Skip to main content

Advertisement

Log in

Exploration of subtype-specific perturbations in breast cancer

  • Research
  • Published:
Journal of Proteins and Proteomics Aims and scope Submit manuscript

Abstract

Breast cancer remains a leading cause of mortality among women, characterized by its complex and diverse nature, comprising various molecular subtypes, each demonstrating distinct treatment responses and clinical outcomes. Addressing the complexity of tumor heterogeneity and advancing precision medicine are key objectives in current breast cancer research. This study aims to deepen understanding of the disease complexities at the molecular subtype level. RNA sequencing data for luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC) subtypes, with corresponding normal samples, were obtained from the Gene Expression Omnibus (GEO) database. We identified modules containing unique and significantly correlated genes with each subtype using weighted gene co-expression network analysis (WGCNA). Subsequently, genes within each subtype-specific module were explored by constructing and analyzing protein–protein interaction (PPI) networks. The prognostic and diagnostic potential of the identified crucial proteins for each subtype was evaluated through survival and ROC curve analyses. We identified crucial proteins, NSF, FKBP4, NTRK2, and SLC7A5 within the luminal A associated module, GYPC, ALDH18A1, and KLF2 specific to luminal B module, AURKA, BUB1, PLK1, ANLN, BIRC5, RAD51, and SQLE specific to TNBC module, exhibited significant associations with adverse survival outcomes in breast cancer patients and also demonstrated remarkable diagnostic efficacy in differentiating tumor and normal samples. The present study offers new insights for advancing research on breast cancer subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adinew GM, Messeha S, Taka E, Soliman KF (2022) The prognostic and therapeutic implications of the chemoresistance gene birc5 in triple-negative breast cancer. Cancers 14(21):5180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MS, Rahaman MM, Sultana A, Wang G, Mollah MNH (2022) Statistics and network-based approaches to identify molecular mechanisms that drive the progression of breast cancer. Comput Biol Med 145:105508

    Article  CAS  PubMed  Google Scholar 

  • Alcalá-Corona SA, de Anda-Jáuregui G, Espinal-Enríquez J, Hernández-Lemus E (2017) Network modularity in breast cancer molecular subtypes. Front Physiol 8:291968

    Article  Google Scholar 

  • Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T (2018) Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 8:1483–1507

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S et al (2022) Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 66:15–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Arrell D, Terzic A (2010) Network systems biology for drug discovery. Clin Pharmacol Ther 88(1):120–125

    Article  CAS  PubMed  Google Scholar 

  • Arvold ND, Taghian AG, Niemierko A, Abi Raad RF, Sreedhara M, Nguyen PL, Bellon JR, Wong JS, Smith BL, Harris JR (2011)“Age, breast cancer subtype approximation, and local recurrence after breast-conserving therapy. J Clin Oncol. 29(29): 3885

  • Ashtiani M, Salehzadeh-Yazdi A, Razaghi-Moghadam Z, Hennig H, Wolkenhauer O, Mirzaie M, Jafari M (2018) A systematic survey of centrality measures for protein-protein interaction networks. BMC Syst Biol 12(1):1–17

    Article  Google Scholar 

  • Bateman A, Martin MJ, Orchard S, Magrane M, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Cukura A, Denny P, Dogan T (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51(D1):D523–D531

    Article  CAS  Google Scholar 

  • Bayraktar S, Glück S (2013) Molecularly targeted therapies for metastatic triple-negative breast cancer. Breast Cancer Res Treatment 138:21–35

    Article  CAS  Google Scholar 

  • Bos R, Van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, Semenza GL, Van Diest PJ, Van der Wall E (2003) Levels of hypoxia-inducible factor-1\(\alpha\) independently predict prognosis in patients with lymph node negative breast carcinoma, Cancer: Interdisciplinary International Journal of the American Cancer Society, 97, no. 6, pp. 1573–1581

  • Brianna and Lee SH, (2023) Chemotherapy: how to reduce its adverse effects while maintaining the potency? Med Oncol 40(3):88

    Article  CAS  PubMed  Google Scholar 

  • Brown DN, Caffa I, Cirmena G, Piras D, Garuti A, Gallo M, Alberti S, Nencioni A, Ballestrero A, Zoppoli G (2016) Squalene epoxidase is a bona fide oncogene by amplification with clinical relevance in breast cancer. Sci Rep 6(1):19435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burstein HJ (2005) The distinctive nature of her2-positive breast cancers. New Engl J Med 353(16):1652–1654

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Jiang Y, Ji X, Guan X, Lin Q, Ma L (2021) Identification of novel prognostic genes of triple-negative breast cancer using meta-analysis and weighted gene co-expressed network analysis. Ann Transl Med 9(3):205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cava C, Pisati M, Frasca M, Castiglioni I (2021) Identification of breast cancer subtype-specific biomarkers by integrating copy number alterations and gene expression profiles. Medicina 57(3):261

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerma K, Piacentini F, Moscetti L, Barbolini M, Canino F, Tornincasa A, Caggia F, Cerri S, Molinaro A, Dominici M et al (2023) Targeting pi3k/akt/mtor pathway in breast cancer: from biology to clinical challenges. Biomedicines 11(1):109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craze ML, Cheung H, Jewa N, Coimbra ND, Soria D, El-Ansari R, Aleskandarany MA, Wai Cheng K, Diez-Rodriguez M, Nolan CC et al (2018) Myc regulation of glutamine-proline regulatory axis is key in luminal b breast cancer. Br J Cancer 118(2):258–265

    Article  CAS  PubMed  Google Scholar 

  • Ding R, Liu Q, Yu J, Wang Y, Gao H, Kan H, Yang Y (2023) Identification of breast cancer subtypes by integrating genomic analysis with the immune microenvironment. ACS Omega 8(13):12217–12231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: Ncbi gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efferson CL, Winkelmann CT, Ware C, Sullivan T, Giampaoli S, Tammam J, Patel S, Mesiti G, Reilly JF, Gibson RE et al (2010) Downregulation of notch pathway by a \(\gamma\)-secretase inhibitor attenuates akt/mammalian target of rapamycin signaling and glucose uptake in an erbb2 transgenic breast cancer model. Cancer Res 70(6):2476–2484

    Article  CAS  PubMed  Google Scholar 

  • Fallahian F, Karami-Tehrani F, Salami S, Aghaei M (2011) Cyclic gmp induced apoptosis via protein kinase g in oestrogen receptor-positive and-negative breast cancer cell lines. FEBS J 278(18):3360–3369

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB, Van’t Veer LJ, Perou CM (2006) Concordance among gene-expression-based predictors for breast cancer. New Eng J Med 355(6):560–569

    Article  CAS  PubMed  Google Scholar 

  • Freeman LC et al., (2002) Centrality in social networks: Conceptual clarification. Social network: critical concepts in sociology. Londres: Routledge, 1, pp. 238–263

  • Guo S, Liu M, Gonzalez-Perez RR (2011) Role of notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta (BBA)-Rev Cancer 1815(2):197–213

    Article  CAS  Google Scholar 

  • Han JY, Han YK, Park G.-Y, Kim S. D, Geun Lee C (2015) Bub1 is required for maintaining cancer stem cells in breast cancer cell lines. Sci Rep 5(1):15993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque R, Ahmed SA, Inzhakova G, Shi J, Avila C, Polikoff J, Bernstein L, Enger SM, Press MF (2012) Impact of breast cancer subtypes and treatment on survival: an analysis spanning two decades. Cancer Epidemiol Biomarkers Prevent 21(10):1848–1855

    Article  Google Scholar 

  • Hu Z, Fan C, Oh D, Marron J, He X, Qaqish B, Livasy C, Carey L, Reynolds E, Dressler L, "others. (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genom 7:96

    Article  Google Scholar 

  • Jalalirad M, Haddad TC, Salisbury JL, Radisky D, Zhang M, Schroeder M, Tuma A, Leof E, Carter JM, Degnim AC et al (2021) Aurora-a kinase oncogenic signaling mediates tgf-\(\beta\)-induced triple-negative breast cancer plasticity and chemoresistance. Oncogene 40(14):2509–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia R, Li Z, Liang W, Ji Y, Weng Y, Liang Y, Ning P (2020) Identification of key genes unique to the luminal a and basal-like breast cancer subtypes via bioinformatic analysis. World J Surg Oncol 18:1–11

    Article  Google Scholar 

  • Jin W, Wu L, Liang K, Liu B, Lu Y, Fan Z (2003) Roles of the pi-3k and mek pathways in ras-mediated chemoresistance in breast cancer cells. Br J Cancer 89(1):185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander MR, Bloomer TL et al (2016) Fulminant myocarditis with combination immune checkpoint blockade. New Engl J Med 375(18):1749–1755

    Article  PubMed  Google Scholar 

  • Johnson J, Rychahou P, Sviripa VM, Weiss HL, Liu C, Watt DS, Evers BM (2019) Induction of ampk activation by n, n’-diarylurea fnd-4b decreases growth and increases apoptosis in triple negative and estrogen-receptor positive breast cancers. PLoS One 14(3):e0209392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N, Anto RJ (2023) The role of ampk in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol 14:1114582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Ramaswamy R, Vindal V, Srivastava A (2023) Subtype-specific network organization of molecular complexes in breast cancer. J Biosci 48(3):24

    Article  CAS  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) Wgcna: an r package for weighted correlation network analysis. BMC Bioinf 9:1–13

    Article  Google Scholar 

  • Li J, Zhou D, Qiu W, Shi Y, Yang J-J, Chen S, Wang Q, Pan H (2018) Application of weighted gene co-expression network analysis for data from paired design. Sci Rep 8(1):622

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang W, Wu X, Ling S, Ma Y, Huang P (2021) Slc7a5 serves as a prognostic factor of breast cancer and promotes cell proliferation through activating akt/mtorc1 signaling pathway. Ann Transl Med 9(10):892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Chen G, Zhao H, Cong Y, Qiao G (2023) Integrated transcriptome and network analysis identifies ezh2/ccnb1/pparg as prognostic factors in breast cancer. Front Genet 13:1117081

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S-Y, Hammarlund JA, Wu G, Lian J-W, Howell SJ, Clarke RB, Adamson AD, Gonçalves CF, Hogenesch JB, Anafi RC et al (2024) Tumor circadian clock strength influences metastatic potential and predicts patient prognosis in luminal a breast cancer. Proc Natl Acad Sci 121(7):e2311854121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Zhang H, Song X, Yang Q (2020) Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. in Seminars in cancer biology, 60, pp. 14–27, Elsevier

  • Liao C, Wang X (2023) Tcgaplot: an r package for integrative pan-cancer analysis and visualization of tcga multi-omics data. BMC Bioinf 24(1):483

    Article  Google Scholar 

  • Maryam A, Chin YR (2021) Anln enhances triple-negative breast cancer stemness through twist1 and bmp2 and promotes its spheroid growth. Front Mol Biosci 8:700973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maximov PY, Lee TM, Craig Jordan V (2013) The discovery and development of selective estrogen receptor modulators (serms) for clinical practice. Curr Clin Pharmacol 8(2):135–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGlynn LM, Kirkegaard T, Edwards J, Tovey S, Cameron D, Twelves C, Bartlett JM, Cooke TG (2009) Ras/raf-1/mapk pathway mediates response to tamoxifen but not chemotherapy in breast cancer patients. Clinical Cancer Res 15(4):1487–1495

    Article  CAS  Google Scholar 

  • Metzger-Filho O, Sun Z, Viale G, Price KN, Crivellari D, Snyder RD, Gelber RD, Castiglione-Gertsch M, Coates AS, Goldhirsch A et al (2013) Patterns of recurrence and outcome according to breast cancer subtypes in lymph node-negative disease: results from international breast cancer study group trials viii and ix. J Clin Oncol 31(25):3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon A (2021) Ras signaling in breast cancer, in Translational Research in Breast Cancer, pp. 81–101, Springer

  • Niu X, Zhang Z (2019) Weighted gene co-expression network analysis identifies critical genes in the development of heart failure after acute myocardial infarction. Front Genet 10:470778

    Article  Google Scholar 

  • Pan Y, Zhang Y, Chen Q, Tao X, Liu J, Xiao GG (2019) Ctab enhances chemo-sensitivity through activation of ampk signaling cascades in breast cancer. Front Pharmacol 10:843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinkerton JV, Thomas S (2014) Use of serms for treatment in postmenopausal women. J Steroid Biochem Mol Biol 142:142–154

    Article  CAS  PubMed  Google Scholar 

  • Polyak K et al (2011) Heterogeneity in breast cancer. J Clin Investig 121(10):3786–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi J, Liu Y, Hu J, Lu L, Dou Z, Dai H, Wang H, Yang W (2021) Identification of fpr3 as a unique biomarker for targeted therapy in the immune microenvironment of breast cancer. Front Pharmacol 11:593247

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin G, Hotilovac L (2008) Comparison of non-parametric confidence intervals for the area under the roc curve of a continuous-scale diagnostic test. Stat Methods Med Res 17(2):207–221

    Article  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555

    Article  CAS  PubMed  Google Scholar 

  • Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, Cai Y, Bielski CM, Donoghue MT, Jonsson P et al (2018) The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34(3):427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogoz B, de l’Aulnoit AH, Duhamel A, de l’Aulnoit DH (2018)“Thirty-year trends of survival and time-varying effects of prognostic factors in patients with metastatic breast cancer-a single institution experience,” Clinical Breast Cancer, vol. 18, no. 3, pp. 246–253

  • Ross SM (2017) Introductory statistics. Academic Press, New York

    Book  Google Scholar 

  • Saha SK, Kader MA, Samad KA, Biswas KC, Rahman MA, Parvez MAK, Rahman MS (2020) Prognostic and clinico-pathological significance of bin1 in breast cancer. Inf Med Unlocked 19:100327

    Article  Google Scholar 

  • Sevimoglu T, Arga KY (2014) The role of protein interaction networks in systems biomedicine. Comp Struct Biotechnol J 11(18):22–27

    Article  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genom Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  • Shi G, Yin W (2020) Identifying biomarkers to predict the progression and prognosis of breast cancer by weighted gene co-expression network analysis. Front Genet 11:597888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi R, Liao C, Zhang Q (2021) Hypoxia-driven effects in cancer: characterization, mechanisms, and therapeutic implications. Cells 10(3):678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A et al (2021) Cancer statistics, 2021. Ca Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33

    Article  PubMed  Google Scholar 

  • Singha P, Pandeswara S, Venkatachalam M, Saikumar P (2016) Abstract p2–06-08 interplay of smad2 and smad3 during tgf-\(\beta\) induced tmepai/pmepa1 mediated triple negative breast cancer cell growth. Cancer Res 76(4 Supplement):P2-06

    Google Scholar 

  • Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, Van De Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci 98(19):10869–10874

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P et al (2021) The string database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612

    Article  CAS  PubMed  Google Scholar 

  • Törnroos R, Tina E, Göthlin Eremo A (2022) Slc7a5 is linked to increased expression of genes related to proliferation and hypoxia in estrogen-receptor-positive breast cancer. Oncol Rep 47(1):1–10

    Google Scholar 

  • Torre LA, Islami F, Siegel RL, Ward EM, Jemal A (2017) Global cancer in women: burden and trends. Cancer Epidemiol Biomarkers Prevent 26(4):444–457

    Article  Google Scholar 

  • Ueda A, Oikawa K, Fujita K, Ishikawa A, Sato E, Ishikawa T, Kuroda M, Kanekura K (2019) Therapeutic potential of plk1 inhibition in triple-negative breast cancer. Lab Investig 99(9):1275–1286

    Article  PubMed  Google Scholar 

  • Van Belle G (2011)Statistical rules of thumb. John Wiley & Sons. Hoboken

  • Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28(10):1684–1691

    Article  PubMed  Google Scholar 

  • Wang Y, Li Y, Liu B, Song A (2021) Identifying breast cancer subtypes associated modules and biomarkers by integrated bioinformatics analysis. Biosci Rep 41(1):BSR20203200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegmans AP, Al-Ejeh F, Chee N, Yap P-Y, Gorski JJ, Da Silva L, Bolderson E, Chenevix-Trench G, Anderson R, Simpson PT et al (2014) Rad51 supports triple negative breast cancer metastasis. Oncotarget 5(10):3261

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright RM, Aglyamova GV, Meyer E, Matz MV (2015) Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genom 16:1–12

    Article  CAS  Google Scholar 

  • Xiong H, Chen Z, Zheng W, Sun J, Fu Q, Teng R, Chen J, Xie S, Wang L, Yu X-F et al (2020) Fkbp4 is a malignant indicator in luminal a subtype of breast cancer. J Cancer 11(7):1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XR, Chang-Claude J, Goode EL, Couch FJ, Nevanlinna H, Milne RL, Gaudet M, Schmidt MK, Broeks A, Cox A et al (2011) Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the breast cancer association consortium studies. J Natl Cancer Ins 103(3):250–263

    Article  Google Scholar 

  • Yip AM, Horvath S (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinf 8:1–14

    Article  Google Scholar 

  • Zadra G, Batista JL, Loda M (2015) Dissecting the dual role of ampk in cancer: from experimental to human studies. Mol Cancer Res 13(7):1059–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan D, Xu L, Ouyang Y, Sawatzky R, Wong H (2021) Methods for dealing with unequal cluster sizes in cluster randomized trials: a scoping review. Plos One 16(7):e0255389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang L, Xu X, Li X, Guan W, Meng T, Xu G (2020) Transcriptome-based network analysis unveils eight immune-related genes as molecular signatures in the immunomodulatory subtype of triple-negative breast cancer. Front OncoL 10:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu K-Y, Tian Y, Li Y-X, Meng Q-X, Ge J, Cao X-C, Zhang T, Yu Y (2022) The functions and prognostic value of krüppel-like factors in breast cancer. Cancer Cell Int 22(1):23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work of GA and PC is supported by the THSTI PhD Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Chatterjee.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 634 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, G., Chatterjee, P. & Chatterjee, S. Exploration of subtype-specific perturbations in breast cancer. J Proteins Proteom (2024). https://doi.org/10.1007/s42485-024-00152-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42485-024-00152-w

Keywords

Navigation