Skip to main content
Log in

Beyond the serotonin deficit hypothesis: communicating a neuroplasticity framework of major depressive disorder

  • Review Article
  • Published:
Molecular Psychiatry Submit manuscript

Abstract

The serotonin deficit hypothesis explanation for major depressive disorder (MDD) has persisted among clinicians and the general public alike despite insufficient supporting evidence. To combat rising mental health crises and eroding public trust in science and medicine, researchers and clinicians must be able to communicate to patients and the public an updated framework of MDD: one that is (1) accessible to a general audience, (2) accurately integrates current evidence about the efficacy of conventional serotonergic antidepressants with broader and deeper understandings of pathophysiology and treatment, and (3) capable of accommodating new evidence. In this article, we summarize a framework for the pathophysiology and treatment of MDD that is informed by clinical and preclinical research in psychiatry and neuroscience. First, we discuss how MDD can be understood as inflexibility in cognitive and emotional brain circuits that involves a persistent negativity bias. Second, we discuss how effective treatments for MDD enhance mechanisms of neuroplasticity—including via serotonergic interventions—to restore synaptic, network, and behavioral function in ways that facilitate adaptive cognitive and emotional processing. These treatments include typical monoaminergic antidepressants, novel antidepressants like ketamine and psychedelics, and psychotherapy and neuromodulation techniques. At the end of the article, we discuss this framework from the perspective of effective science communication and provide useful language and metaphors for researchers, clinicians, and other professionals discussing MDD with a general or patient audience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Multiple biopsychosocial factors can interact with each other and converge on MDD pathophysiology.
Fig. 2: Anatomy of key brain regions and network dysfunction involved in MDD.
Fig. 3: Pyramidal neurons and synaptic connections in a healthy brain and in MDD.
Fig. 4: Summary of the contributing factors, pathophysiology, and treatment of MDD, and metaphors for understanding and communication.

Similar content being viewed by others

References

  1. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965;122:509–22.

    Article  CAS  PubMed  Google Scholar 

  2. Coppen A. The biochemistry of affective disorders. Br J Psychiatry. 1967;113:1237–64.

    Article  CAS  PubMed  Google Scholar 

  3. France CM, Lysaker PH, Robinson RP. The ‘Chemical Imbalance’ explanation for depression: origins, lay endorsement, and clinical implications. Prof Psychol Res Pr. 2007;38:411–20.

    Article  Google Scholar 

  4. Owens MJ. Selectivity of antidepressants: from the monoamine hypothesis of depression to the SSRI revolution and beyond. J Clin Psychiatry. 2004;65:5–10.

    CAS  PubMed  Google Scholar 

  5. Miller HL, Delgado PL, Salomon RM, Berman R, Krystal JH, Heninger GR, et al. Clinical and biochemical effects of catecholamine depletion on antidepressant-induced remission of depression. Arch Gen Psychiatry. 1996;53:117–28.

    Article  CAS  PubMed  Google Scholar 

  6. Lacasse JR, Leo J. Serotonin and depression: a disconnect between the advertisements and the scientific literature. PLoS Med. 2005;2:1211–6.

    Article  CAS  Google Scholar 

  7. Schroder HS, Duda JM, Christensen K, Beard C, Björgvinsson T. Stressors and chemical imbalances: beliefs about the causes of depression in an acute psychiatric treatment sample. J Affect Disord. 2020;276:537–45.

    Article  PubMed  Google Scholar 

  8. Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry. 2022;28:3243–3256.

  9. Gregory A. Little evidence that chemical imbalance causes depression, UCL scientists find | Depression | The Guardian. The Guardian. 2022.

  10. A popular medical explanation for depression is rebuffed. The Economist. 2022.

  11. Bakar F. Your depression might not be due to a chemical imbalance after all. The Huffington Post. 2022.

  12. Delaney M. New study challenges value of antidepressants. The Washington Times. 2022.

  13. Schraer R. Did we all believe a myth about depression? BBC News. 2022.

  14. Guzman J. Depression is likely not caused by a chemical imbalance in the brain, study says. The Hill. 2022.

  15. Jauhar S, Arnone D, Baldwin DS, Bloomfield M, Browning M, Cleare AJ, et al. A leaky umbrella has little value: evidence clearly indicates the serotonin system is implicated in depression. Mol Psychiatry. 2023. https://doi.org/10.1038/S41380-023-02095-Y.

  16. Bartova L, Lanzenberger R, Rujescu D, Kasper S. Reply to: ‘The serotonin theory of depression: a systematic umbrella review of the evidence’ published by Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA in Molecular Psychiatry (2022 Jul 20. https://doi.org/10.1038/s41380-022-01661-0). Mol Psychiatry. 2023;28:3153–4.

  17. El-Mallakh RS, Doroodgar M, Elsayed OH, Kidambi N. The serotonin theory of depression. Mol Psychiatry. 2023;28:3157.

    Article  CAS  PubMed  Google Scholar 

  18. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–17.

    Article  PubMed  Google Scholar 

  19. Ruhe HG, Mocking RJT, Figueroa CA, Seeverens PWJ, Ikani N, Tyborowska A, et al. Emotional biases and recurrence in major depressive disorder. Results of 2.5 years follow-up of drug-free cohort vulnerable for recurrence. Front Psychiatry. 2019;10:145.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol Psychiatry. 2020;25:530–43.

    Article  PubMed  Google Scholar 

  21. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33:88–109.

    Article  CAS  PubMed  Google Scholar 

  22. Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X. An excitatory synapse hypothesis of depression. Trends Neurosci. 2015;38:279–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castrén E, Hen R. Neuronal plasticity and antidepressant actions. Trends Neurosci. 2013;36:259–67.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Malhi GS, Mann JJ. Depression. Lancet. 2018;392:2299–312.

    Article  PubMed  Google Scholar 

  25. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sharma S, Powers A, Bradley B, Ressler KJ. Gene × environment determinants of stress- and anxiety-related disorders. Annu Rev Psychol. 2016;67:261.

    Article  Google Scholar 

  27. Whitaker RC, Dearth-Wesley T, Herman AN, Block AE, Holderness MH, Waring NA, et al. The interaction of adverse childhood experiences and gender as risk factors for depression and anxiety disorders in US adults: a cross-sectional study. BMC Public Health. 2021;21:2078.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hammen C, Kim EY, Eberhart NK, Brennan PA. Chronic and acute stress and the prediction of major depression in women. Depress Anxiety. 2009;26:718–23.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, et al. Neuroinflammation and depression: a review. Eur J Neurosci. 2021;53:151–71.

    Article  CAS  PubMed  Google Scholar 

  30. Shorter E. The 25th anniversary of the launch of Prozac gives pause for thought: where did we go wrong? Br J Psychiatry. 2014;204:331–2.

    Article  PubMed  Google Scholar 

  31. Caldieraro MAK, Baeza FLC, Pinheiro DO, Ribeiro MR, Parker G, Fleck MP. Clinical differences between melancholic and nonmelancholic depression as defined by the CORE system. Compr Psychiatry. 2013;54:11–15.

    Article  PubMed  Google Scholar 

  32. Catenaccio E, Mu W, Lipton ML. Estrogen- and progesterone-mediated structural neuroplasticity in women: evidence from neuroimaging. Brain Struct Funct. 2016;221:3845–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Epperson CN, Steiner M, Hartlage SA, Eriksson E, Schmidt PJ, Jones I, et al. Premenstrual dysphoric disorder: evidence for a new category for DSM-5. Am J Psychiatry. 2012;169:475.

    Article  Google Scholar 

  34. Hantsoo L, Epperson CN. Premenstrual dysphoric disorder: epidemiology and treatment introduction-developments in defining PMDD. Curr Psychiatry Rep. 2015;17:87.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Batt MM, Duffy KA, Novick AM, Metcalf CA, Epperson CN. Is postpartum depression different from depression occurring outside of the perinatal period? A review of the evidence. Focus. 2020;18:119.

    Google Scholar 

  36. Godlewska BR, Harmer CJ. Cognitive neuropsychological theory of antidepressant action: a modern-day approach to depression and its treatment. Psychopharmacology. 2021;238:1265–78.

    Article  CAS  PubMed  Google Scholar 

  37. Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev. 2011;35:537–55.

    Article  PubMed  Google Scholar 

  38. Reinen JM, Whitton AE, Pizzagalli DA, Slifstein M, Abi-Dargham A, McGrath PJ, et al. Differential reinforcement learning responses to positive and negative information in unmedicated individuals with depression. Eur Neuropsychopharmacol. 2021;53:89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Culpepper L, Lam RW, McIntyre RS. Cognitive impairment in patients with depression: awareness, assessment, and management. J Clin Psychiatry. 2017;78:1383–94.

    Article  PubMed  Google Scholar 

  40. Dajani DR, Uddin LQ. Demystifying cognitive flexibility: implications for clinical and developmental neuroscience. Trends Neurosci. 2015;38:571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Merriam EP, Thase ME, Haas GL, Keshavan MS, Sweeney JA. Prefrontal cortical dysfunction in depression determined by Wisconsin card sorting test performance from the neurobehavioral studies program. Am J Psychiatry. 1999;156:780–2.

    Article  CAS  PubMed  Google Scholar 

  42. Wen A, Yoon KL. Depression and affective flexibility: a valence-specific bias. Behav Res Ther. 2019;123:103502.

    Article  PubMed  Google Scholar 

  43. Yasinski C, Hayes AM, Ready CB, Abel A, Görg N, Kuyken W. Processes of change in cognitive behavioral therapy for treatment-resistant depression: psychological flexibility, rumination, avoidance, and emotional processing. Psychother Res. 2020;30:983–97.

    Article  PubMed  Google Scholar 

  44. Thompson SM. Plasticity of synapses and reward circuit function in the genesis and treatment of depression. Neuropsychopharmacology. 2023;48:90–103.

    Article  PubMed  Google Scholar 

  45. Goldstein-Piekarski AN, Ball TM, Samara Z, Staveland BR, Keller AS, Fleming SL, et al. Mapping neural circuit biotypes to symptoms and behavioral dimensions of depression and anxiety. Biol Psychiatry. 2022;91:561–71.

    Article  PubMed  Google Scholar 

  46. Williams LM. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry. 2016;3:427–80.

    Article  Google Scholar 

  47. Belleau EL, Treadway MT, Pizzagalli DA. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry. 2019;85:443–53.

    Article  PubMed  Google Scholar 

  48. Young KD, Siegle GJ, Bodurka J, Drevets WC. Amygdala activity during autobiographical memory recall in depressed and vulnerable individuals: association with symptom severity and autobiographical overgenerality. Am J Psychiatry. 2016;173:78–89.

    Article  PubMed  Google Scholar 

  49. Shao J, Meng C, Tahmasian M, Brandl F, Yang Q, Luo G, et al. Common and distinct changes of default mode and salience network in schizophrenia and major depression. Brain Imaging Behav. 2018;12:1708–19.

    Article  PubMed  Google Scholar 

  50. Ramasubbu R, Konduru N, Cortese F, Bray S, Gaxiola-Valdez I, Goodyear B. Reduced intrinsic connectivity of amygdala in adults with major depressive disorder. Front Psychiatry. 2014;5:17.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cheng W, Rolls ET, Qiu J, Xie X, Lyu W, Li Y, et al. Functional connectivity of the human amygdala in health and in depression. Soc Cogn Affect Neurosci. 2018;13:557–68.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nutt DJ. The role of dopamine and norepinephrine in depression and antidepressant treatment. J Clin Psychiatry. 2006;67:3–8.

    CAS  PubMed  Google Scholar 

  53. Ressler KJ, Nemeroff CB. Role of norepinephrine in the pathophysiology and treatment of mood disorders. Biol Psychiatry. 1999;46:1219–33.

    Article  CAS  PubMed  Google Scholar 

  54. Nestler EJ, Carlezon WA. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–9.

    Article  CAS  PubMed  Google Scholar 

  55. Puccetti NA, Schaefer SM, van Reekum CM, Ong AD, Almeida DM, Ryff CD, et al. Linking amygdala persistence to real-world emotional experience and psychological well-being. J Neurosci. 2021;41:3721–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Månsson KNT, Waschke L, Manzouri A, Furmark T, Fischer H, Garrett DD. Moment-to-moment brain signal variability reliably predicts psychiatric treatment outcome. Biol Psychiatry. 2022;91:658–66.

    Article  PubMed  Google Scholar 

  57. Waschke L, Kloosterman NA, Obleser J, Garrett DD. Behavior needs neural variability. Neuron. 2021;109:751–66.

    Article  CAS  PubMed  Google Scholar 

  58. Appelhans BM, Luecken LJ. Heart rate variability as an index of regulated emotional responding. Rev Gen Psychol. 2006;10:229–40.

    Article  Google Scholar 

  59. Hartmann R, Schmidt FM, Sander C, Hegerl U. Heart rate variability as indicator of clinical state in depression. Front Psychiatry. 2019;9:735.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhou H, Dai Z, Hua L, Jiang H, Tian S, Han Y, et al. Decreased task-related HRV is associated with inhibitory dysfunction through functional inter-region connectivity of PFC in major depressive disorder. Front Psychiatry. 2020;10:989.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jauhar S, Cowen PJ, Browning M. Fifty years on: serotonin and depression. J Psychopharmacol. 2023;37:237–41.

    Article  PubMed  PubMed Central  Google Scholar 

  62. McEwen BS, Nasca C, Gray JD. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41:3–23.

    Article  CAS  PubMed  Google Scholar 

  63. Licznerski P, Duman RS. Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience. 2013;251:33–50.

    Article  CAS  PubMed  Google Scholar 

  64. Tata DA, Anderson BJ. The effects of chronic glucocorticoid exposure on dendritic length, synapse numbers and glial volume in animal models: implications for hippocampal volume reductions in depression. Physiol Behav. 2010;99:186–93.

    Article  CAS  PubMed  Google Scholar 

  65. Holmes SE, Scheinost D, Finnema SJ, Naganawa M, Davis MT, DellaGioia N, et al. Lower synaptic density is associated with depression severity and network alterations. Nat Commun. 2019;10:1529.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.

    Article  CAS  PubMed  Google Scholar 

  67. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109:143–8.

    Article  CAS  PubMed  Google Scholar 

  68. Youssef MM, Underwood MD, Huang YY, Hsiung SC, Liu Y, Simpson NR, et al. Association of BDNF Val66Met polymorphism and brain BDNF levels with major depression and suicide. Int J Neuropsychopharmacol.2018;21:538.

    Article  Google Scholar 

  69. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci. 2014;8:430.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Guo X, Rao Y, Mao R, Cui L, Fang Y. Common cellular and molecular mechanisms and interactions between microglial activation and aberrant neuroplasticity in depression. Neuropharmacology. 2020;181:108336.

    Article  CAS  PubMed  Google Scholar 

  71. Eyre H, Baune BT. Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology. 2012;37:1397–416.

    Article  CAS  PubMed  Google Scholar 

  72. Schenkel LC, Segal J, Becker JA, Manfro GG, Bianchin MM, Leistner-Segal S. The BDNF Val66Met polymorphism is an independent risk factor for high lethality in suicide attempts of depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:940–4.

    Article  CAS  PubMed  Google Scholar 

  73. Hajek T, Kopecek M, Höschl C. Reduced hippocampal volumes in healthy carriers of brain-derived neurotrophic factor Val66Met polymorphism: meta-analysis. World J Biol Psychiatry. 2012;13:178–87.

    Article  PubMed  Google Scholar 

  74. Warren MB, Pringle A, Harmer CJ. A neurocognitive model for understanding treatment action in depression. Philos Trans R Soc B Biol Sci. 2015;370:20140213.

    Article  Google Scholar 

  75. Heller AS, Tom Johnstone M, Light SN, Michael Peterson MJ, Kolden GG, Kalin NH, et al. Relationships between changes in sustained fronto-striatal connectivity and positive affect in major depression resulting from antidepressant treatment. Am J Psychiatry. 2013;170:197–206.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dunlop K, Rizvi SJ, Kennedy SH, Hassel S, Strother SC, Harris JK, et al. Clinical, behavioral, and neural measures of reward processing correlate with escitalopram response in depression: a Canadian Biomarker Integration Network in Depression (CAN-BIND-1) Report. Neuropsychopharmacology. 2020;45:1390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fischer AS, Holt-Gosselin B, Fleming SL, Hack LM, Ball TM, Schatzberg AF, et al. Intrinsic reward circuit connectivity profiles underlying symptom and quality of life outcomes following antidepressant medication: a report from the iSPOT-D trial. Neuropsychopharmacology. 2021;46:809–19.

    Article  CAS  PubMed  Google Scholar 

  78. Magariños AM, Deslandes A, Mcewen BS. Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol. 1999;371:113–22.

    Article  PubMed  Google Scholar 

  79. Kallarackal AJ, Kvarta MD, Cammarata E, Jaberi L, Cai X, Bailey AM, et al. Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic-CA1 synapses. J Neurosci. 2013;33:15669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Johansen A, Armand S, Plavén-Sigray P, Nasser A, Ozenne B, Petersen IN, et al. Effects of escitalopram on synaptic density in the healthy human brain: a randomized controlled trial. Mol Psychiatry. 2023. https://doi.org/10.1038/s41380-023-02285-8.

  81. Molendijk ML, Bus BAA, Spinhoven P, Penninx BWJH, Kenis G, Prickaerts J, et al. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol Psychiatry.2011;16:1088–95.

    Article  CAS  PubMed  Google Scholar 

  82. Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184:1299–313.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23:349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Page CE, Coutellier L. Prefrontal excitatory/inhibitory balance in stress and emotional disorders: evidence for over-inhibition. Neurosci Biobehav Rev. 2019;105:39–51.

    Article  CAS  PubMed  Google Scholar 

  85. Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK. Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci. 2010;30:14964–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hensch TK, Bilimoria PM. Re-opening windows: manipulating critical periods for brain development. Cerebrum. 2012;2012:11.

  87. Umemori J, Winkel F, Castrén E, Karpova NN. Distinct effects of perinatal exposure to fluoxetine or methylmercury on parvalbumin and perineuronal nets, the markers of critical periods in brain development. Int J Dev Neurosci. 2015;44:55–64.

    Article  CAS  PubMed  Google Scholar 

  88. Maya-Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale F, O’Leary O, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008;320:385–8.

    Article  CAS  PubMed  Google Scholar 

  89. Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Ágústsdóttir A, et al. Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science. 2011;334:1731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mikics É, Guirado R, Umemori J, Tóth M, Biró L, Miskolczi C, et al. Social learning requires plasticity enhanced by fluoxetine through prefrontal Bdnf-TrkB signaling to limit aggression induced by post-weaning social isolation. Neuropsychopharmacology. 2018;43:245.

    Article  Google Scholar 

  91. Chiarotti F, Viglione A, Giuliani A, Branchi I. Citalopram amplifies the influence of living conditions on mood in depressed patients enrolled in the STAR*D study. Transl Psychiatry. 2017;7:e1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cuijpers P, Noma H, Karyotaki E, Vinkers CH, Cipriani A, Furukawa TA. A network meta-analysis of the effects of psychotherapies, pharmacotherapies and their combination in the treatment of adult depression. World Psychiatry.2020;19:92–107.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Alboni S, Van DIjk RM, Poggini S, Milior G, Perrotta M, Drenth T, et al. Fluoxetine effects on molecular, cellular and behavioral endophenotypes of depression are driven by the living environment. Mol Psychiatry. 2017;22:552–61.

    Article  CAS  PubMed  Google Scholar 

  94. Branchi I, Santarelli S, Capoccia S, D’Andrea I, Cirulli F, Alleva E. Antidepressant treatment outcome depends on the quality of the living environment: a pre-clinical investigation in mice. PLoS ONE. 2013;8:e62226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology. 2008;33:320–31.

    Article  CAS  PubMed  Google Scholar 

  96. Petty F, Kramer G, Wilson L. Prevention of learned helplessness: in vivo correlation with cortical serotonin. Pharmacol Biochem Behav. 1992;43:361–7.

    Article  CAS  PubMed  Google Scholar 

  97. Samuels BA, Anacker C, Hu A, Levinstein MR, Pickenhagen A, Tsetsenis T, et al. 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat Neurosci. 2015;18:1616.

    Article  Google Scholar 

  98. Umemori J, Winkel F, Didio G, Llach Pou M, Castrén E. iPlasticity: induced juvenile‐like plasticity in the adult brain as a mechanism of antidepressants. Psychiatry Clin Neurosci. 2018;72:653.

    Article  Google Scholar 

  99. Alvarez E, Perez V, Artigas F. Pharmacology and clinical potential of vortioxetine in the treatment of major depressive disorder. Neuropsychiatr Dis Treat. 2014;10:1297–307.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther. 2015;145:43–57.

    Article  CAS  PubMed  Google Scholar 

  101. Waller JA, Chen F, Sánchez C. Vortioxetine promotes maturation of dendritic spines in vitro: a comparative study in hippocampal cultures. Neuropharmacology. 2016;103:143–54.

    Article  CAS  PubMed  Google Scholar 

  102. Dale E, Zhang H, Leiser SC, Xiao Y, Lu D, Yang CR, et al. Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus. J Psychopharmacol. 2014;28:891–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Novick AM, Ross DA. Changing the way we think about (and with) antidepressants. Biol Psychiatry. 2018;84:e28.

    Article  Google Scholar 

  104. Brent DA. Antidepressants and suicidality. Psychiatr Clin North Am. 2016;39:503–12.

    Article  PubMed  Google Scholar 

  105. Desrochers SS, Spring MG, Nautiyal KM. A role for serotonin in modulating opposing drive and brake circuits of impulsivity. Front Behav Neurosci. 2022;16:791749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Takesian AE, Hensch TK. Balancing plasticity/stability across brain development. Prog Brain Res. 2013;207:3–34.

    Article  PubMed  Google Scholar 

  107. Cheung AH, Emslie GJ, Mayes TL. Review of the efficacy and safety of antidepressants in youth depression. J Child Psychol Psychiatry. 2005;46:735–54.

    Article  PubMed  Google Scholar 

  108. Lapidus KAB, Levitch CF, Perez AM, Brallier JW, Parides MK, Soleimani L, et al. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol Psychiatry. 2014;76:970–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Daly EJ, Trivedi MH, Janik A, Li H, Zhang Y, Li X, et al. Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2019;76:903.

    Article  Google Scholar 

  110. Popova V, Daly EJ, Trivedi M, Cooper K, Lane R, Lim P, et al. Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am J Psychiatry. 2019;176:428–38.

    Article  PubMed  Google Scholar 

  111. Zavaliangos-Petropulu A, Al-Sharif NB, Taraku B, Leaver AM, Sahib AK, Espinoza RT, et al. Neuroimaging-derived biomarkers of the antidepressant effects of ketamine. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:361–86.

    PubMed  Google Scholar 

  112. Sterpenich V, Vidal S, Hofmeister J, Michalopoulos G, Bancila V, Warrot D, et al. Increased reactivity of the mesolimbic reward system after ketamine injection in patients with treatment-resistant major depressive disorder. Anesthesiology. 2019;130:923–35.

    Article  CAS  PubMed  Google Scholar 

  113. Pulcu E, Guinea C, Cowen PJ, Murphy SE, Harmer CJ. A translational perspective on the anti-anhedonic effect of ketamine and its neural underpinnings. Mol Psychiatry. 2022;27:87.

    Article  Google Scholar 

  114. Gould TD, Zarate CA, Thompson SM. Molecular pharmacology and neurobiology of rapid-acting antidepressants. Annu Rev Pharmacol Toxicol. 2019;59:213–36.

    Article  CAS  PubMed  Google Scholar 

  115. Kim JW, Suzuki K, Kavalali ET, Monteggia LM. Bridging rapid and sustained antidepressant effects of ketamine. Trends Mol Med. 2023;29:P364.

    Article  Google Scholar 

  116. McIntyre RS, Rosenblat JD, Nemeroff CB, Sanacora G, Murrough JW, Berk M, et al. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. Am J Psychiatry. 2021;178:383–99.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Klein ME, Chandra J, Sheriff S, Malinow R. Opioid system is necessary but not sufficient for antidepressive actions of ketamine in rodents. Proc Natl Acad Sci USA. 2020;117:2656–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Williams NR, Heifets BD, Blasey C, Sudheimer K, Pannu J, Pankow H, et al. Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry. 2018;175:1205–15.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Liu Y, Lin D, Wu B, Zhou W. Ketamine abuse potential and use disorder. Brain Res Bull. 2016;126:68–73.

    Article  CAS  PubMed  Google Scholar 

  120. Trujillo KA, Iñiguez SD. Ketamine beyond anesthesia: antidepressant effects and abuse potential. Behav Brain Res. 2020;394:112841.

  121. Janssen. SPRAVATO ® (esketamine) nasal spray, CIII Highlights of Prescribing Information. AccessdataFdaGov. 2023:1–15.

  122. Heifets BD, Williams NR, Blasey C, Sudheimer K, Rodriguez CI, Schatzberg AF. Interpreting ketamine’s opioid receptor dependent effect: response to sanacora. Am J Psychiatry. 2019;176:249–50.

    Article  PubMed  Google Scholar 

  123. Sanacora G. Caution against overinterpreting opiate receptor stimulation as mediating antidepressant effects of ketamine. Am J Psychiatry. 2019;176:249.

    Article  PubMed  Google Scholar 

  124. Gukasyan N, Davis AK, Barrett FS, Cosimano MP, Sepeda ND, Johnson MW, et al. Efficacy and safety of psilocybin-assisted treatment for major depressive disorder: prospective 12-month follow-up. J Psychopharmacol. 2022;36:151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Goodwin GM, Aaronson ST, Alvarez O, Arden PC, Baker A, Bennett JC, et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N Engl J Med. 2022;387:1637–48.

    Article  CAS  PubMed  Google Scholar 

  126. Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. Psychedelics and psychedelic-assisted psychotherapy. Am J Psychiatry. 2020;177:391–410.

    Article  PubMed  Google Scholar 

  127. Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, et al. Trial of psilocybin versus escitalopram for depression. N Engl J Med. 2021;384:1402–11.

    Article  CAS  PubMed  Google Scholar 

  128. Husain MI, Ledwos N, Fellows E, Baer J, Rosenblat JD, Blumberger DM, et al. Serotonergic psychedelics for depression: what do we know about neurobiological mechanisms of action? Front Psychiatry. 2023;13:1076459.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ling S, Ceban F, Lui LMW, Lee Y, Teopiz KM, Rodrigues NB, et al. Molecular mechanisms of psilocybin and implications for the treatment of depression. CNS Drugs. 2022;36:17–30.

    Article  CAS  PubMed  Google Scholar 

  130. de Vos CMH, Mason NL, Kuypers KPC. Psychedelics and neuroplasticity: a systematic review unraveling the biological underpinnings of psychedelics. Front Psychiatry. 2021;12:724606.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kadriu B, Greenwald M, Henter ID, Gilbert JR, Kraus C, Park LT, et al. Ketamine and serotonergic psychedelics: common mechanisms underlying the effects of rapid-acting antidepressants. Int J Neuropsychopharmacol. 2021;24:8–21.

    Article  CAS  PubMed  Google Scholar 

  132. Doss MK, Považan M, Rosenberg MD, Sepeda ND, Davis AK, Finan PH, et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl Psychiatry. 2021;11:574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Barrett FS, Doss MK, Sepeda ND, Pekar JJ, Griffiths RR. Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci Rep. 2020;10:2214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mertens LJ, Wall MB, Roseman L, Demetriou L, Nutt DJ, Carhart-Harris RL. Therapeutic mechanisms of psilocybin: changes in amygdala and prefrontal functional connectivity during emotional processing after psilocybin for treatment-resistant depression. J Psychopharmacol. 2020;34:167–80.

    Article  CAS  PubMed  Google Scholar 

  135. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. PNAS. 2021;118:e2022489118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–44.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23:3170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci. 2023;26:1032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhu Z, Hubbard E, Guo X, Barbosa DAN, Popal AM, Cai C, et al. A connectomic analysis of deep brain stimulation for treatment-resistant depression. Brain Stimul. 2021;14:1226–33.

    Article  PubMed  Google Scholar 

  140. Tik M, Hoffmann A, Sladky R, Tomova L, Hummer A, Navarro de Lara L, et al. Towards understanding rTMS mechanism of action: stimulation of the DLPFC causes network-specific increase in functional connectivity. Neuroimage. 2017;162:289–96.

    Article  PubMed  Google Scholar 

  141. Bracht T, Walther S, Breit S, Mertse N, Federspiel A, Meyer A, et al. Distinct and shared patterns of brain plasticity during electroconvulsive therapy and treatment as usual in depression: an observational multimodal MRI-study. Transl Psychiatry. 2023;13:6.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zangen A, Hyodo K. Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens. Neuroreport. 2002;13:2401–5.

    Article  CAS  PubMed  Google Scholar 

  143. Cole EJ, Phillips AL, Bentzley BS, Stimpson KH, Nejad R, Barmak F, et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am J Psychiatry. 2022;179:132–41.

    Article  PubMed  Google Scholar 

  144. Batail JM, Xiao X, Azeez A, Tischler C, Kratter IH, Bishop JH, et al. Network effects of Stanford Neuromodulation Therapy (SNT) in treatment-resistant major depressive disorder: a randomized, controlled trial. Transl Psychiatry. 2023;13:240.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Malone DA, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65:267–75.

    Article  PubMed  Google Scholar 

  146. Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23:843–9.

    Article  CAS  PubMed  Google Scholar 

  147. Miskowiak KW, Macoveanu J, Jørgensen MB, Ott CV, Støttrup MM, Jensen HM, et al. Effect of electroconvulsive therapy on neural response to affective pictures: a randomized, sham-controlled fMRI study. Eur Neuropsychopharmacol. 2018;28:915–24.

    Article  CAS  PubMed  Google Scholar 

  148. Miskowiak KW, Kessing LV, Ott CV, Macoveanu J, Harmer CJ, Jørgensen A, et al. Does a single session of electroconvulsive therapy alter the neural response to emotional faces in depression? A randomised sham-controlled functional magnetic resonance imaging study. J Psychopharmacol. 2017;31:1215–24.

    Article  PubMed  Google Scholar 

  149. Miskowiak KW, Macoveanu J, Jørgensen MB, Støttrup MM, Ott CV, Jensen HM, et al. Neural response after a single ECT session during retrieval of emotional self-referent words in depression: a randomized, sham-controlled fMRI study. Int J Neuropsychopharmacol. 2018;21:226–35.

    Article  PubMed  Google Scholar 

  150. Pagani M, Di Lorenzo G, Verardo AR, Nicolais G, Monaco L, Lauretti G, et al. Neurobiological correlates of EMDR monitoring—an EEG study. PLoS ONE. 2012;7:e45753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Maj van der Velden AM, Scholl J, Elmholdt EM, Fjorback LO, Harmer CJ, Lazar SW, et al. Mindfulness training changes brain dynamics during depressive rumination: a randomized controlled trial. Biol Psychiatry. 2023;93:233–42.

    Article  Google Scholar 

  152. Zhou W, Yuan Z, Yingliang D, Chaoyong X, Ning Z, Chun W. Differential patterns of dynamic functional connectivity variability in major depressive disorder treated with cognitive behavioral therapy. J Affect Disord. 2021;291:322–8.

    Article  PubMed  Google Scholar 

  153. Brewin CR. Understanding cognitive behaviour therapy: a retrieval competition account. Behav Res Ther. 2006;44:765–84.

    Article  PubMed  Google Scholar 

  154. Zoladz JA, Pilc A. The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. J Physiol Pharmacol. 2010;61:533–41.

    CAS  PubMed  Google Scholar 

  155. You T, Ogawa EF. Effects of meditation and mind-body exercise on brain-derived neurotrophic factor: a literature review of human experimental studies. Sports Med Health Sci. 2020;2:7–9.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Novick AM. What to say: changing the way we think about (and with) antidepressants. National Neuroscience Curriculum Initiative (NNCI); 2019. https://nncionline.org/course/what-to-say-changing-the-way-we-think-about-and-with-antidepressants/.

Download references

Acknowledgements

We thank Clint Carlson, MS, Director of Education Technology Innovations at the University of Colorado Anschutz Medical Campus, Department of Psychiatry, for creating the brain image used in Fig. 2. We appreciate the careful reading of a previous draft of this manuscript and comments given by Robert Freedman, MD.

Author information

Authors and Affiliations

Authors

Contributions

CEP, CNE, AMN, KAD, and SMT all conceptualized the manuscript. CEP primarily wrote the manuscript with contributions and feedback from all authors. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Scott M. Thompson.

Ethics declarations

Competing interests

CNE receives consulting feeds from Sage Therapeutics and Health Rhythms for Research unrelated to this manuscript. CNE participates on scientific advisory boards for Embark/Neuro and BabyScripts, and has unpaid roles with the National Network of Depression Centers (Member at Large), The Society of Biological Psychiatry (Council Member), and the American College of Neuropsychopharmacology (Executive Council). SMT is listed as an inventor on and receives royalties from patents related to treating depression that are held by the University of Maryland, Baltimore. SMT has received honoraria from several non-profit or academic institutions and from companies developing psychiatric drugs for general lectures and advice about depression treatments. SMT has patents issued and pending from the University of Maryland, Baltimore, for various means for treating depression. SMT serves as an unpaid member of several committees for the American College of Neuropsychopharmacology. AMN is supported by the National Institute of Child Health and Development K23HD110435. CEP and KAD have no disclosures.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Page, C.E., Epperson, C.N., Novick, A.M. et al. Beyond the serotonin deficit hypothesis: communicating a neuroplasticity framework of major depressive disorder. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02625-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02625-2

  • Springer Nature Limited

Navigation