Skip to main content
Log in

Delayed discovery of Hsp60 and subsequent characterization of moonlighting functions of multiple Hsp60 genes in Drosophila: a personal historical perspective

  • Perspectives
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The pioneering studies carried out on heat shock-induced synthesis of specific proteins in the early 1970s did not identify any Hsp60 family protein in Drosophila. By the early 1980s, although the members of Hsp60 family of heat shock proteins (Hsp) were identified in a wide range of eukaryotes as homologs of the bacterial GroEL, none was known in Drosophila. The existence of the Hsp60 family protein was serendipitously revealed in Drosophila in my laboratory in 1989. Contrary to the earlier reports that all tissues in flies display the canonical heat shock response, the larval Malpighian tubules (MT) did not show induction of any of the major Hsps but synthesis of a putative Hsp60 family protein was found to be the most abundant in this tissue. A few years later, we identified this MT-specific heat shock-induced protein to indeed be a member of the Hsp60/chaperonin family. The Drosophila genome sequence projects subsequently revealed four putative Hsp60 gene sequences in the D. melanogaster genome. The present historical perspective chronicles contributions from my and other laboratories that unraveled several aspects of intriguing biology of the multiple Hsp60 genes in D. melanogaster, and highlights challenging questions awaiting future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G. et al. 2000 The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.

    Article  PubMed  Google Scholar 

  • Alonso J., Rodriguez J. M., Baena-López L. A. and Santarén J. F. 2005 Characterization of the Drosophila melanogaster mitochondrial proteome. J. Proteome Res. 4, 1636–1645.

    Article  PubMed  CAS  Google Scholar 

  • Arya R. 2009 Studies on expression of the Hsp60D gene, its role in apoptosis and polyQ-mediated neurodegeneration in Drosophila melanogaster. Ph.D. thesis Banaras Hindu University, Varanasi.

  • Arya R. and Lakhotia S. 2008 Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperones 13, 509–526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arya R., Nisha A. S. and Lakhotia S. C. 2009 Hsp60D-A Novel modifier of polyglutamine-mediated neurodegeneration in Drosophila. Ann. Neurosci. 17, 8–17.

    Article  Google Scholar 

  • Ashburner M. 1982 The effects of heat shock and other stress on gene activity: An introduction. In Heat shock from bacteria to man (eds. M. J. Schlesinger, M. Ashburner and E. Tissieres), pp. 1–9. Cold Spring Harbor Laboratory Press, USA.

    Google Scholar 

  • Ashburner M. and Bonner J. J. 1979 The induction of gene activity in Drosophilia by heat shock. Cell 17, 241–254.

    Article  PubMed  CAS  Google Scholar 

  • Baena-López L., Alonso J., Rodriguez J. and Santarén J. 2008 The expression of heat shock protein HSP60A reveals a dynamic mitochondrial pattern in Drosophila melanogaster embryos. J. Proteome Res. 7, 2780–2788.

    Article  PubMed  CAS  Google Scholar 

  • Bai Y., Casola C., Feschotte C. and Betran E. 2007 Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila. Genome Biol. 8, R11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balchin D., Hayer-Hartl M. and Hartl F. U. 2020 Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett. 594, 2770–2781.

    Article  PubMed  CAS  Google Scholar 

  • Betrán E., Thornton K. and Long M. 2002 Retroposed new genes out of the X in Drosophila. Genome Res. 12, 1854–1859.

    Article  PubMed  PubMed Central  Google Scholar 

  • Birch-Machin I., Gao S., Huen D., McGirr R., White R. A. H. and Russell S. 2005 Genomic analysis of heat-shock factor targets in Drosophila. Genome Biol. 6, R63–R63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bukau B. and Horwich A. L. 1998 The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Caruso Bavisotto C., Alberti G., Vitale A. M., Paladino L., Campanella C. et al. 2020 Hsp60 post-translational modifications: functional and pathological consequences. Front. Mol. Biosci. 7, 1–11.

    Google Scholar 

  • Castrillon D. H., Gönczy P., Alexander S., Rawson R., Eberhart C. G., Viswanathan S. et al. 1993 Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis. Genetics 135, 489–505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J., Xie C., Tian L., Hong L., Wu X. and Jiahuai H. 2010 Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. Proc. Natl. Acad. Sci. USA 107, 20774–20779.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng M. Y., Hartl F. U., Martin J., Pollock R. A., Kalousek F., Neupert W. et al. 1989 Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620–625.

    Article  PubMed  CAS  Google Scholar 

  • Colinet H., Lee S. F. and Hoffmann A. 2010 Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J. 277, 174–185.

    Article  PubMed  CAS  Google Scholar 

  • David S., Vitale A. M., Fucarino A., Scalia F., Vergilio G., Conway de Macario E. et al. 2021 The challenging riddle about the Janus-type role of Hsp60 and related extracellular vesicles and miRNAs in carcinogenesis and the promises of Its solution. Appl. Sci. 11, 1175.

    Article  CAS  Google Scholar 

  • Deng J., Yang M., Chen Y., Chen X., Liu J., Sun S. et al. 2015 FUS interacts with HSP60 to promote mitochondrial damage. PLoS Genet. 11, e1005357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellis J. 1987 Proteins as molecular chaperones. Nature 328, 378–379.

    Article  PubMed  CAS  Google Scholar 

  • Ellis R. J. and van der Vies S. M. 1991 Molecular chaperones. Annu. Rev. Biochem. 60, 321–347.

    Article  PubMed  CAS  Google Scholar 

  • Gao L., Chang S., Xia W., Wang X., Zhang C., Cheng L. et al. 2020 Circular RNAs from BOULE play conserved roles in protection against stress-induced fertility decline. Sci. Adv. 6, eabb7426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gautam N. K., Verma P. and Tapadia M. G. 2017 Drosophila Malpighian tubules: A model for understanding kidney development, function, and disease. In Kidney development and disease (ed. R. K. Miller), pp. 3–25. Springer International Publishing, Cham.

    Chapter  Google Scholar 

  • Glaser R. L., Wolfner M. F. and Lis J. T. 1986 Spatial and temporal pattern of hsp26 expression during normal development. EMBO J. 5, 747–754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartl F. U., Martin J. and Neupert W. 1992 Protein folding in the cell: The role of molecular chaperones Hsp70 and Hsp60. Ann. Rev. Biophys. Biomol. Struct. 21, 293–322.

    Article  CAS  Google Scholar 

  • Hemmingsen S. M. 1992 What is a chaperonin? Nature 357, 650.

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen S. M., Woolford C., van der Vies S. M., Tilly K., Dennis D. T., Georgopoulos C. P. et al. 1988 Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333, 330–334.

    Article  PubMed  CAS  Google Scholar 

  • Henderson B., Fares M. A. and Lund P. A. 2013 Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol. Rev. 88, 955–987.

    Article  PubMed  Google Scholar 

  • Ish-Horowicz D., Pinchin S. M., Gausz J., Gyurkovics H., Bencze G. et al. 1979 Deletion mapping of two D. melanogaster loci that code for the 70,000 dalton heat-induced protein. Cell 17, 565–571.

    Article  PubMed  CAS  Google Scholar 

  • Kozlova T., Perezgasga L., Reynaud E. and Zurita M. 1997 The Drosophila melanogaster homologue of the hsp60 gene is encoded by the essential locus l(1)10Ac and is differentially expressed during fly development. Dev. Genes Evol. 207, 253–263.

    Article  PubMed  CAS  Google Scholar 

  • Kozlova T. U., Semeshin V. F., Tretyakova I. V., Kokoza E. B., Pirrotta V., Grafodatskaya V. E. et al. 1994 Molecular and cytogenetical characterization of the 10A1-2 band and adjoining region in the Drosophila melanogaster polytene X chromosome. Genetics 136, 1063–1073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krebs R. A. and Feder M. E. 1997 Tissue-specific variation in Hsp70 expression and thermal damage in Drosophila melanogaster larvae. J. Exp. Biol. 200, 2007–2015.

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia S. and Singh A. 1989 A novel set of heat shock polypeptides in Malpighian tubule of Drosophila melanogaster. J. Genet. 68, 129–137.

    Article  CAS  Google Scholar 

  • Lakhotia S. C. 1987 The 93D heat shock locus in Drosophila: a review. J. Genet. 66, 139–157.

    Article  CAS  Google Scholar 

  • Lakhotia S. C. 1997 Visualizing a concept: Methods of looking at active genes. Resonance 2, 41–49.

    Article  CAS  Google Scholar 

  • Lakhotia S. C. 2011 Forty years of the 93D puff of Drosophila melanogaster. J. Biosci. 36, 399–423.

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia S. C. and Mukherjee T. 1982 Absence of novel translation products in relation to induced activity of the 93D puff in Drosophila melanogaster. Chromosoma 85, 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia S. C. and Singh B. N. 1993 A simple and inexpensive “Western-blotting” apparatus. Ind. J. Exp. Biol. 31, 301–302.

    CAS  Google Scholar 

  • Lakhotia S. C. and Singh B. N. 1996 Synthesis of a ubiquitously present new HSP60 family protein is enhanced by heat shock only in the Malpighian tubules of Drosophila. Experientia 52, 751–756.

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia S. C., Srivastava P. and Prasanth K. 2002 Regulation of heat shock proteins, Hsp70 and Hsp64, in heat-shocked Malpighian tubules of Drosophila melanogaster larvae. Cell Stress Chaperon. 7, 347–356.

    Article  CAS  Google Scholar 

  • Langer T. and Neupert W. 1990 Heat shock proteins hsp60 and hsp70: their roles in folding, assembly and membrane translocation of proteins. Curr. Topics Microbiol. Immunol. 167, 3–30.

    Google Scholar 

  • Lewis M., Helmsing P. J. and Ashburner M. 1975 Parallel changes in puffing activity and patterns of protein synthesis in salivary glands of Drosophila. Proc. Natl. Acad. Sci. USA 72, 3604–3608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li S.-S., Zhang Z.-Y., Yang C.-J., Lian H.-Y. and Cai P. 2013 Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF–EMF exposure. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 758, 95–103.

    Article  CAS  Google Scholar 

  • Lindquist S. and Craig E. A. 1988 The heat-shock proteins. Annu. Rev. Genet. 22, 631–677.

    Article  PubMed  CAS  Google Scholar 

  • Lis J. T., Simon J. A. and Sutton C. A. 1983 New heat shock puffs and beta-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell 35, 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Makunin I. V., Kolesnikova T. D. and Andreyenkova N. G. 2014 Underreplicated regions in Drosophila melanogaster are enriched with fast-evolving genes and highly conserved noncoding sequences. Genome Biol. Evol. 6, 2050–2060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin C. S., Flores A. I. and Cuezva J. M. 1995 Cpn60 is exclusively localized into mitochondria of rat liver and embryonic Drosophila cells. J. Cell Biochem. 59, 235–245.

    Article  PubMed  CAS  Google Scholar 

  • Martín C. S., Flores A. I. and Cuezva J. M. 1995 Cpn60 is exclusively localized into mitochondria of rat liver and embryonic Drosophila cells. J. Cell Biochem. 59, 235–245.

    Article  PubMed  Google Scholar 

  • McMullin T. W. and Hallberg R. L. 1988 A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene. Mol. Cell. Biol. 8, 371–380.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Meng Q., Li B. X. and Xiao X. 2018 Toward developing chemical modulators of Hsp60 as potential therapeutics. Front. Mol. Biosci., https://doi.org/10.3389/fmolb.2018.00035.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nath B. B. and Lakhotia S. C. 1989a Heat-shock response in a tropical Chirinomus: seasonal variation in response and the effect of developmental stage and tissue type on heat shock protein synthesis. Genome 32, 676–686.

    Article  Google Scholar 

  • Nath B. B. and Lakhotia S. C. 1989b Heat shock response in ovarian nurse cells of Anopheles stephensi. J. Biosci. 14, 143–152.

    Article  CAS  Google Scholar 

  • Owusu-Ansah E., Song W. and Perrimon N. 2013 Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699–712.

    Article  PubMed  CAS  Google Scholar 

  • Pardue M. L., Bendena W. G., Fini M. E., Garbe J. C., Hogan N. C. and Traverse K. L. 1990 Hsr-omega, A novel gene encoded by a Drosophila heat shock puff. Biol. Bull. 179, 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Pelham H. 1988 Heat-shock proteins. Coming in from the cold. Nature 332, 776–777.

    Article  PubMed  CAS  Google Scholar 

  • Pelham H. R. B. 1986 Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46, 959–961.

    Article  PubMed  CAS  Google Scholar 

  • Perezgasga L., Segovia L. and Zurita M. 1999 Molecular characterization of the 5’ control region and of two lethal alleles affecting the hsp60 gene in Drosophila melanogaster. FEBS Lett. 456, 269–273.

    Article  PubMed  CAS  Google Scholar 

  • Ritossa F. 1962 A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571–573.

    Article  CAS  Google Scholar 

  • Robertson S., Ni W., Dhadialla T., Nisbet A., McCusker C., Ley S. et al. 2007 Identification of a putative azadirachtin-binding complex from Drosophila Kc167 cells. Arch. Insect Biochem. Physiol. 64, 200–208.

    Article  PubMed  CAS  Google Scholar 

  • Roy J. K. and Lakhotia S. C. 2021 Study of polytene chromosomes of Drosophila melanogaster. In Experiments with Drosophila for biology courses (ed. S. C. Lakhotia and H. A. Ranganath), pp. 175-183. Indian Academy of Sciences, Bengaluru.

  • Rubin G. M., Yandell M. D., Wortman J. R., Gabor Miklos G. L., Nelson C. R., Hatiharan I. K. et al. 2000 Comparative genomics of the eukaryotes. Science 287, 2204–2215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santaren J. F., Van Damme J., Puype M., Vandekerckhove J. and Garcia-Bellido A. 1993 Identification of Drosophila wing imaginal disc proteins by two-dimensional gel analysis and microsequencing. Exp. Cell Res. 206, 220–226.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S. 2007 Studies on the role of Hsp60C in development and fertility in Drosophila melanogaster. Ph.D. thesis Banaras Hindu University, Varanasi.

  • Sarkar S., Arya R. and Lakhotia S. C. 2006 Chaperonins: in life and death. In Stress responses: a molecular biology approach (ed. A. S. Sreedhar and U. K. Srinivas), pp. 43-60. Signpost, Trivandrum.

  • Sarkar S. and Lakhotia S. C. 2005 The Hsp60C gene in the 25F cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. J. Genet. 84, 265–281.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S. and Lakhotia S. C. 2008 Hsp60C is required in follicle as well as germline cells during oogenesis in Drosophila melanogaster. Dev. Dyn. 237, 1334–1347.

    Article  PubMed  Google Scholar 

  • Sarkar S., Singh M. D., Yadav R., Arunkumar K. and Pittman G. W. 2011 Heat shock proteins: molecules with assorted functions. Front. Biol. 6, 312–327.

    Article  CAS  Google Scholar 

  • Schlesinger M. J., Ashburner M. and Tissieres A. (ed) 1982 Heat shock from bacteria to man. Cold Spring Harbor Laboratory, USA.

  • Singh A. K. and Lakhotia S. C. 2000 Tissue-specific variations in the induction of Hsp70 and Hsp64 by heat shock in insects. Cell Stress Chaperon. 5, 90–97.

    Article  CAS  Google Scholar 

  • Singh A. K. and Lakhotia S. C. 2016 Expression of hsromega-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster. Cell Stress Chaperon. 21, 105–120.

    Article  CAS  Google Scholar 

  • Singh B. N. and Lakhotia S. C. 1995 The non-induction of Hsp70 in heat-shocked malpighian tubules of drosophila larvae is not due to constitutive presence of Hsp70 or Hsc70. Curr. Sci. 69, 178–182.

    CAS  Google Scholar 

  • Singh M. K., Janardhan Reddy P. V., Sreedhar A. S. and Tiwari P. K. 2015 Molecular characterization and expression analysis of hsp60 gene homologue of sheep blowfly, Lucilia cuprina. J. Therm. Biol. 52, 24–37.

    Article  CAS  Google Scholar 

  • Srivastava P. 2004 Studies on the constitutively expressed members of Hsp60 and Hsp70 gene families in Drosophila melanogaster. Ph.D. thesis Banaras Hindu University, Varanasi, India.

  • Stephano F., Nolte S., Hoffmann J., El-Kholy S., von Frieling J., Bruchhaus I. et al. 2018 Impaired Wnt signaling in dopamine containing neurons is associated with pathogenesis in a rotenone triggered Drosophila Parkinson’s disease model. Sci. Rep. 8, 2372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takemori N. and Yamamoto M.-T. 2009 Proteome mapping of the Drosophila melanogaster male reproductive system. Proteomics 9, 2484–2493.

    Article  PubMed  Google Scholar 

  • Timakov B. and Zhang P. 2001 The hsp60B gene of Drosophila melanogaster is essential for the spermatid individualization process. Cell Stress Chaperon. 6, 71–77.

    Article  CAS  Google Scholar 

  • Tissieres A., Mitchell H. K. and Tracy U. M. 1974 Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84, 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Ursic D. and Ganetzky B. 1988 A Drosophila melanogaster gene encodes a protein homologous to the mouse t complex polypeptide 1. Gene 68, 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Vilasi S., Bulone D., Caruso Bavisotto C., Campanella C., Marino Gammazza A., San Biagio P. L. et al. 2018 Chaperonin of group I: Oligomeric spectrum and biochemical and biological implications. Front. Mol. Biosci., https://doi.org/10.3389/fmolb.2017.00099.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber J. A. and Gilmour D. S. 1995 Genomic footprinting of the hsp70 and histone H3 promoters in Drosophila embryos reveals novel protein-DNA interactions. Nucleic Acids Res. 23, 3327–3334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westwood J. T., Clos J. and Wu C. 1991 Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353, 822–827.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y. Q., Matthies H. J. G., Mancuso J., Andrews H. K., Woodruff E., Friedman D. et al. 2004 The Drosophila fragile X-related gene regulates axoneme differentiation during spermatogenesis. Dev. Biol. 270, 290–307.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I acknowledge the earlier support from the Department of Biotechnology (Govt. of India) which permitted initiation of studies on Hsp60 in Drosophila. I also acknowledge the Distinguished Fellowship provided by the Science & Engineering Research Board (Govt. of India) and contributions of my Ph.D. students whose works have provided the primary basis for this historical perspective. Images in figures 2 and 3 have been adapted from the Ph.D. thesis of Dr Priya Srivastava which was submitted to the Banaras Hindu University under my supervision. Since her present address is not known, it was not possible to contact her for inclusion of the unpublished images from her doctoral thesis in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C. Lakhotia.

Additional information

Corresponding editor: Durgadas P. Kasbekar

I dedicate this article in memory of late Dr Ajit K. Singh, my former Ph.D. student and post-doctoral associate who significantly contributed in the late 1980s to the discovery of Hsp60 in Drosophila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhotia, S.C. Delayed discovery of Hsp60 and subsequent characterization of moonlighting functions of multiple Hsp60 genes in Drosophila: a personal historical perspective. J Genet 101, 47 (2022). https://doi.org/10.1007/s12041-022-01389-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-022-01389-4

Keywords

Navigation