Skip to main content
Log in

Dispersal of Pseudomonas aeruginosa biofilm using TDS97 bacteriophage and recombinant alginate lyase enzyme

  • Research
  • Published:
Journal of Proteins and Proteomics Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is an opportunistic human pathogen capable of forming biofilms and contaminate medical devices and food. Bacteremia caused by this organism is one of the most serious complications with a mortality rate from 18 to 61%. This study aimed investigate the synergistic effect between recombinant alginate lyase enzyme and bacteriophage TDS 97 in controlling P. aeruginosa biofilm. TDS97 bacteriophage was isolated from municipal wastewater and purified by the Top-Agar method. Electron microscopy revealed that this phage belonged to the Myoviridae family. Evaluation of the effect of phage on P. aeruginosa biofilm showed that phage significantly inhibited both biofilm formation (about 82%) and was able to cause dispersal of biofilm (79%). Alginate lyase enzyme was purified at a concentration of 130 μg/ml. Its antibacterial effects on P. aeruginosa were investigated. The results showed that the enzyme had a significant effect on inhibiting biofilm formation (about 74%) and its dispersion (about 71%). The synergistic effect of phage and enzyme was evaluated and the results showed that these two anti-biofilm effects strengthen each other (> 81% inhibition, > 77% dispersion). The results of this study demonstrated that the use of recombinant alginate lyase enzyme with bacteriophage TDS 97 may provide a suitable therapeutic alternative for controlling P. aeruginosa biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Abbreviations

EPS:

Extracellular Polymeric Substances

eDNA:

Extracellular DNA

LB:

Luria-Bertani

SMB:

Sodium chloride, Magnesium sulfate buffer

TSB:

Tryptic Soy Broth

PBS:

Phosphate-Buffered Saline

FBIC:

Fractional index of Biofilm formation Inhibitor Concentration

FBEC:

Fractional index of Biofilm Eradication Concentration

MOI:

Multiplicity of Infection

References

  • Abedon S (2011) Phage therapy pharmacology: calculating phage dosing. Adv Appl Microbiol 77:1–40

    Article  PubMed  Google Scholar 

  • Adnan M, Shah MRA, Jamal M, Jalil F, Andleeb S, Nawaz MA, Pervez S, Hussain T, Shah I, Imran (2020) Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Biologicals 63:89–96

    Article  CAS  PubMed  Google Scholar 

  • Adriaenssens EM, Brister JR (2017) How to name and classify your phage: an informal guide. Viruses 9(4):70

    Article  PubMed  PubMed Central  Google Scholar 

  • Alipour M, Suntres ZE, Omri A (2009) Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother 64(2):317���325

    Article  CAS  PubMed  Google Scholar 

  • Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114(2):131–138

    Article  CAS  PubMed  Google Scholar 

  • Alkhulaifi M (2017) Using phage’s to exterminate biofilms. J Med Microb Diagn 6:3

    Article  Google Scholar 

  • Amarillas L, Rubí-Rangel L, Chaidez C, González-Robles A, Lightbourn-Rojas L, León-Félix J (2017) Isolation and characterization of phiLLS, a novel phage with potential biocontrol agent against multidrug-resistant Escherichia coli. Front Microbiol 8:1355

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson G, O’toole GJB (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    CAS  PubMed  Google Scholar 

  • Bayer AS, Speert D, Park S, Tu J, Witt M, Nast C, Norman D (1991) Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa. Infect Immun 59(1):302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer AS, Park S, Ramos MC, Nast CC, Eftekhar F, Schiller NL (1992) Effects of alginase on the natural history and antibiotic therapy of experimental endocarditis caused by mucoid Pseudomonas aeruginosa. Infect Immun 60(10):3979–3985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco-Cabra N, Paetzold B, Ferrar T, Mazzolini R, Torrents E, Serrano L, LLuch-Senar M (2020) Characterization of different alginate lyases for dissolving Pseudomonas aeruginosa biofilms. Sci Rep 10(1):9390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey E, Mahony J, Neve H, Noben J-P, Dal Bello F, van Sinderen D (2015) Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1. Appl Environ Microbiol 81(4):1319–1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen BE, Ertesvag H, Beyenal H, Lewandowski Z (2001) Resistance of biofilms containing alginate producing bacteria to disintegration by an alginate degrading enzyme (Algl). Biofouling 17(3):203–210

    Article  CAS  Google Scholar 

  • Chiang WC, Nilsson M, Jensen PØ, Høiby N, Nielsen TE, Givskov M, Tolker-Nielsen T (2013) Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicro Agent Chemo 57(5):2352–2361. https://doi.org/10.1128/AAC.00001-13

    Article  CAS  Google Scholar 

  • Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14(8):1913–1928

    Article  CAS  PubMed  Google Scholar 

  • Cortés ME, Bonilla JC, Sinisterra RD (2011) Biofilm formation, control and novel strategies for eradication. Sci against Microbial Pathog Commun Curr Res Technol Adv 2:896–905

    Google Scholar 

  • Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Investig 112(10):1466–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danis-Wlodarczyk K, Olszak T, Arabski M, Wasik S, Majkowska-Skrobek G, Augustyniak D, Gula G, Briers Y, Jang HB, Vandenheuvel D (2015) Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 and their efficacy against Pseudomonas aeruginosa biofilm. PLoS ONE 10(5):e0127603

    Article  PubMed  PubMed Central  Google Scholar 

  • Devaraj A, Buzzo JR, Mashburn-Warren L, Gloag ES, Novotny LA, Stoodley P, Bakaletz LO, Goodman SD (2019) The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates. Proc Nat Acad Sci Uni Stat Am 116(50):25068–25077. https://doi.org/10.1073/pnas.1909017116

    Article  CAS  Google Scholar 

  • Dolatshah L, Tabatabaei M (2021) A phenotypic and molecular investigation of biofilm formation in clinical samples of Pseudomonas aeruginosa. Mol Biol Res Commun 10(4):157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S, Wei TD, Chen XL, Li CY, Wang P, Xie BB, Qin QL, Zhang XY, Pang XH, Zhou BC (2014) Molecular insight into the role of the N-terminal extension in the maturation, substrate recognition, and catalysis of a bacterial alginate lyase from polysaccharide lyase family 18. J Biol Chem 289(43):29558–29569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eftekhar F, Speert DP (1988) Alginase treatment of mucoid Pseudomonas aeruginosa enhances phagocytosis by human monocyte-derived macrophages. Infect Immun 56(11):2788–2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming HJ, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Franklin MJ, Nivens DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Gacesa P (1992) Enzymic degradation of alginates. Int J Biochem 24(4):545–552

    Article  CAS  PubMed  Google Scholar 

  • Kifelew GL, Mitchell JG, Speck P (2019) Mini-review: efficacy of lytic bacteriophages on multispecies biofilms. Biofouling 35(4):472–481

    Article  Google Scholar 

  • Hatch RA, Schiller NL (1998) Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob Agents Chemother 42(4):974–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero M, de los Reyes-Gavilán CG, Caso JL, Suárez JE (1994) Characterization of ø393-A2, a bacteriophage that infects Lactobacillus casei. J Bacteriol 140(10):2585–2590

    Google Scholar 

  • Ho K (2001) Bacteriophage therapy for bacterial infections: rekindling a memory from the pre-antibiotics era. Perspect Biol Med 44(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Høiby N, Johansen HK, Moser C, Song Z, Ciofu O, Kharazmi A (2001) Pseudomonas aeruginosa and the in vitroand in vivo biofilm mode of growth. Microbes Infect 1:23–35

    Article  Google Scholar 

  • Hurlow J, Couch K, Laforet K, Bolton L, Metcalf D, Bowler P (2015) Clinical biofilms: a challenging frontier in wound care. Adv Wound Care 4(5):295–301

    Article  Google Scholar 

  • Knezevic P, Obreht D, Curcin S, Petrusic M, Aleksic V, Kostanjsek R, Petrovic O (2011) Phages of Pseudomonas aeruginosa: response to environmental factors and in vitro ability to inhibit bacterial growth and biofilm formation. J Appl Microbiol 111(1):245–254

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Lamppa JW, Griswold KE (2013) Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob Agents Chemother 57(1):137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamppa JW, Ackerman ME, Lai JI, Scanlon TC, Griswold KE (2011) Genetically engineered alginate lyase-PEG conjugates exhibit enhanced catalytic function and reduced immunoreactivity. PLoS ONE 6(2):e17042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Choi S, Shin H, Lee JH, Choi SH (2014) Vibrio vulnificus bacteriophage SSP002 as a possible biocontrol agent. Appl Environ Microbiol 80(2):515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis RE, Diekema D, Messer S, Pfaller M, Klepser ME (2002) Comparison of Etest, chequerboard dilution and time kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J Antimicrob Chemother 49(2):345–351

    Article  CAS  PubMed  Google Scholar 

  • Liao C, Huang X, Wang Q, Yao D, Lu W (2022) Virulence factors of Pseudomonas aeruginosa and antivirulence strategies to combat its drug resistance. Front Cell Infect Microbiol 12:926758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mah T-FC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    Article  CAS  PubMed  Google Scholar 

  • Mai G, Seow W, Pier G, McCormack J, Thong Y (1993) Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate): reversal by physicochemical, alginase, and specific monoclonal antibody treatments. Infect Immun 61(2):559–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki M, Obata J, Iwamoto Y, Oda T, Muramatsu T (2001) Calciumsensitive extracellular poly (α-L-guluronate) lyase from a marine bacterium Pseudomonas sp. strain F6: purification and some properties. Fish Sci 67(5):956–964

    Article  CAS  Google Scholar 

  • Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52(1):1–1

    Article  CAS  PubMed  Google Scholar 

  • Oliveira A, Sousa JC, Silva AC, Melo LD, Sillankorva S (2018) Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model. Front Microbiol 9:1725

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira VC, Bim FL, Monteiro RM, Macedo AP, Santos ES, Silva-Lovato CH, Watanabe E (2020) Identification and characterization of new bacteriophages to control multidrug-resistant Pseudomonas aeruginosa biofilm on endotracheal tubes. Front Microbiol 11:580779

    Article  PubMed  PubMed Central  Google Scholar 

  • Olszowska-Zaremba N, Borysowski J, Dabrowska K, Górski A (2012) Phage translocation, safety and immunomodulation. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, UK, pp 168–184

    Chapter  Google Scholar 

  • Percival SL, Suleman L, Vuotto C, Donelli GJ (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64(4):323–334

    Article  PubMed  Google Scholar 

  • Pinard MA, Lotlikar SR, Boone CD, Vullo D, Supuran CT, Patrauchan MA, McKenna R (2015) Structure and inhibition studies of a type II beta-carbonic anhydrase psCA3 from Pseudomonas aeruginosa. Bioorg Med Chem 23(15):4831–4838

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Daley AJ, Istivan TS, Rouch DA, Deighton MA (2010) Densely adherent growth mode, rather than extracellular polymer substance matrix build-up ability, contributes to high resistance of Staphylococcus epidermidis biofilms to antibiotics. J Antimicrob Chemother 65(7):1405–1411

    Article  CAS  PubMed  Google Scholar 

  • Raad II, Fang X, Keutgen XM, Jiang Y, Sherertz R, Hachem R (2008) The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Curr Opin Infect Dis 21(4):385–392

    Article  CAS  PubMed  Google Scholar 

  • Ramsey DM, Wozniak DJ (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56(2):309–322

    Article  CAS  PubMed  Google Scholar 

  • Rezk N, Abdelsattar AS, Elzoghby D, Agwa MM, Abdelmoteleb M, Aly RG, El-Shibiny A (2022) Bacteriophage as a potential therapy to control antibiotic-resistant Pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model. J Genet Eng Biotechnol 20(1):1–16

    Article  Google Scholar 

  • Russell DW, Sambrook J (2001) Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Laboratory Cold Spring Harbor, NY

    Google Scholar 

  • Secchi E, Savorana G, Vitale A, Eberl L, Stocker R, Rusconi R (2022) The structural role of bacterial eDNA in the formation of biofilm streamers. Proceed National Acad Sci Uni Stat Am 119(12):e2113723119. https://doi.org/10.1073/pnas.2113723119

    Article  CAS  Google Scholar 

  • Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A (2019) Advanced strategies for combating bacterial biofilms. J Cell Physiol 234(9):14689–14708

    Article  CAS  PubMed  Google Scholar 

  • Sonnenwirth AC (1980) Gradwohl’s clinical laboratory methods and diagnosis. CV Mosby

    Google Scholar 

  • Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović MJ (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40(2):175–179

    Article  PubMed  Google Scholar 

  • Stephenson FJCMBB (2011) Working with bacteriophages. Cal Mol Biol Biotechnol 4:83–98

    Google Scholar 

  • Tarver T (2009) Biofilms: a threat to food safety. Food Technol 63(2):46–52

    Google Scholar 

  • Tavafi H, Ali AA, Ghadam P, Gharavi S (2018) Screening, cloning and expression of a novel alginate lyase gene from P. aeruginosa TAG 48 and its antibiofilm effects on P. aeruginosa biofilm. Microb Pathog 124:356–364

    Article  CAS  PubMed  Google Scholar 

  • Umrao PD, Kumar V, Sagar SS, Kaistha SD (2020) Bacteriophage control for Pseudomonas aeruginosa biofilm formation and eradication. In: Gupta N, Gupta V (eds) Experimental protocols in biotechnology: Springer protocols handbooks. Humana, New York, pp 119–137

    Chapter  Google Scholar 

  • Verma V, Harjai K, Chhibber S (2010) Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae. Biofouling 26(6):729–737

    Article  CAS  PubMed  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitere M, Bergfeld T, Rice SA, Matz C, Kjelleberg S (2005) Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ Microbiol 7(10):1593–1601

    Article  CAS  PubMed  Google Scholar 

  • Worley-Morse TO, Zhang L, Gunsch CK (2014) The long-term effects of phage concentration on the inhibition of planktonic bacterial cultures. Environ Sci: Process Impacts 16(1):81–87

    CAS  PubMed  Google Scholar 

  • Wu K, Fang Z, Guo R, Pan B, Shi W, Yuan S, Guan H, Gong M, Shen B, Shen Q (2015) Pectin enhances bio-control efficacy by inducing colonization and secretion of secondary metabolites by Bacillus amyloliquefaciens SQY 162 in the rhizosphere of tobacco. PLoS ONE 10(5):e0127418

    Article  PubMed  PubMed Central  Google Scholar 

  • Yarwood JM, Paquette KM, Tikh IB, Volper EM, Greenberg EP (2007) Generation of virulence factor variants in Staphylococcus aureus biofilms. J Bacteriol 189(22):7961–7967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonezawa H, Osaki T, Kamiya S (2015) Biofilm formation by Helicobacter pylori and its involvement for antibiotic resistance. Biomed Res Int 2015:914791

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Hu Z (2013) Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine. Biotechnol Bioeng 110(1):286–295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Jalalei (Isfahan University of Technology, Iran) for providing the vector pET-28a, and the staff of bacteriology and biotechnology laboratories (Faculty of Veterinary Medicine, Department of Pathobiology, Shiraz, Iran) for providing us technical supports.

Funding

This work was funded by Shiraz University (Grant No. 9430195).

Author information

Authors and Affiliations

Authors

Contributions

This study is the major component of the work toward the PhD thesis of the LD supervised by MT. LD conceived and performed the experiments; analyzed and interpreted the data. MS collaborated in bacteriophage isolation and also confirmed the diagnosis of Pseudomonas aeruginosa isolates. LD wrote the first draft of the manuscript. Then, the whole manuscript critically revised by MT. MT helped in planning the project; contributed to revision of the manuscript; supervised the project. All authors read, edited, and approved the final version of the manuscript.

Corresponding author

Correspondence to Mohammad Tabatabaei.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval and consent to participate

The authors confirm that this study conforms to the ethical policies of the journal, as stated on the journal’s author guidelines page. No ethical approval was required, as this research does not include any experiments on animals.

Consent for publication

All authors read and approved the final manuscript.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolatshah, L., Tabatabaei, M. & Sadeghpour Mobarakeh, M. Dispersal of Pseudomonas aeruginosa biofilm using TDS97 bacteriophage and recombinant alginate lyase enzyme. J Proteins Proteom (2024). https://doi.org/10.1007/s42485-024-00154-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42485-024-00154-8

Keywords

Navigation