Skip to main content
Log in

High Concentration of Iron Ions Contributes to Ferroptosis-Mediated Testis Injury

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In order to explore the effect of excessive iron supplementation on ferroptosis in mouse testes, Kunming mice received injections of varying concentrations of iron. The organ weight, sperm density, and malformation rate were measured. Observations of pathological and ultrastructural alterations in spermatogenic tubules were conducted using haematoxylin eosin (HE) staining and transmission electron microscopy(TEM). Transcript levels of related genes and serum biochemical indicators were measured in mouse testicular tissue. The results showed that higher iron concentration inhibited the growth of mice; reduced the organ coefficients of the testis, heart, and liver; and increased the rate of sperm malformation and mortality. Supplementation with high levels of iron ions can adversely affect the male reproductive system by reducing sperm count, damaging the structure of the seminiferous tubules and causing sperm cell abnormalities. In addition, the iron levels also affected the immune response and blood coagulation ability by affecting the red blood cells, white blood cells and platelets. The results showed that iron ions can affect mouse testicular tissue and induce ferroptosis by altering the expression of ferroptosis-related genes. However, the degree of effect was different for the different concentrations of iron ions. The study also revealed the potential role of deferoxamine in inhibiting the occurrence of ferroptosis. Nevertheless, the damage caused to the testis by deferoxamine supplementation suggests the need for further research in this direction. This study provides reference for reproductive toxicity induced by environmental iron exposure and clarifies the mechanism of reproductive toxicity caused by iron overload and the important role of iron in the male reproductive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available due to projects involving confidentiality but are available from the corresponding author on reasonable request.

References

  1. Eisenberg ML, Esteves SC, Lamb DJ, Hotaling JM, Giwercman A, Hwang K, Cheng YS (2023) Male infertility. Nat Rev Dis Prim 9(1):49. https://doi.org/10.1038/s41572-023-00459-w

    Article  PubMed  Google Scholar 

  2. Chen J, Chen J, Fang Y, Shen Q, Zhao K, Liu C, Zhang H (2023) Microbiology and immune mechanisms associated with male infertility. Front Immunol 14:1139450. https://doi.org/10.3389/fimmu.2023.1139450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yesil S, Sungu N, Kilicarslan A, Kuskonmaz SM, Kara H, Kucuk A, Polat F, Kavutcu M, Arslan M (2018) Exenatide reduces oxidative stress and cell death in testis in iron overload rat model. Exp Ther Med 16(6):4349–4356. https://doi.org/10.3892/etm.2018.6795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Afshar A, Aliaghaei A, Nazarian H, Abbaszadeh HA, Naserzadeh P, Fathabadi FF, Abdi S, Raee P, Aghajanpour F, Norouzian M, Abdollahifar MA (2021) Curcumin-loaded iron particle improvement of spermatogenesis in azoospermic mouse induced by long-term scrotal hyperthermia. Reprod Sci (Thousand Oaks, Calif.) 28(2):371–380. https://doi.org/10.1007/s43032-020-00288-2

    Article  CAS  Google Scholar 

  5. Barati E, Nikzad H, Karimian M (2020) Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci : CMLS 77(1):93–113. https://doi.org/10.1007/s00018-019-03253-8

    Article  CAS  PubMed  Google Scholar 

  6. Wei X, Yi X, Zhu XH, Jiang DS (2020) Posttranslational modifications in ferroptosis. Oxid Med Cell Longev 2020:8832043. https://doi.org/10.1155/2020/8832043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X, Li G (2020) The emerging role of ferroptosis in inflammation. Biomed Pharmacother = Biomed Pharmacother 127:110108

    Article  CAS  PubMed  Google Scholar 

  10. Hassannia B, Vandenabeele P, Vanden Berghe T (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35(6):830–849. https://doi.org/10.1016/j.ccell.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  11. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12(1):34. https://doi.org/10.1186/s13045-019-0720-y

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stockwell BR, Jiang X, Gu W (2020) Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol 30(6):478–490. https://doi.org/10.1016/j.tcb.2020.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, Liu D, Zhang F, Ning S, Yao J, Tian X (2019) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26(11):2284–2299. https://doi.org/10.1038/s41418-019-0299-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu X, Li Y, Zhang S, Zhou X (2021) Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics 11(7):3052–3059. https://doi.org/10.7150/thno.54113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang X, Zuo Y, Zhang J, Zhang D, Naeem M, Chang Y, Shi Z (2023) Sevoflurane inhibited reproductive function in male mice by reducing oxidative phosphorylation through inducing iron deficiency. Front Cell Dev Biol 11:1184632. https://doi.org/10.3389/fcell.2023.1184632

    Article  PubMed  PubMed Central  Google Scholar 

  16. Meng P, Zhang S, Jiang X, Cheng S, Zhang J, Cao X, Qin X, Zou Z, Chen C (2020) Arsenite induces testicular oxidative stress in vivo and in vitro leading to ferroptosis. Ecotoxicol Environ Saf 194:110360. https://doi.org/10.1016/j.ecoenv.2020.110360

    Article  CAS  PubMed  Google Scholar 

  17. Zhao X, Liu Z, Gao J, Li H, Wang X, Li Y, Sun F (2020) Inhibition of ferroptosis attenuates busulfan-induced oligospermia in mice. Toxicology 440:152489. https://doi.org/10.1016/j.tox.2020.152489

    Article  CAS  PubMed  Google Scholar 

  18. Yang X, Chen Y, Song W, Huang T, Wang Y, Chen Z, Chen F, Liu Y, Wang X, Jiang Y, Zhang C (2022) Review of the role of ferroptosis in testicular function. Nutrients 14(24):5268. https://doi.org/10.3390/nu14245268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Macchi C, Steffani L, Oleari R, Lettieri A, Valenti L, Dongiovanni P, Romero-Ruiz A, Tena-Sempere M, Cariboni A, Magni P, Ruscica M (2017) Iron overload induces hypogonadism in male mice via extrahypothalamic mechanisms. Mol Cell Endocrinol 454:135–145. https://doi.org/10.1016/j.mce.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Wu J, Zhang M, OuYang H, Li M, Jia D, Wang R, Zhou W, Liu H, Hu Y, Yao Y, Liu Y, Ji Y (2023) Cadmium exposure during puberty damages testicular development and spermatogenesis via ferroptosis caused by intracellular iron overload and oxidative stress in mice. Environ Pollut (Barking, Essex : 1987) 325:121434. https://doi.org/10.1016/j.envpol.2023.121434

    Article  CAS  Google Scholar 

  21. Ezzat GM, Nassar AY, Bakr MH, Mohamed S, Nassar GA, Kamel AA (2023) Acetylated oligopeptide and n-acetyl cysteine protected against oxidative stress, inflammation, testicular-blood barrier damage, and testicular cell death in iron-overload rat model. Appl Biochem Biotechnol 195(8):5053–5071. https://doi.org/10.1007/s12010-023-04457-2

    Article  CAS  PubMed  Google Scholar 

  22. Wang H, Jiang C, Yang Y, Li J, Wang Y, Wang C, Gao Y (2022) Resveratrol ameliorates iron overload induced liver fibrosis in mice by regulating iron homeostasis. PeerJ 10:e13592. https://doi.org/10.7717/peerj.13592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xing G, Meng L, Cao S, Liu S, Wu J, Li Q, Huang W, Zhang L (2022) PPARα alleviates iron overload-induced ferroptosis in mouse liver. EMBO reports 23(8):e52280. https://doi.org/10.15252/embr.202052280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu J, Kang R, Tang D (2022) Signaling pathways and defense mechanisms of ferroptosis. FEBS J 289(22):7038–7050. https://doi.org/10.1111/febs.16059

    Article  CAS  PubMed  Google Scholar 

  25. Sundarraj K, Manickam V, Raghunath A, Periyasamy M, Viswanathan MP, Perumal E (2017) Repeated exposure to iron oxide nanoparticles causes testicular toxicity in mice. Environ Toxicol 32(2):594–608. https://doi.org/10.1002/tox.22262

    Article  CAS  PubMed  Google Scholar 

  26. Barua S, Ciannella S, Tijani L, Gomez-Pastora J (2023) Iron in blood cells: Function, relation to disease, and potential for magnetic separation. Biotechnol Bioeng 120(7):1707–1724. https://doi.org/10.1002/bit.28388

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Wang J (2022) Neutrophils, functions beyond host defense. Cell Immunol 379:104579. https://doi.org/10.1016/j.cellimm.2022.104579

    Article  CAS  PubMed  Google Scholar 

  28. Jackson DJ, Akuthota P, Roufosse F (2022) Eosinophils and eosinophilic immune dysfunction in health and disease. Eur Respir Rev: Off J Eur Respir Soc 31(163):210150. https://doi.org/10.1183/16000617.0150-2021

    Article  Google Scholar 

  29. Charles N, Chemouny JM, Daugas E (2019) Basophil involvement in lupus nephritis: a basis for innovation in daily care. Nephrol Dial Transplant : Off Publ Eur Dial Transplant Assoc – Eur Ren Assoc 34(5):750–756. https://doi.org/10.1093/ndt/gfy245

    Article  CAS  Google Scholar 

  30. Girelli D, Marchi G, Busti F, Vianello A (2021) Iron metabolism in infections: Focus on COVID-19. Semin Hematol 58(3):182–187. https://doi.org/10.1053/j.seminhematol.2021.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gao X, Song Y, Wu J, Lu S, Min X, Liu L, Hu L, Zheng M, Du P, Yu Y, Long H, Wu H, Jia S, Yu D, Lu Q, Zhao M (2022) Iron-dependent epigenetic modulation promotes pathogenic T cell differentiation in lupus. J Clin Investig 132(9):e152345. https://doi.org/10.1172/JCI152345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vázquez-Memije ME, Capin R, Tolosa A, El-Hafidi M (2008) Analysis of age-associated changes in mitochondrial free radical generation by rat testis. Mol Cell Biochem 307(1–2):23–30. https://doi.org/10.1007/s11010-007-9580-9

    Article  CAS  PubMed  Google Scholar 

  33. Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C (2022) Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. Int J Mol Sci 24(1):449. https://doi.org/10.3390/ijms24010449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu C, Sun S, Johnson T, Qi R, Zhang S, Zhang J, Yang K (2021) The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep 35(11):109235. https://doi.org/10.1016/j.celrep.2021.109235

    Article  CAS  PubMed  Google Scholar 

  35. Sui M, Jiang X, Chen J, Yang H, Zhu Y (2018) Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway. Biomed Pharmacother = Biomed Pharmacother 106:125–133. https://doi.org/10.1016/j.biopha.2018.06.060

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Foundation of Henan Province of China (232300421270), the National Natural Science Foundation of China (31960692), the Key Science and Technology Project of Zhumadian City (ZMDSZDZX2023007), 2022 Guiding Plan for Key Scientific Research Projects of Colleges and Universities in Henan Province (22B230008), Commercial Research Funds (2021411701000072; 2021411701000126), and Major Science and Technology Projects in Henan Province (191110110600).

Author information

Authors and Affiliations

Authors

Contributions

Chaoying Liu, Ye Wang and Huili Xia wrote the main manuscript text. Xinfeng Yang, Xiongyan Yuan and Jiahui Chen prepared Figs. 1, 2 and 3. Mingcheng Wang and Yingying Liu prepared Figs. 4, 5, 6, 7 and 8, All authors reviewed the manuscript.

Corresponding author

Correspondence to Enzhong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Huanghuai University.

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, Y., Xia, H. et al. High Concentration of Iron Ions Contributes to Ferroptosis-Mediated Testis Injury. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04192-7

Keywords

Navigation