Skip to main content
Log in

Deciphering putative protein profile of a photomorphogenic high pigment mutant of Solanum lycopersicum (hp-1) by high-throughput LC–MS/MS analysis

  • Research
  • Published:
Journal of Proteins and Proteomics Aims and scope Submit manuscript

Abstract

The mutant hp-1 is a photomorphogenic high pigment tomato mutant. It has high commercial significance as a source of non-transgenic lycopene-rich mutants. The putative effect of the hp-1 mutation on the alteration of proteomic behavior remains elusive. We put effort into giving an insight mechanism underlying this high pigmentation by high-throughput LC/MS/MS analysis. The bioinformatics interpretation of the results expressed a large number of proteins specific to the hp-1 mutant. The identified proteins in the pericarp tissue were involved in physiologic processes: including photosynthesis: stress and defense: protein synthesis: processing: and folding: Carbohydrate metabolism and respiratory cycle: RO reaction and oxidative damage: ethylene biosynthesis: and cell wall metabolism with enhanced expression of ACO: NDPK: ATP synthase: MDH 1: TPM 1: OSML 13: PR10: HSP 70: STH 1: peroxidase: SOP: Gly-rich RBP: OEE 1: PSII OECP. The modulation of the accumulation scale of proteins showed the integrated functioning of light-interacting factors and fruit ripening. This report unravels the proteomic regulatory network for high pigmentation and will strengthen future research on fruit pigment development and metabolism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACN:

Acetonitrile

ACO:

1-Aminocyclopropane-1-carboxylic Acid Oxidase

AL:

Ailsa craig

BL4:

Bell-like homeodomain 4

BR:

Breaker stage

BZR:

Brassinosteroid signaling positive regulator

CAB:

Chlorophyll a/b-binding Protein

CD:

Cutin deficient

CID:

Collision induced dissociation

CHS:

Chalcone synthase

CTAB:

Cetyl trimethyl ammonium bromide

CTRs:

Constitutive triple response

CyP:

Peptidyl-prolyl cis–trans isomerase

DAP:

Days after pollination

DAVID:

Database for annotation, visualization and integrated discovery

DDB1:

Damaged DNA binding protein 1

DEPs:

Differentially expressed proteins

DET:

De-Etiolated

DHAR:

Dehydroascorbate reductase

DHAP:

Dihydroxyacetone phosphate

DTT:

Di-thio threitol

eIF:

Eukaryotic translation initiation factor

EIN2:

Ethylene insensitive 2

F-1,6-BP:

Fructose-1,6-bisphosphate

FBA:

Fructose bisphosphate aldolase

Glu6P:

Glucose 6-phosphate

G3P:

Glyceraldehyde 3-phosphate

GGPP:

GeranylGeranyl pyrophosphate

GO:

Gene ontology

Gly-rich RBP:

Glycine-rich RNA binding proteins

GRP2:

Glycine-rich protein 2

HPLC:

High performance liquid chromatography

HSP:

Heat shock protein

iTRAQ:

Isobaric tag for relative and absolute quantitation

KEGG:

Kyoto encyclopedia of genes and genomes

LRT:

Lycopene rich tomatoes

MEP:

2-C-methyl-D-erythritol 4-phosphate

MDH:

Malate dehydrogenase

MG:

Mature green

MSR:

Methionine sulphoxide reductase

NDP:

Nucleotide diphosphate

NDPK:

Nucleoside diphosphate kinase

OAA:

Oxaloacetate

2-ODD:

2-Oxoglutarate dependent dioxygenase

OECP:

Oxygen-evolving complex proteins

OEE:

Oxygen evolving enhancer

OG:

Oxoglutarate

OSML:

Osmotin like protein: full form

PE:

Pectinesterase

PDI:

Protein disulfide isomerase

PGH:

2-Phospho-D-glycerate hydro-lyase

PGIP:

Polygalacturonase-inhibiting protein

PMSF:

Phenyl methyl sulfonyl fluoride

PPI:

Protein–protein interaction

PR:

Pathogenesis related

PRP:

Pathogenesis-related protein

PSII:

Photosystem II

PSY:

Phytoene synthase

RBCS-2A:

Ribulose bisphosphate carboxylase small chain 2A

RBP:

RNA binding proteins

RH:

Relative humidity

RO:

Reactive oxygen

RR:

Red ripe

RuBisCO:

Ribulose-1:5-bisphosphate carboxylase/oxygenase

SAPKs:

Stress activated protein kinases

SDS:

Sodium dodecyl suphate

SOD:

Superoxide dismutase

SOP:

Sulfate of potash

TAA:

Tri-chloro acetic acid

TF:

Transcription factor

TIL:

Temperature-induced lipocalin

TPI:

Triosephosphate isomerase

TPM:

Tropomyosin

TPT:

Triose phosphate transporter

UBA:

Ubiquitin associated

UBX:

Ubiquitin like

WDS:

Water deficit stress

XEG:

Xyloglucan-specific endoglucanase

XEGIP:

Xyloglucan-specific fungal endoglucanase inhibitor protein

References

  • Alba R, Cordonnier-Pratt M-M, Pratt LH (2000) Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiol 123:363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo WL, Martins AO, Fernie AR, Tohge T (2014) 2-oxoglutarate, linking TCA Cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis. Front Plant Sci 5:552

    PubMed  PubMed Central  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Hernández-Coronado M, Pantoja O (2009) Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. Plant Cell 21:4044–4058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, Poux S, Bougueleret L, Xenarios I (2016) UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Plant Bioinformatics. Springer, pp 23–54

    Chapter  Google Scholar 

  • Bowles DJ (1990) Defense-related proteins in higher plants. Annu Rev Biochem 59:873–907

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bruey J-M, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo A-P, Kroemer G, Solary E (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Wang P, Tian S, Qin G (2018) Quantitative proteomic analysis reveals the involvement of mitochondrial proteins in tomato fruit ripening. Postharvest Biol Technol 145:213–221

    Article  CAS  Google Scholar 

  • Camara B, Hugueney P, Bouvier F, Kuntz M, Monéger R (1995) Biochemistry and molecular biology of chromoplast development. International review of cytology, vol 163. Elsevier, pp 175–247

    Google Scholar 

  • Cedzich A, Huttenlocher F, Kuhn BM, Pfannstiel J, Gabler L, Stintzi A, Schaller A (2009) The protease-associated domain and C-terminal extension are required for zymogen processing, sorting within the secretory pathway, and activity of tomato subtilase 3 (SlSBT3). J Biol Chem 284:14068–14078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charron J-BF, Ouellet F, Houde M, Sarhan F (2008) The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol 8:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Pan Y, Wang S, Ding Y, Yang W, Zhu C (2012) Overexpression of a protein disulfide isomerase-like protein from Methanothermobacter thermoautotrophicum enhances mercury tolerance in transgenic rice. Plant Sci 197:10–20

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Grimplet J, David K, Castellarin SD, Terol J, Wong DC, Luo Z, Schaffer R, Celton J-M, Talon M (2018) Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Sci 276:63–72

    Article  CAS  PubMed  Google Scholar 

  • Cookson P, Kiano J, Shipton C, Fraser P, Romer S, Schuch W, Bramley P, Pyke K (2003) Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta 217:896–903

    Article  CAS  PubMed  Google Scholar 

  • Cruz AB, Bianchetti RE, Alves FRR, Purgatto E, Peres LEP, Rossi M, Freschi L (2018) Light, ethylene and auxin signaling interaction regulates carotenoid biosynthesis during tomato fruit ripening. Front Plant Sci 9:1370

    Article  PubMed  PubMed Central  Google Scholar 

  • de Carolis E, de Luca V (1994) 2-Oxoglutarate-dependent dioxygenase and related enzymes, biochemical characterization. Phytochemistry 36:1093–1107

    Article  PubMed  Google Scholar 

  • Didiasova M, Schaefer L, Wygrecka M (2019) When place matters, shuttling of enolase-1 across cellular compartments. Front Cell Develop Biol 7:61

    Article  Google Scholar 

  • Ding C-K, Wang C, Gross KC, Smith DL (2002) Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214:895–901

    Article  CAS  PubMed  Google Scholar 

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol 103:1067–1073

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry IM, Carpentier SC, Pampurova S, Van Hoylandt A, Panis B, Swennen R, Remy S (2011) Structure and regulation of the Asr gene family in banana. Planta 234:785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hüttner S, Strasser R (2012) Endoplasmic reticulum-associated degradation of glycoproteins in plants. Front Plant Sci 3:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutton JJ Jr, Tappel A, Udenfriend S (1967) Cofactor and substrate requirements of collagen proline hydroxylase. Arch Biochem Biophys 118:231–240

    Article  CAS  Google Scholar 

  • Karpievitch YV, Polpitiya AD, Anderson GA, Smith RD, Dabney AR (2010) Liquid chromatography mass spectrometry-based proteomics, biological and technological aspects. Ann Appl Stat 4:1797

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim M-S, Kandasamy K, Chaerkady R, Pandey A (2010) Assessment of resolution parameters for CID-based shotgun proteomic experiments on the LTQ-Orbitrap mass spectrometer. J Am Soc Mass Spectrom 21:1606–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein RD, Chidawanyika T, Tims HS, Meulia T, Bouchard RA, Pett VB (2014) Chaperone function of two small heat shock proteins from maize. Plant Sci 221:48–58

    Article  PubMed  Google Scholar 

  • Koca H, Ozdemir F, Turkan I (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant 50:745–748

    Article  CAS  Google Scholar 

  • Konrad Z, Bar-Zvi D (2008) Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine. Planta 227:1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Levin I, De Vos CR, Tadmor Y, Bovy A, Lieberman M, Oren-Shamir M, Segev O, Kolotilin I, Keller M, Ovadia R (2006) High pigment tomato mutants—more than just lycopene (a review). Israel J Plant Sci 54:179–190

    Article  CAS  Google Scholar 

  • Li Q-F, He J-X (2016) BZR1 interacts with HY5 to mediate brassinosteroid-and light-regulated cotyledon opening in Arabidopsis in darkness. Mol Plant 9:113–125

    Article  CAS  PubMed  Google Scholar 

  • Li X, Shahid MQ, Wu J, Wang L, Liu X, Lu Y (2016) Comparative small RNA analysis of pollen development in autotetraploid and diploid rice. Int J Mol Sci 17:499

    Article  PubMed  PubMed Central  Google Scholar 

  • Li T, Wang Y-H, Huang Y, Liu J-X, Xing G-M, Sun S, Li S, Xu Z-S, Xiong A-S (2020) A novel plant protein-disulfide isomerase participates in resistance response against the TYLCV in tomato. Planta 252:1–16

    Article  PubMed  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig E (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Roof S, Ye Z, Barry C, Van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci 101:9897–9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Jia C, Zhang M, Chen D, Chen S, Guo R, Guo D, Wang Q (2014) Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnol J 12:105–115

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu H, Li S, Zhang X, Zhang M, Zhu N, Dufresne CP, Chen S, Wang Q (2016) Regulation of BZR1 in fruit ripening revealed by iTRAQ proteomics analysis. Sci Rep 6:1–14

    Google Scholar 

  • Livne A, Gepstein S (1988) Abundance of the major chloroplast polypeptides during development and ripening of tomato fruits: an Immunological Study. Plant Physiol 87:239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente B, D’Andrea L, Ruiz-Sola M, Botterweg E, Pulido P, Andilla J, Loza-Alvarez P, Rodriguez-Concepcion M (2016) Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. Plant J: Cell Mole Biol 85:107–119

    Article  CAS  Google Scholar 

  • Lorković ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–236

    Article  PubMed  Google Scholar 

  • Meyer M, Huttenlocher F, Cedzich A, Procopio S, Stroeder J, Pau-Roblot C, Lequart-Pillon M, Pelloux J, Stintzi A, Schaller A (2016) The subtilisin-like protease SBT3 contributes to insect resistance in tomato. J Exp Bot 67:4325–4338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno JC (2019) The proteOMIC era, a useful tool to gain deeper insights into plastid physiology. Theor Exp Plant Physiol 31:157–171

    Article  CAS  Google Scholar 

  • Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118:1295–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ntagkas N, de Vos RC, Woltering EJ, Nicole C, Labrie C, Marcelis LF (2020) Modulation of the tomato fruit metabolome by LED light. Metabolites 10:266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oetiker JH, Olson DC, Shiu OY, Yang SF (1997) Differential induction of seven 1-aminocyclopropane-1-carboxylate synthase genes by elicitor in suspension cultures of tomato (Lycopersicon esculentum). Plant Mol Biol 34:275–286

    Article  CAS  PubMed  Google Scholar 

  • Oms-Oliu G, Hertog M, Van de Poel B, Ampofo-Asiama J, Geeraerd A, Nicolai B (2011) Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biol Technol 62:7–16

    Article  CAS  Google Scholar 

  • Ottmann C, Rose R, Huttenlocher F, Cedzich A, Hauske P, Kaiser M, Huber R, Schaller A (2009) Structural basis for Ca2+-independence and activation by homodimerization of tomato subtilase 3. Proc Natl Acad Sci 106:17223–17228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouzounis T, Razi Parjikolaei B, Fretté X, Rosenqvist E, Ottosen C-O (2015) Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front Plant Sci 6:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Pal H, Sharaff M, Sethi A, Hazra P, Mazumder D, Pandey SP (2016) Deciphering the effect of mutations on fruit ripening quality associated gene expression pattern in spontaneous monogenic tomato mutants. Agri Gene 1:1–14

    Article  Google Scholar 

  • Pal H, Sahu R, Sethi A, Hazra P, Chatterjee S (2019) Unraveling the metabolic behavior in tomato high pigment mutants (hp-1, hp-2dg, ogc) and non ripening mutant (rin) during fruit ripening. Sci Hortic 246:652–663

    Article  CAS  Google Scholar 

  • Pilati S, Brazzale D, Guella G, Milli A, Ruberti C, Biasioli F, Zottini M, Moser C (2014) The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. BMC Plant Biol 14:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin Q, Bergmann CW, Rose JK, Saladie M, Kolli VK, Albersheim P, Darvill AG, York WS (2003) Characterization of a tomato protein that inhibits a xyloglucan-specific endoglucanase. Plant J 34:327–338

    Article  CAS  PubMed  Google Scholar 

  • Raines CA, Lloyd JC, Dyer TA (1991) Molecular biology of the C3 photosynthetic carbon reduction cycle. Photosynth Res 27:1–14

    Article  CAS  PubMed  Google Scholar 

  • Reynard G (1956) Origin of the webb special (Black Queen) tomato. Rep Tomato Genet Coop 6:22

    Google Scholar 

  • Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891

    Article  CAS  PubMed  Google Scholar 

  • Sun N, Ma L, Pan D, Zhao H, Deng XW (2003) Evaluation of light regulatory potential of Calvin cycle steps based on large-scale gene expression profiling data. Plant Mole Biol 53:467–478

    Article  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP (2014) STRING v. 10, protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  PubMed  PubMed Central  Google Scholar 

  • Tovar-Méndez A, Miernyk JA, Randall DD (2003) Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem 270:1043–1049

    Article  PubMed  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Van Loon LC, Van Strien E (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Webb R, Fuchigami L (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173

    Article  CAS  Google Scholar 

  • Wann EV (1997) Tomato germplasm lines T4065, T4099, T5019, and T5020 with unique genotypes that enhance fruit quality. HortScience 32(4):747–748. https://doi.org/10.21273/HORTSCI.32.4.747

    Article  Google Scholar 

  • Whitley D, Goldberg SP, Jordan WD (1999) Heat shock proteins, a review of the molecular chaperones. J Vasc Surg 29:748–751

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Xiong E, Wang W, Scali M, Cresti M (2014) Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat Protoc 9:362

    Article  CAS  PubMed  Google Scholar 

  • Xie BX, Wei JJ, Zhang YT, Song SW, Wei S, Sun GW, Hao YW, Liu HC (2019) Supplemental blue and red light promote lycopene synthesis in tomato fruits. J Integr Agric 18:590–598

    Article  CAS  Google Scholar 

  • Yang Y, Kwon H-B, Peng H-P, Shih M-C (1993) Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol 101:209–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen H, Shelton B, Howard L, Lee S, Vrebalov J, Giovannoni J (1997) The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor Appl Genet 95:1069–1079

    Article  CAS  Google Scholar 

  • Zhan Y, Qu Y, Zhu L, Shen C, Feng X, Yu C (2018) Transcriptome analysis of tomato (Solanum lycopersicum L.) shoots reveals a crosstalk between auxin and strigolactone. PLoS ONE 13:e0201124

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded through the DBT Bio-CARe Women Scientists project (BT/Bio-CARe/02/315/2011-2012 & 10/10/2013: Department of Biotechnology: Ministry of Science and Technology: Government of India). We thank C- CAMP (DBT: Govt. of India) for providing the service in the LC/MS/MS analysis of the extracted protein samples. We also appreciate Prof. Dibyendu Narayan Sengupta (Bose Institute: Kolkata) for his motivation and cooperation during the preliminary development of the project. I also would like to thank Dr. Souvik Ghatak for supporting with bioinformatics analysis for subcellular localization study.

Funding

This study was supported through the DBT Bio-CARe Women Scientists project (BT/Bio-CARe/02/315/2011–2012 & 10/10/2013: Department of Biotechnology: Ministry of Science and Technology: Government of India).

Author information

Authors and Affiliations

Authors

Contributions

Harshata Pal -All wet lab analysis and manuscript writing. Avinash Sethi -Bioinformatics data analysis and editing. Pranab Hazra -Provided experimental materials. Somali Dhal—Reference management: revision and editing. Tahsin Khan – Revision and editing.

Corresponding author

Correspondence to Harshata Pal.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that they are relevant to the content of this article.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors have given their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2580 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, H., Sethi, A., Dhal, S. et al. Deciphering putative protein profile of a photomorphogenic high pigment mutant of Solanum lycopersicum (hp-1) by high-throughput LC–MS/MS analysis. J Proteins Proteom (2024). https://doi.org/10.1007/s42485-024-00153-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42485-024-00153-9

Keywords

Navigation