Google Scholar 

  24. Heiligers, J., Fernandez, J.M., Stohlman, O.R., et al., Trajectory design for a solar-sail mission to asteroid 2016 HO3, Astrodynamics, 2019, vol. 3, no. 3, pp. 231–246. https://doi.org/10.1007/s42064-019-0061-1

    Article  ADS  Google Scholar 

  25. Henke, S., Gail, H.P., Trieloff, M., Thermal evolution and sintering of chondritic planetesimals: III. Modelling the heat conductivity of porous chondrite material, Astron. Astrophys., 2016, vol. 589, pp. 1–19. https://doi.org/10.1051/0004-6361/201527687

    Article  Google Scholar 

  26. Hung, D., Hanuš, J., Masiero, J.R., et al., Thermal properties of 1847 WISE-observed asteroids, Planet. Sci. J., 2022, vol. 3, no. 3, pp. 56. https://doi.org/10.3847/psj/ac4d1f

    Article  Google Scholar 

  27. Jin, W.T., Li, F., Yan, J.G., et al., A simulated global GM estimate of the asteroid 469219 Kamo`oalewa for China’s future asteroid mission, Mon. Not. R. Astron. Soc., 2020, vol. 493, no. 3, pp. 4012–4021. https://doi.org/10.1093/mnras/staa384

    Article  ADS  Google Scholar 

  28. Kaula, W.M., Theory of Satellite Geodesy. Applications of Satellites To Geodesy, Dover Publications, 1966.

    Google Scholar 

  29. Lauretta, D.S., DellaGiustina, D.N., Bennett, C.A., et al., The unexpected surface of asteroid (101955) Bennu, Nature, 2019, vol. 568, no. 7750, pp. 55–60. https://doi.org/10.1038/s41586-019-1033-6

    Article  ADS  Google Scholar 

  30. Li, X. and Scheeres, D.J., The shape and surface environment of 2016 HO3, Icarus, 2021, vol. 357. https://doi.org/10.1016/j.icarus.2020.114249

  31. Liu, L., Yan, J., Ye, M., et al., Yarkovsky effect detection from ground-based astrometric data for near-Earth asteroid (469219) Kamo`oalewa, Astron. Astrophys., 2022, vol. 667, pp. A150.

    Article  Google Scholar 

  32. Mommert, M., Hora, J.L., Farnocchia, D., et al., Constraining the physical properties of Near-Earth object 2009 BD, Astrophys. J., 2014, vol. 786, no. 2, pp. 2–10. https://doi.org/10.1088/0004-637X/786/2/148

    Article  Google Scholar 

  33. Morbidelli, A., Delbo, M., Granvik, M., et al., Debiased albedo distribution for Near Earth Objects, Icarus, 2020, vol. 340, p. 113631. https://doi.org/10.1016/j.icarus.2020.113631

    Article  Google Scholar 

  34. Moyer, T.D., Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation, Hoboken, NJ: Wiley, 2005. https://doi.org/10.1002/0471728470

    Book  Google Scholar 

  35. Mueller, M., Surface properties of asteroids from mid-infrared observations and thermophysical modeling, 2012. http://arxiv.org/abs/1208.3993

  36. Nesvorný, D. and Bottke, W.F., Detection of the Yarkovsky effect for main-belt asteroids, Icarus, 2004, vol. 170, no. 2, pp. 324–342. https://doi.org/10.1016/j.icarus.2004.04.012

    Article  ADS  Google Scholar 

  37. Nugent, C.R., Margot, J.L., Chesley, S.R., et al., Detection of semimajor axis drifts in 54 near-earth asteroids: New measurements of the Yarkovsky effect, Astron. J., 2012, vol. 144, no. 2. https://doi.org/10.1088/0004-6256/144/2/60

  38. Opeil, C.P., Consolmagno, G.J., Safarik, D.J., et al., Stony meteorite thermal properties and their relationship with meteorite chemical and physical states, Meteorit. Planet. Sci., 2012, vol. 47, no. 3, pp. 319–329. https://doi.org/10.1111/j.1945-5100.2012.01331.x

    Article  ADS  Google Scholar 

  39. Ostrowski, D., and Bryson, K., The physical properties of meteorites, Planet. Space Sci., 2019, vol. 165, pp. 148–178. https://doi.org/10.1016/j.pss.2018.11.003

    Article  ADS  Google Scholar 

  40. Park, R.S., Folkner, W.M., Williams, J.G., et al., The JPL Planetary and Lunar Ephemerides DE440 and DE441, Astron. J., 2021, vol. 161, no. 3, pp. 105. https://doi.org/10.3847/1538-3881/abd414

    Article  ADS  Google Scholar 

  41. Petković, V., Fenucci, M., and Novaković, B., The extended Hayabusa2 mission target 1998 KY26: another small super-fast rotator with low thermal inertia, Eur. Planet. Sci. Congr., 2021.

  42. Pravec, P. and Harris, A.W., Binary asteroid population. 1. Angular momentum content, Icarus, 2007, vol. 190, no. 1, pp. 250–259. https://doi.org/10.1016/j.icarus.2007.02.023

    Article  ADS  Google Scholar 

  43. Rozitis, B., Maclennan, E., and Emery, J.P., Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA, Nature, 2014, vol. 512, pp. 174–176. https://doi.org/10.1038/nature13632

    Article  ADS  Google Scholar 

  44. Rozitis, B., Ryan, A.J., Emery, J.P., et al., Asteroid (101955) Bennu’s weak boulders and thermally anomalous equator, Sci. Adv., 2020, vol. 6, no. 41. https://doi.org/10.1126/sciadv.abc3699

  45. Ryan, A.J., Pino Muñoz, D., Bernacki, M., et al., Full-field modeling of heat transfer in asteroid regolith: Radiative thermal conductivity of polydisperse particulates, J. Geophys. Res. Planets, 2020, vol. 125, no. 2. https://doi.org/10.1029/2019JE006100

  46. Seizinger, A., Speith, R., and Kley, W., Tensile and shear strength of porous dust agglomerates, Astron. Astrophys., 2013, vol. 559, pp. 1–9. https://doi.org/10.1051/0004-6361/201322046

    Article  Google Scholar 

  47. Sharkey, B.N.L., Reddy, V., Malhotra, R., et al., Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 Kamoʻoalewa, Commun. Earth Environ., 2021, vol. 2, no. 231. https://doi.org/10.1038/s43247-021-00303-7

  48. Shimaki, Y., Senshu, H., Sakatani, N., et al., Thermophysical properties of the surface of asteroid 162173 Ryugu: Infrared observations and thermal inertia mapping, Icarus, 2020, vol. 348. https://doi.org/10.1016/j.icarus.2020.113835

  49. Tardioli, C., Farnocchia, D., Rozitis, B., et al., Constraints on the near-Earth asteroid obliquity distribution from the Yarkovsky effect, Astron. Astrophys., 2017, vol. 608. https://doi.org/10.1051/0004-6361/201731338

  50. Venigalla, C., Baresi, N., Aziz, J.D., et al., Near-Earth Asteroid Characterization and Observation (NEACO) mission to asteroid (469219) 2016 HO3, J. Spacecr. Rockets, 2019, vol. 56, no. 4, pp. 1121–1135.

    Article  ADS  Google Scholar 

  51. Vereš, P., Farnocchia, D., Chesley, S.R., et al., Statistical analysis of astrometric errors for the most productive asteroid surveys, Icarus, 2017, vol. 296. https://doi.org/10.1016/j.icarus.2017.05.021

  52. Vokrouhlický, D., A complete linear model for the Yarkovsky thermal force on spherical asteroid fragments, Astron. Astrophys., 1999, vol. 344, no. 1, pp. 362–366.

    ADS  Google Scholar 

  53. Vokrouhlický, D., Bottke, W.F., Chesley, S.R., et al., The Yarkovsky and YORP effects, in Asteroids IV, 2015, pp. 509–531. https://doi.org/10.2458/azu_uapress_9780816532131-ch027

  54. Vokrouhlický, D., Milani, A., and Chesley, S.R., Yarkovsky effect on small near-Earth asteroids: Mathematical formulation and examples, Icarus, 2000, vol. 148, no. 1, pp. 118–138. https://doi.org/10.1006/icar.2000.6469

    Article  ADS  Google Scholar 

  55. Yan, J., Liu, L., Ye, M., et al., A simulation of the joint estimation of the GM value and the ephemeris of the asteroid 2016 HO3, Icarus, 2022, vol. 385. https://doi.org/10.1016/j.icarus.2022.115120

  56. Yu, L.L. and Ip, W.H., Thermophysical model for realistic surface layers on airless small bodies: Applied to study the spin orientation and surface dust properties of (24) Themis from WISE/NEOWISE multiepoch thermal light curves, Astrophys. J., 2021, vol. 913, no. 2. https://doi.org/10.3847/1538-4357/abf4c9

  57. Yu, L.L. and Ji, J., Surface thermophysical properties determination of OSIRIS-REx target asteroid (101955) Bennu, Mon. Not. R. Astron. Soc., 2015, vol. 452, no. 1, pp. 368–375. https://doi.org/10.1093/mnras/stv1270

    Article  ADS  Google Scholar 

  58. Yu, L.L., Ji, J., and Wang, S., Shape, thermal and surface properties determination of a candidate spacecraft target asteroid (175706) 1996 FG3, Mon. Not. R. Astron. Soc., 2014, vol. 439, no. 4, pp. 3357–3370. https://doi.org/10.1093/mnras/stu164

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The numerical calculations of this paper have been done in the Supercomputing Center of Wuhan University.

Funding

This work is supported by the National Natural Science Foundation of China (No. 42241116, 42030110) and National Key Research and Development Program of China (No. 2022YFF0503202). Jianguo Yan is supported by the 2022 Project of Xinjiang Uygur Autonomous Region of China for Heaven Lake Talent Program and Macau University of Science and Technology (SKL-LPS(MUST)-2021-2023). It is also supported by Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University (21-01-01). JPB was funded by a DAR grant in planetology from the French Space Agency (CNES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Yan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 YARKOVSKY EFFECT DETECTION FOR HO3

This section describes the detection of the Yarkovsky effect for HO3. Ground-based optical astrometry data (right-ascension/declination), downloaded from the Minor Planet Center (https://minorplanetcenter.net), were used for the detection. The period of observation was from 17 March 2004 to 14 May 2021, with a total of 310 observations. The data were corrected using the debiasing scheme for star catalogue systematic errors proposed by Eggl et al. (2020) and weighted according to the method developed by Vereš et al. (2017). Outliers were rejected based on the scheme of Carpino et al. (2003) with a rejection threshold of \({{{{\chi }}}_{{{\text{rej}}}}} = 3\).

The detection process involved high-fidelity dynamical models. The primary gravitational force on this object was the point-mass gravitational perturbations from the Sun, eight planets, and the Moon. The positions of these bodies were extracted from DE441 (Park et al., 2021). Other small gravitational perturbations included point-mass perturbations from 16 main-belt asteroids and Pluto (Park et al., 2021; Farnocchia, 2021). Relativistic perturbations were applied from the Sun, eight planets, and the Moon, according to the Einstein–Infeld–Hoffman formulation (Moyer, 2005). Moreover, we considered the oblateness term in the geopotential of the Earth (Kaula, 1966) because HO3 is always within 1 au of the Earth. The Yarkovsky perturbation was modelled as a transverse acceleration of the form \({{a}_{t}} = {{A}_{2}}{{\left( {\frac{{{{r}_{0}}}}{r}} \right)}^{d}}\), where \({{A}_{2}}\) is a solved parameter, \({{r}_{0}} = 1~\) au is used as a normalisation factor, and r is the heliocentric distance (in au). \(d = 2\) is typically used for all asteroids for which complete thermophysical data are not available, and the same value was used in this study. Notably, the adopted model is computationally efficient and can capture the salient aspects of the Yarkovsky effect (Chesley et al., 2021, 2014).

Based on the abovementioned data and force models, a seven-dimensional orbital solution (Table A1) was computed using OrbFit5.0.7 software (http://adams.dm.unipi.it/orbfit/). The seven-dimensional orbital solution considered the Yarkovsky effect but without any a priori constraints. Moreover, we removed four outliers from the 310 available observations, leaving 306 positions in the final orbit fit.

Table 3. Table 1A. Orbital elements at epoch 2016-12-30 11:22:22.2765 TDT. The angles refer to the J2000 ecliptic frame. The reported uncertainties are marginal and correspond to the 1 – σ level. \({{\chi }^{2}}\) denotes the root mean square of normalised post-fit residuals

Table A1 shows that the estimated A2 from the seven-dimensional solution is (–1.434 ± 0.410) \( \times {\text{\;}}\)10–13 au/d2. The Yarkovsky-induced semimajor axis drift was calculated as

$$\frac{{da}}{{dt}} = \frac{{2{{A}_{2}}(1 - {{e}^{2}})}}{{n{{p}^{2}}}},$$
(A.1)

where n is the mean motion, p is the semilatus rectum, and e is the eccentricity (Farnocchia et al., 2013). The Yarkovsky-induced semimajor axis drift is \(\frac{{da}}{{dt}} = \) (‒6.155 ± 1.758) × 10–3 au/Myr, which indicates that the current ground-based optical astrometry data can enable ~3.5σ detection of the Yarkovsky effect for HO3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Chen, Q., Yan, J. et al. Surface Thermal Inertia of Near-Earth Asteroid (469219) Kamo`oalewa: Statistical Estimation and Implications. Sol Syst Res 58, 469–479 (2024). https://doi.org/10.1134/S0038094624700321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094624700321

Keywords:

Navigation