Skip to main content
Log in

Interstellar Dust in the Solar System

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Interstellar dust from the Local Interstellar Cloud was detected unambiguously for the first time in 1992 (Grün et al. in Nature 362:428–430, 1993). Since then, great progress has been made in observing local interstellar dust in the Solar System using a variety of methods that, all together, provide complementary views of the dust particles from our local galactic neighborhood. The complementary methods discussed in this paper are: (1) in situ observations with dust detectors, (2) sample return, (3) observations of dust in the infrared, and (4) detections using spacecraft antennae. We review the current state of the art of local interstellar dust research, with a special focus on the advances made in the last ∼10 years of interstellar dust research. We introduce this paper with an overview of the definitions of interstellar dust. We describe the dynamics of the dust particles moving through the heliosphere and report on the progress made in the modelling efforts especially in the last decade. We also review the currently available in situ measurements of interstellar dust flux, speed, direction and size distribution from various missions, in specific from Ulysses and Cassini, and their interpretation in context of the dust dynamics studies. Interstellar dust composition is also reviewed from Cassini in situ time of flight measurements and from the Stardust sample return mission that both took place in the last decade. Finally, also new dust measurements from spacecraft antennae are reviewed. The paper concludes with a discussion on currently still open questions, and an outlook for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The Local Interstellar Cloud is a warm, low-density cloud surrounding the solar system that is located itself in a hot and even lower-density region called the “Local Bubble” (Frisch et al. 2011).

  2. The heliosphere is the region of space around the Sun that is dominated by the solar wind plasma, with respect to the ISM plasma.

  3. This contemporary extrasolar dust may be modified by its journey through the solar system and near the Sun though.

  4. See Schwehm (1976) and Burns et al. (1979) for calculating radiation pressure efficiencies, and Silsbee and Draine (2016) and Kimura (2017) for a discussion on the radiation pressure efficiencies for ISD, applied in specific to the Stardust mission (Sect. 5).

  5. A newer analysis of the complete Ulysses dataset, but excluding the period where the dust flow was shifted in direction (2005, see Sect. 3.2), has resulted in a derived flow direction of \(+75^{\circ }\pm 30\) ecliptic longitude and \(-13^{\circ }\pm 4\) ecliptic latitude (Strub et al. 2015). This corresponds roughly to the flow direction of the interstellar helium from IBEX He data between 2009 and 2013: \(+75.6^{\circ }\pm 1.4\) ecliptic longitude, and \(-5.12^{\circ }\pm 0.27\) ecliptic latitude (Schwadron et al. 2015) and earlier ISD directions derived from Ulysses data by Landgraf (1998), Frisch et al. (1999), and Kimura et al. (2003b). The average speed of the ISD particles measured by Ulysses was \(24\pm 12~\mbox{km}\,\mbox{s}^{-1}\) (Krüger et al. 2015), compatible with the Helium inflow speed of \(26.3\pm 0.4~\mbox{km}\,\mbox{s}^{-1}\) (Witte 2004) and with earlier determination of the heliocentric ISD inflow speed \(V_{\infty ,\mathit{ISD}} = 25.7\pm 0.5~\mbox{km}\,\mbox{s}^{-1}\) from the then available Ulysses ISD data by Kimura et al. (2003b).

  6. See Sterken et al. (2013) for examples of gravitational focusing effects for \(\beta =0.5\) at Asteroid, Jupiter and Saturn distance from the Sun, in the ecliptic plane.

  7. Mukai (1981) calculated an equilibrium potential of \(+0.5\) to \(+6~\mbox{V}\) for graphite at 1 AU and \(+4\) to \(+14~\mbox{V}\) for silicate grains depending on solar wind conditions. For charging in other plasma conditions (e.g. in the heliosphere boundary regions), we refer to Sect. 2.2.

  8. Figures 45 and 46 in Sterken et al. (2012) visualize such “Lorentz-force-modulated \(\beta \)-cones”.

  9. Kimura and Mann (1998) found \(+12~\mbox{V}\) for Silicate particles and \(+6~\mbox{V}\) for Carbon for particles with radius about 0.3 μm, while Alexashov et al. (2016) estimated a potential of \(+2\) to \(+3~\mbox{V}\). Ma et al. (2013) calculated higher charges for aggregates than for compact spheres (see Sect. 2.1.2)

  10. The inner heliosphere is the part of the heliosphere where the solar wind dominates the plasma and is still supersonic.

  11. Figure 19 in Sterken et al. (2015) illustrates how the incoming particles move through a different phase of the solar cycle in the solar system than they did earlier when crossing the heliosphere boundary regions.

  12. The heliopause is the boundary between the solar wind dominated inner heliosphere, and the region around the heliosphere where interstellar medium plasma dominates.

  13. ISD data from Helios were sampled between 1974 and 1980, before Ulysses, but were recognized in the data and analysed only after the first Ulysses ISD detections (Altobelli 2004; Altobelli et al. 2006).

References

  • C.M.O. Alexander, L.R. Nittler, J. Davidson, F.J. Ciesla, Measuring the level of interstellar inheritance in the solar protoplanetary disk. Meteorit. Planet. Sci. 52, 1797–1821 (2017). https://doi.org/10.1111/maps.12891

    Article  ADS  Google Scholar 

  • D.B. Alexashov, O.A. Katushkina, V.V. Izmodenov, P.S. Akaev, Interstellar dust distribution outside the heliopause: deflection at the heliospheric interface. Mon. Not. R. Astron. Soc. 458, 2553–2564 (2016). https://doi.org/10.1093/mnras/stw514

    Article  ADS  Google Scholar 

  • N. Altobelli, Monitoring of the interstellar dust stream in the inner solar system using data of different spacecraft. PhD thesis, Ruprecht-Karls-Universität Heidelberg (2004)

  • N. Altobelli, S. Kempf, M. Landgraf, R. Srama, V. Dikarev, H. Krüger, G. Moragas-Klostermeyer, E. Grün, Cassini between Venus and Earth: detection of interstellar dust. J. Geophys. Res. Space Phys. 108, 8032 (2003). https://doi.org/10.1029/2003JA009874

    Article  ADS  Google Scholar 

  • N. Altobelli, S. Kempf, H. Krüger, M. Landgraf, M. Roy, E. Grün, Interstellar dust flux measurements by the Galileo dust instrument between the orbits of Venus and Mars. J. Geophys. Res. Space Phys. 110, A07102 (2005). https://doi.org/10.1029/2004JA010772

    Article  ADS  Google Scholar 

  • N. Altobelli, E. Grün, M. Landgraf, A new look into the Helios dust experiment data: presence of interstellar dust inside the Earth’s orbit. Astron. Astrophys. 448, 243–252 (2006). https://doi.org/10.1051/0004-6361:20053909

    Article  ADS  Google Scholar 

  • N. Altobelli, F. Postberg, K. Fiege, M. Trieloff, H. Kimura, V.J. Sterken, H.W. Hsu, J. Hillier, N. Khawaja, G. Moragas-Klostermeyer, J. Blum, M. Burton, R. Srama, S. Kempf, E. Gruen, Flux and composition of interstellar dust at Saturn from Cassini’s Cosmic Dust Analyzer. Science 352, 312–318 (2016). https://doi.org/10.1126/science.aac6397

    Article  ADS  Google Scholar 

  • L. Andersson, T.D. Weber, D. Malaspina, F. Crary, R.E. Ergun, G.T. Delory, C.M. Fowler, M.W. Morooka, T. McEnulty, A.I. Eriksson, D.J. Andrews, M. Horanyi, A. Collette, R. Yelle, B.M. Jakosky, Dust observations at orbital altitudes surrounding Mars. Science 350, 0398 (2015). https://doi.org/10.1126/science.aad0398

    Article  Google Scholar 

  • W.J. Baggaley, Advanced Meteor Orbit Radar observations of interstellar meteoroids. J. Geophys. Res. 105(10), 10353–10362 (2000). https://doi.org/10.1029/1999JA900383

    Article  ADS  Google Scholar 

  • M. Baguhl, E. Grün, M. Landgraf, In situ measurements of interstellar dust with the ULYSSES and Galileo spaceprobes. Space Sci. Rev. 78, 165–172 (1996). https://doi.org/10.1007/BF00170803

    Article  ADS  Google Scholar 

  • H.A. Bechtel, G.J. Flynn, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, A.L. Butterworth, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, D.R. Frank, Z. Gainsforth, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A.S. Simionovici, V.A. Solé, R. Srama, F.J. Stadermann, T. Stephan, V.J. Sterken, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. von Korff, A.J. Westphal, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination III: infrared spectroscopic analysis of interstellar dust candidates. Meteorit. Planet. Sci. 49, 1548–1561 (2014). https://doi.org/10.1111/maps.12125

    Article  ADS  Google Scholar 

  • J.L. Bertaux, J.E. Blamont, Possible evidence for penetration of interstellar dust into the solar system. Nature 262, 263–266 (1976). https://doi.org/10.1038/262263a0

    Article  ADS  Google Scholar 

  • J.P. Bradley, L.P. Keller, T.P. Snow, M.S. Hanner, G.J. Flynn, J.C. Gezo, S.J. Clemett, D.E. Brownlee, J.E. Bowey, An infrared spectral match between GEMS and interstellar grains. Science 285, 1716–1718 (1999). https://doi.org/10.1126/science.285.5434.1716

    Article  ADS  Google Scholar 

  • F.E. Brenker, A.J. Westphal, L. Vincze, M. Burghammer, S. Schmitz, T. Schoonjans, G. Silversmit, B. Vekemans, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, H.A. Bechtel, J. Borg, J. Bridges, D.E. Brownlee, M. Burchell, A.L. Butterworth, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, P. Fougeray, D.R. Frank, Z. Gainsforth, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, A.S. Simionovici, V.A. Solé, R. Srama, F. Stadermann, T. Stephan, V.J. Sterken, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, J. Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination V: XRF analyses of interstellar dust candidates at ESRF ID13. Meteorit. Planet. Sci. 49, 1594–1611 (2014). https://doi.org/10.1111/maps.12206

    Article  ADS  Google Scholar 

  • J.A. Burns, P.L. Lamy, S. Soter, Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979). https://doi.org/10.1016/0019-1035(79)90050-2

    Article  ADS  Google Scholar 

  • A.L. Butterworth, A.J. Westphal, T. Tyliszczak, Z. Gainsforth, J. Stodolna, D.R. Frank, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A.S. Simionovici, V.A. Solé, R. Srama, F.J. Stadermann, T. Stephan, V.J. Sterken, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, B. Vekemans, L. Vincze, J. von Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination IV: Scanning transmission X-ray microscopy analyses of impact features in the Stardust Interstellar Dust Collector. Meteorit. Planet. Sci. 49, 1562–1593 (2014). https://doi.org/10.1111/maps.12220

    Article  ADS  Google Scholar 

  • A. Collette, E. Grün, D. Malaspina, Z. Sternovsky, Micrometeoroid impact charge yield for common spacecraft materials. J. Geophys. Res. Space Phys. 119, 6019–6026 (2014). https://doi.org/10.1002/2014JA020042

    Article  ADS  Google Scholar 

  • A. Collette, G. Meyer, D. Malaspina, Z. Sternovsky, Laboratory investigation of antenna signals from dust impacts on spacecraft. J. Geophys. Res. Space Phys. 120, 5298–5305 (2015). https://doi.org/10.1002/2015JA021198

    Article  ADS  Google Scholar 

  • A. Collette, D.M. Malaspina, Z. Sternovsky, Characteristic temperatures of hypervelocity dust impact plasmas. J. Geophys. Res. Space Phys. 121, 8182–8187 (2016). https://doi.org/10.1002/2015JA022220

    Article  ADS  Google Scholar 

  • A. Czechowski, I. Mann, Penetration of interstellar dust grains into the heliosphere. J. Geophys. Res. Space Phys. 108, 8038 (2003). https://doi.org/10.1029/2003JA009917

    Article  ADS  Google Scholar 

  • J.M.A. Danby, G.L. Camm, Statistical dynamics and accretion. Mon. Not. R. Astron. Soc. 117, 50 (1957). https://doi.org/10.1093/mnras/117.1.50

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • H. Dietzel, G. Eichhorn, H. Fechtig, E. Grun, H.J. Hoffmann, J. Kissel, The HEOS 2 and HELIOS micrometeoroid experiments. J. Phys. E, Sci. Instrum. 6, 209–217 (1973). https://doi.org/10.1088/0022-3735/6/3/008

    Article  ADS  Google Scholar 

  • B.T. Draine, H.M. Lee, Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, 89–108 (1984). https://doi.org/10.1086/162480

    Article  ADS  Google Scholar 

  • F. Feng, H.R.A. Jones, Oumuamua as a messenger from the Local Association. Astrophys. J. Lett. 852, L27 (2018). https://doi.org/10.3847/2041-8213/aaa404. 1711.08800

    Article  ADS  Google Scholar 

  • K. Fiege, M. Trieloff, J.K. Hillier, M. Guglielmino, F. Postberg, R. Srama, S. Kempf, J. Blum, Calibration of relative sensitivity factors for impact ionization detectors with high-velocity silicate microparticles. Icarus 241, 336–345 (2014). https://doi.org/10.1016/j.icarus.2014.07.015

    Article  ADS  Google Scholar 

  • G.J. Flynn, S.R. Sutton, B. Lai, S. Wirick, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, A.L. Butterworth, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, D. Frank, Z. Gainsforth, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A. Simionovici, V.A. Sol, R. Srama, F.J. Stadermann, T. Stephan, V. Sterken, J. Stodolna, R.M. Stroud, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. von Korff, A.J. Westphal, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination VII: synchrotron X-ray fluorescence analysis of six Stardust interstellar candidates measured with the Advanced Photon Source 2-ID-D microprobe. Meteorit. Planet. Sci. 49, 1626–1644 (2014). https://doi.org/10.1111/maps.12144

    Article  ADS  Google Scholar 

  • D.R. Frank, A.J. Westphal, M.E. Zolensky, Z. Gainsforth, A.L. Butterworth, R.K. Bastien, C. Allen, D. Anderson, A. Ansari, S. Bajt, N. Bassim, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A.S. Simionovici, V.A. Solé, R. Srama, T. Stephan, V.J. Sterken, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. von Korff, N. Wordsworth, D. Zevin, Stardust Interstellar Preliminary Examination II: curating the interstellar dust collector, picokeystones, and sources of impact tracks. Meteorit. Planet. Sci. 49, 1522–1547 (2014). https://doi.org/10.1111/maps.12147

    Article  ADS  Google Scholar 

  • P.C. Frisch, Foreword. J. Geophys. Res. 105, 10237–10238 (2000). https://doi.org/10.1029/1999JA900349

    Article  ADS  Google Scholar 

  • P.C. Frisch, J.D. Slavin, Interstellar dust close to the Sun. Earth Planets Space 65, 175 (2013)

    Article  ADS  Google Scholar 

  • P.C. Frisch, J.M. Dorschner, J. Geiss, J.M. Greenberg, E. Grün, M. Landgraf, P. Hoppe, A.P. Jones, W. Krätschmer, T.J. Linde, G.E. Morfill, W. Reach, J.D. Slavin, J. Svestka, A.N. Witt, G.P. Zank, Dust in the local interstellar wind. Astrophys. J. 525, 492–516 (1999). https://doi.org/10.1086/307869. astro-ph/9905108

    Article  ADS  Google Scholar 

  • P.C. Frisch, S. Redfield, J.D. Slavin, The interstellar medium surrounding the Sun. Annu. Rev. Astron. Astrophys. 49, 237–279 (2011). https://doi.org/10.1146/annurev-astro-081710-102613

    Article  ADS  Google Scholar 

  • Z. Gainsforth, F.E. Brenker, A.S. Simionovici, S. Schmitz, M. Burghammer, A.L. Butterworth, P. Cloetens, L. Lemelle, J.A.S. Tresserras, T. Schoonjans, G. Silversmit, V.A. Solé, B. Vekemans, L. Vincze, A.J. Westphal, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, H.A. Bechtel, J. Borg, J. Bridges, D.E. Brownlee, M. Burchell, H. Changela, A.M. Davis, R. Doll, C. Floss, G. Flynn, P. Fougeray, D. Frank, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, R. Srama, T. Stephan, V. Sterken, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, J. von Korff, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination VIII: identification of crystalline material in two interstellar candidates. Meteorit. Planet. Sci. 49, 1645–1665 (2014). https://doi.org/10.1111/maps.12148

    Article  ADS  Google Scholar 

  • J.M. Greenberg, A. Li, What are the true astronomical silicates? Astron. Astrophys. 309, 258–266 (1996)

    ADS  Google Scholar 

  • K. Grogan, S.F. Dermott, B.A.S. Gustafson, An estimation of the interstellar contribution to the zodiacal thermal emission. Astrophys. J. 472, 812 (1996). https://doi.org/10.1086/178110

    Article  ADS  Google Scholar 

  • E. Grün, R. Srama (Cosmic Dune Team), The Cosmic DUNE dust astronomy mission, in European Planetary Science Congress 2006 (2006), p. 292

    Google Scholar 

  • E. Grün, J. Svestka, Physics of interplanetary and interstellar dust. Space Sci. Rev. 78, 347–360 (1996). https://doi.org/10.1007/BF00170821

    Article  ADS  Google Scholar 

  • E. Grün, H. Fechtig, J. Kissel, The micrometeorite experiment on HELIOS. Geochim. Cosmochim. Acta, Suppl. (1984)

  • E. Grün, H. Fechtig, M.S. Hanner, J. Kissel, B.A. Lindblad, D. Linkert, D. Maas, G.E. Morfill, H.A. Zook, The Galileo dust detector. Space Sci. Rev. 60, 317–340 (1992). https://doi.org/10.1007/BF00216860

    Article  ADS  Google Scholar 

  • E. Grün, H. Zook, M. Baguhl, A. Balogh, S. Bame, H. Fechtig, R. Forsyth, M. Hanner, M. Horanyi, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. McDonnel, G. Morfill, J. Phillips, C. Polanskey, G. Schwehm, N. Siddique, P. Staubach, J. Svestka, A. Taylor, Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428–430 (1993)

    Article  ADS  Google Scholar 

  • E. Grün, B. Gustafson, I. Mann, M. Baguhl, G.E. Morfill, P. Staubach, A. Taylor, H.A. Zook, Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924 (1994)

    ADS  Google Scholar 

  • E. Grün, Z. Sternovsky, M. Horanyi, V. Hoxie, S. Robertson, J. Xi, S. Auer, M. Landgraf, F. Postberg, M.C. Price, R. Srama, N.A. Starkey, J.K. Hillier, I.A. Franchi, P. Tsou, A. Westphal, Z. Gainsforth, Active cosmic dust collector. Planet. Space Sci. 60, 261–273 (2012). https://doi.org/10.1016/j.pss.2011.09.006

    Article  ADS  Google Scholar 

  • D.A. Gurnett, E. Grun, D. Gallagher, W.S. Kurth, F.L. Scarf, Micron-sized particles detected near Saturn by the Voyager plasma wave instrument. Icarus 53, 236–254 (1983). https://doi.org/10.1016/0019-1035(83)90145-8

    Article  ADS  Google Scholar 

  • D.A. Gurnett, T.F. Averkamp, F.L. Scarf, E. Grun, Dust particles detected near Giacobini-Zinner by the ICE plasma wave instrument. Geophys. Res. Lett. 13, 291–294 (1986). https://doi.org/10.1029/GL013i003p00291

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, K.L. Scarf, J.A. Burns, J.N. Cuzzi, Micron-sized particle impacts detected near Uranus by the Voyager 2 plasma wave instrument. J. Geophys. Res. 92(14), 14959–14968 (1987). https://doi.org/10.1029/JA092iA13p14959

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, L.J. Granroth, S.C. Allendorf, R.L. Poynter, Micron-sized particles detected near Neptune by the Voyager 2 plasma wave instrument. J. Geophys. Res. 96, 19 (1991). https://doi.org/10.1029/91JA01270

    Article  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, D.L. Kirchner, G.B. Hospodarsky, T.F. Averkamp, P. Zarka, A. Lecacheux, R. Manning, A. Roux, P. Canu, N. Cornilleau-Wehrlin, P. Galopeau, A. Meyer,hajdukova:2018iaubook A. Meyer, R. Boström, G. Gustafsson, J.E. Wahlund, L. Åhlen, H.O. Rucker, H.P. Ladreiter, W. Macher, L.J.C. Woolliscroft, H. Alleyne, M.L. Kaiser, M.D. Desch, W.M. Farrell, C.C. Harvey, P. Louarn, P.J. Kellogg, K. Goetz, A. Pedersen, The Cassini radio and plasma wave investigation. Space Sci. Rev. 114, 395–463 (2004). https://doi.org/10.1007/s11214-004-1434-0

    Article  ADS  Google Scholar 

  • B.A.S. Gustafson, Physics of zodiacal dust. Annu. Rev. Earth Planet. Sci. 22, 553–595 (1994). https://doi.org/10.1146/annurev.ea.22.050194.003005

    Article  ADS  Google Scholar 

  • B.S. Gustafson, N. Misconi, Streaming of interstellar grains in the solar system. Nature 282, 276–278 (1979)

    Article  ADS  Google Scholar 

  • M. Hajdukova, V.J. Sterken, P. Wiegert, Interstellar meteoroids (2019)

  • J.K. Hillier, S.F. Green, N. McBride, J.P. Schwanethal, F. Postberg, R. Srama, S. Kempf, G. Moragas-Klostermeyer, J.A.M. McDonnell, E. Grün, The composition of Saturn’s E ring. Mon. Not. R. Astron. Soc. 377, 1588–1596 (2007). https://doi.org/10.1111/j.1365-2966.2007.11710.x

    Article  ADS  Google Scholar 

  • M. Horanyi, Charged dust dynamics in the solar system. Annu. Rev. Astron. Astrophys. 34, 383–418 (1996). https://doi.org/10.1146/annurev.astro.34.1.383

    Article  ADS  Google Scholar 

  • ISPE, Meteorit. Planet. Sci. 49(9), 1509–1733 (2014). http://onlinelibrary.wiley.com/doi/10.1111/maps.2014.49.issue-9/issuetoc

    Article  Google Scholar 

  • E.B. Jenkins, A unified representation of gas-phase element depletions in the interstellar medium. Astrophys. J. 700, 1299–1348 (2009). https://doi.org/10.1088/0004-637X/700/2/1299

    Article  ADS  Google Scholar 

  • L.P. Keller, S. Messenger, On the origins of GEMS grains. Geochim. Cosmochim. Acta 75, 5336–5365 (2011). https://doi.org/10.1016/j.gca.2011.06.040

    Article  ADS  Google Scholar 

  • P.J. Kellogg, K. Goetz, S.J. Monson, Dust impact signals on the wind spacecraft. J. Geophys. Res. Space Phys. 121, 966–991 (2016). https://doi.org/10.1002/2015JA021124

    Article  ADS  Google Scholar 

  • F. Kemper, W.J. Vriend, A.G.G.M. Tielens, The absence of crystalline silicates in the diffuse interstellar medium. Astrophys. J. 609, 826–837 (2004). https://doi.org/10.1086/421339. astro-ph/0403609

    Article  ADS  Google Scholar 

  • S. Kempf, R. Srama, N. Altobelli, S. Auer, V. Tschernjawski, J. Bradley, M.E. Burton, S. Helfert, T.V. Johnson, H. Krüger, G. Moragas-Klostermeyer, E. Grün, Cassini between Earth and asteroid belt: first in-situ charge measurements of interplanetary grains. Icarus 171, 317–335 (2004). https://doi.org/10.1016/j.icarus.2004.05.017

    Article  ADS  Google Scholar 

  • S. Kempf, N. Altobelli, C. Briois, E. Grün, M. Horanyi, F. Postberg, J. Schmidt, R. Srama, Z. Sternovsky, G. Tobie, M. Zolotov, SUDA: a dust mass spectrometer for compositional surface mapping for a mission to Europa, in European Planetary Science Congress, vol. 9 (2014), EPSC2014-229

    Google Scholar 

  • H. Kimura, Interstellar dust in the Local Cloud surrounding the Sun. Mon. Not. R. Astron. Soc. 449, 2250–2258 (2015). https://doi.org/10.1093/mnras/stv427

    Article  ADS  Google Scholar 

  • H. Kimura, On the photoelectric quantum yield of small dust particles. Mon. Not. R. Astron. Soc. 459, 2751–2761 (2016). https://doi.org/10.1093/mnras/stw820. 1604.03664

    Article  ADS  Google Scholar 

  • H. Kimura, High radiation pressure on interstellar dust computed by light-scattering simulation on fluffy agglomerates of magnesium-silicate grains with metallic-iron inclusions. Astrophys. J. Lett. 839, L23 (2017). https://doi.org/10.3847/2041-8213/aa6c2d. 1704.02066

    Article  ADS  Google Scholar 

  • H. Kimura, I. Mann, The electric charging of interstellar dust in the solar system and consequences for its dynamics. Astrophys. J. 499, 454–462 (1998). https://doi.org/10.1086/305613

    Article  ADS  Google Scholar 

  • H. Kimura, I. Mann, Filtering of the interstellar dust flow near the heliopause: the importance of secondary electron emission for the grain charging. Earth Planets Space 51, 1223–1232 (1999). https://doi.org/10.1186/BF03351596

    Article  ADS  Google Scholar 

  • H. Kimura, I. Mann, Selection effects on interstellar dust in heliosphere. Adv. Space Res. 25, 299–302 (2000). https://doi.org/10.1016/S0273-1177(99)00952-7

    Article  ADS  Google Scholar 

  • H. Kimura, I. Mann, E.K. Jessberger, Composition, structure, and size distribution of dust in the local interstellar cloud. Astrophys. J. 583, 314–321 (2003a). https://doi.org/10.1086/345102

    Article  ADS  Google Scholar 

  • H. Kimura, I. Mann, E.K. Jessberger, Elemental abundances and mass densities of dust and gas in the local interstellar cloud. Astrophys. J. 582, 846–858 (2003b). https://doi.org/10.1086/344691

    Article  ADS  Google Scholar 

  • D. Koschny, R.H. Soja, C. Engrand, G.J. Flynn, J. Lasue, A.C. Levasseur-Regourd, T. Nakamura, D. Malaspina, A.R. Poppe, V.J. Sterken, J.M. Trigo-Rodríguez, Interplanetary dust, meteoroids, meteors and meteorites. Space Sci. Rev. 215(4), 1–62 (2019)

    Article  Google Scholar 

  • H. Krüger, M. Landgraf, N. Altobelli, E. Grün, Interstellar dust in the solar system. Space Sci. Rev. 130, 401–408 (2007). https://doi.org/10.1007/s11214-007-9181-7. 0706.3110

    Article  ADS  Google Scholar 

  • H. Krüger, P. Strub, E. Grün, V.J. Sterken, Sixteen years of Ulysses interstellar dust measurements in the solar system. I. Mass distribution and gas-to-dust mass ratio. Astrophys. J. 812, 139 (2015). https://doi.org/10.1088/0004-637X/812/2/139. 1510.06180

    Article  ADS  Google Scholar 

  • H. Krüger, M. Kobayashi, T. Arai, R. Srama, B.V. Sarli, H. Kimura, G. Moragas-Klostermeyer, R. Soja, N. Altobelli, E. Grün, Dust analysis on board the Destiny+ mission to 3200 Phaethon, in European Planetary Science Congress, vol. 11 (2017), EPSC2017-204

    Google Scholar 

  • H. Krüger, N. Altobelli, P. Strub, V. Sterken, R. Srama, E. Grün, Interstellar dust in the inner solar system: model versus in-situ spacecraft data. Astron. Astrophys. 626, A37 (2019a)

    Article  ADS  Google Scholar 

  • H. Krüger, P. Strub, R. Srama, M. Kobayashi, T. Arai, H. Kimura, T. Hirai, G. Moragas-Klostermeyer, N. Altobelli, V. Sterken, J. Agarwal, E. Grün, Modelling DESTINY+ interplanetary and interstellar dust measurements en route to the active asteroid (3200) Phaethon. Planet. Space Sci. 172, 22–42 (2019b)

    Article  ADS  Google Scholar 

  • W.S. Kurth, T.F. Averkamp, D.A. Gurnett, Z. Wang, Cassini RPWS observations of dust in Saturn’s E ring. Planet. Space Sci. 54, 988–998 (2006). https://doi.org/10.1016/j.pss.2006.05.011

    Article  ADS  Google Scholar 

  • H. Laakso, R. Grard, A. Pedersen, G. Schwehm, Impacts of large dust particles on the VEGA spacecraft. Adv. Space Res. 9, 269–272 (1989). https://doi.org/10.1016/0273-1177(89)90273-1

    Article  ADS  Google Scholar 

  • M. Landgraf, PhD thesis. Ruprecht-Karls-Univ, Heidelberg (1998)

  • M. Landgraf, Modeling the motion and distribution of interstellar dust inside the heliosphere. J. Geophys. Res. 105(10), 10303–10316 (2000)

    Article  ADS  Google Scholar 

  • M. Landgraf, K. Augustsson, E. Grün, B.A.S. Gustafson, Deflection of the local interstellar dust flow by solar radiation pressure. Science 286, 2319–2322 (1999a)

    Article  ADS  Google Scholar 

  • M. Landgraf, M. Müller, E. Grün, Prediction of the in-situ dust measurements of the stardust mission to comet 81P/Wild 2. Planet. Space Sci. 47, 1029–1050 (1999b). https://doi.org/10.1016/S0032-0633(99)00031-8. astro-ph/9904204

    Article  ADS  Google Scholar 

  • M. Landgraf, W.J. Baggaley, E. Grün, H. Krüger, G. Linkert, Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements. J. Geophys. Res. 105(10), 10343–10352 (2000)

    Article  ADS  Google Scholar 

  • M. Landgraf, H. Krüger, N. Altobelli, E. Grün, Penetration of the heliosphere by the interstellar dust stream during solar maximum. J. Geophys. Res. Space Phys. 108, 8030 (2003). https://doi.org/10.1029/2003JA009872

    Article  ADS  Google Scholar 

  • J. Leitner, C. Vollmer, P. Hoppe, J. Zipfel, Characterization of presolar material in the CR chondrite Northwest Africa 852. Astrophys. J. 745, 38 (2012). https://doi.org/10.1088/0004-637X/745/1/38

    Article  ADS  Google Scholar 

  • A.C. Levasseur-Regourd, J. Agarwal, H. Cottin, C. Engrand, G. Flynn, M. Fulle, T. Gombosi, Y. Langevin, J. Lasue, T. Mannel, S. Merouane, O. Poch, N. Thomas, A. Westphal, Cometary dust. Space Sci. Rev. 214(3), 64 (2018). https://doi.org/10.1007/s11214-018-0496-3

    Article  ADS  Google Scholar 

  • E.H. Levy, J.R. Jokipii, Penetration of interstellar dust into the Solar System. Nature 264, 423–424 (1976)

    Article  ADS  Google Scholar 

  • T.J. Linde, T.I. Gombosi, Interstellar dust filtration at the heliospheric interface. J. Geophys. Res. 105(10), 10411–10418 (2000). https://doi.org/10.1029/1999JA900149

    Article  ADS  Google Scholar 

  • Q. Ma, L.S. Matthews, V. Land, T.W. Hyde, Charging of aggregate grains in astrophysical environments. Astrophys. J. 763, 77 (2013). https://doi.org/10.1088/0004-637X/763/2/77. 1210.0459

    Article  ADS  Google Scholar 

  • D. Malaspina, Coordinated Data Analysis Web: The Wind ISD Database (2017). wi_l3-dustimpact_waves. https://cdaweb.sci.gsfc.nasa.gov/index.html/

  • D.M. Malaspina, L.B. Wilson, A database of interplanetary and interstellar dust detected by the Wind spacecraft. J. Geophys. Res. Space Phys. 121, 9369–9377 (2016). https://doi.org/10.1002/2016JA023209

    Article  ADS  Google Scholar 

  • D.M. Malaspina, M. Horányi, A. Zaslavsky, K. Goetz, L.B. Wilson, K. Kersten, Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument. Geophys. Res. Lett. 41, 266–272 (2014). https://doi.org/10.1002/2013GL058786

    Article  ADS  Google Scholar 

  • M. Masanori, R. Srama, H. Krüger, T. Arai, H. Kimura, DESTINY+ Dust Analyzer, in 49th Lunar and Planetary Science Conference 2018 (2018) (LPI Contrib. No. 2083)

    Google Scholar 

  • J.S. Mathis, W. Rumpl, K.H. Nordsieck, The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977). https://doi.org/10.1086/155591

    Article  ADS  Google Scholar 

  • N. McBride, M. Jam, Meteoroid impacts on spacecraft: sporadics, streams, and the 1999 Leonids. Planet. Space Sci. 47, 1005–1013 (1999). https://doi.org/10.1016/S0032-0633(99)00023-9

    Article  ADS  Google Scholar 

  • D.J. McComas, M. Bzowski, P. Frisch, S.A. Fuselier, M.A. Kubiak, H. Kucharek, T. Leonard, E. Möbius, N.A. Schwadron, J.M. Sokół, P. Swaczyna, M. Witte, Warmer local interstellar medium: a possible resolution of the Ulysses-IBEX enigma. Astrophys. J. 801, 28 (2015). https://doi.org/10.1088/0004-637X/801/1/28

    Article  ADS  Google Scholar 

  • K.J. Meech, R. Weryk, M. Micheli, J.T. Kleyna, O.R. Hainaut, R. Jedicke, R.J. Wainscoat, K.C. Chambers, J.V. Keane, A. Petric, L. Denneau, E. Magnier, T. Berger, M.E. Huber, H. Flewelling, C. Waters, E. Schunova-Lilly, S. Chastel, A brief visit from a red and extremely elongated interstellar asteroid. Nature 552, 378–381 (2017). https://doi.org/10.1038/nature25020

    Article  ADS  Google Scholar 

  • N. Meyer-Vernet, M.G. Aubier, B.M. Pedersen, Voyager 2 at Uranus—grain impacts in the ring plane. Geophys. Res. Lett. 13, 617–620 (1986). https://doi.org/10.1029/GL013i007p00617

    Article  ADS  Google Scholar 

  • N. Meyer-Vernet, A. Lecacheux, M.L. Kaiser, D.A. Gurnett, Detecting nanoparticles at radio frequencies: Jovian dust stream impacts on Cassini/RPWS. Geophys. Res. Lett. 36, L03103 (2009a). https://doi.org/10.1029/2008GL036752

    Article  ADS  Google Scholar 

  • N. Meyer-Vernet, M. Maksimovic, A. Czechowski, I. Mann, I. Zouganelis, K. Goetz, M.L. Kaiser, O.C. St. Cyr, J.L. Bougeret, S.D. Bale, Dust detection by the Wave Instrument on STEREO: nanoparticles picked up by the solar wind? Sol. Phys. 256, 463 (2009b)

    Article  ADS  Google Scholar 

  • G.E. Morfill, E. Gruen, The motion of charged dust particles in interplanetary space. I—The zodiacal dust cloud. II—Interstellar grains. Planet. Space Sci. 27, 1269–1292 (1979). https://doi.org/10.1016/0032-0633(79)90105-3

    Article  ADS  Google Scholar 

  • T. Mukai, On the charge distribution of interplanetary grains. Astron. Astrophys. 99, 1–6 (1981)

    ADS  Google Scholar 

  • F.M. Neubauer, K.H. Glassmeier, A.J. Coates, R. Goldstein, M.H. Acuna, Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments. Geophys. Res. Lett. 17, 1809–1812 (1990). https://doi.org/10.1029/GL017i011p01809

    Article  ADS  Google Scholar 

  • P. Oberc, Electric antenna as a dust detector. Adv. Space Res. 17, 105–110 (1996). https://doi.org/10.1016/0273-1177(95)00766-8

    Article  ADS  Google Scholar 

  • A. Pais, Inward Bound: Of Matter and Forces in the Physical World (Oxford University Press, London, 1986)

    Google Scholar 

  • F. Pantellini, S. Belheouane, N. Meyer-Vernet, A. Zaslavsky, Nano dust impacts on spacecraft and boom antenna charging. Astrophys. Space Sci. 341, 309–314 (2012). https://doi.org/10.1007/s10509-012-1108-4. 1205.1430

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958). https://doi.org/10.1086/146579

    Article  ADS  Google Scholar 

  • B.M. Pedersen, N. Meyer-Vernet, M.G. Aubier, P. Zarka, Dust distribution around Neptune—grain impacts near the ring plane measured by the Voyager planetary radio astronomy experiment. J. Geophys. Res. 96, 19 (1991). https://doi.org/10.1029/91JA01601

    Article  Google Scholar 

  • F. Postberg, S. Kempf, J.K. Hillier, R. Srama, S.F. Green, N. McBride, E. Grün, The E-ring in the vicinity of Enceladus. II. Probing the moon’s interior—the composition of E-ring particles. Icarus 193, 438–454 (2008). https://doi.org/10.1016/j.icarus.2007.09.001

    Article  ADS  Google Scholar 

  • F. Postberg, S. Kempf, D. Rost, T. Stephan, R. Srama, M. Trieloff, A. Mocker, M. Goerlich, Discriminating contamination from particle components in spectra of Cassini’s dust detector CDA. Planet. Space Sci. 57, 1359–1374 (2009a). https://doi.org/10.1016/j.pss.2009.06.027

    Article  ADS  Google Scholar 

  • F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck, R. Srama, Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009b). https://doi.org/10.1038/nature08046

    Article  ADS  Google Scholar 

  • F. Postberg, J.K. Hillier, S.P. Armes, S. Bugiel, A. Butterworth, D. Dupin, L.A. Fielding, S. Fujii, Z. Gainsforth, E. Grün, Y.W. Li, R. Srama, V. Sterken, J. Stodolna, M. Trieloff, A. Westphal, C. Achilles, C. Allen, A. Ansari, S. Bajt, N. Bassim, R.K. Bastien, H.A. Bechtel, J. Borg, F. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A. Davis, R. Doll, C. Floss, G. Flynn, D. Frank, P.R. Heck, P. Hoppe, G. Huss, J. Huth, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, A. Leonard, H. Leroux, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, M.C. Price, S.A. Sandford, J.A.S. Tressaras, S. Schmitz, T. Schoonjans, K. Schreiber, G. Silversmit, A. Simionovici, V.A. Solé, F. Stadermann, T. Stephan, R.M. Stroud, S. Sutton, P. Tsou, A. Tsuchiyama, T. Tyliczszak, B. Vekemans, L. Vincze, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination IX: high-speed interstellar dust analog capture in Stardust flight-spare aerogel. Meteorit. Planet. Sci. 49, 1666–1679 (2014). https://doi.org/10.1111/maps.12173

    Article  ADS  Google Scholar 

  • S. Redfield, J.L. Linsky, The three-dimensional structure of the warm local interstellar medium. II. The Colorado model of the local interstellar cloud. Astrophys. J. 534, 825–837 (2000). https://doi.org/10.1086/308769

    Article  ADS  Google Scholar 

  • S. Redfield, B.E. Wood, J.L. Linsky, Physical structure of the local interstellar medium. Adv. Space Res. 34, 41–45 (2004). https://doi.org/10.1016/j.asr.2003.02.053

    Article  ADS  Google Scholar 

  • M. Rowan-Robinson, B. May, An improved model for the infrared emission from the zodiacal dust cloud: cometary, asteroidal and interstellar dust. Mon. Not. R. Astron. Soc. 429, 2894–2902 (2013). https://doi.org/10.1093/mnras/sts471. 1212.4759

    Article  ADS  Google Scholar 

  • F.L. Scarf, D.A. Gurnett, W.S. Kurth, R.L. Poynter, Voyager 2 plasma wave observations at Saturn. Science 215, 587–594 (1982). https://doi.org/10.1126/science.215.4532.587

    Article  ADS  Google Scholar 

  • N.A. Schwadron, E. Möbius, T. Leonard, S.A. Fuselier, D.J. McComas, D. Heirtzler, H. Kucharek, F. Rahmanifard, M. Bzowski, M.A. Kubiak, J.M. Sokół, P. Swaczyna, P. Frisch, Determination of interstellar He parameters using five years of data from the IBEX: beyond closed form approximations. Astrophys. J. Suppl. Ser. 220, 25 (2015). https://doi.org/10.1088/0067-0049/220/2/25

    Article  ADS  Google Scholar 

  • G. Schwehm, Radiation pressure on interplanetary dust particles, in Interplanetary Dust and Zodiacal Light, ed. by H. Elsaesser, H. Fechtig. Lecture Notes in Physics, vol. 48 (Springer, Berlin, 1976), pp. 459–463. https://doi.org/10.1007/3-540-07615-8_526

    Chapter  Google Scholar 

  • K. Silsbee, B.T. Draine, Radiation pressure on fluffy submicron-sized grains. Astrophys. J. 818, 133 (2016). https://doi.org/10.3847/0004-637X/818/2/133. 1508.00646

    Article  ADS  Google Scholar 

  • A.S. Simionovici, L. Lemelle, P. Cloetens, V.A. Solé, J.A.S. Tresseras, A.L. Butterworth, A.J. Westphal, Z. Gainsforth, J. Stodolna, C. Allen, D. Anderson, A. Ansari, S. Bajt, N. Bassim, R.K. Bastien, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, A.M. Davis, R. Doll, C. Floss, G. Flynn, D.R. Frank, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, A. Leonard, H. Leroux, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, S. Schmitz, T. Schoonjans, G. Silversmit, R. Srama, F.J. Stadermann, T. Stephan, V.J. Sterken, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination VI: quantitative elemental analysis by synchrotron X-ray fluorescence nanoimaging of eight impact features in aerogel. Meteorit. Planet. Sci. 49, 1612–1625 (2014). https://doi.org/10.1111/maps.12208

    Article  ADS  Google Scholar 

  • J.D. Slavin, P.C. Frisch, The boundary conditions of the heliosphere: photoionization models constrained by interstellar and in situ data. Astron. Astrophys. 491, 53–68 (2008). https://doi.org/10.1051/0004-6361:20078101

    Article  ADS  Google Scholar 

  • J.D. Slavin, P.C. Frisch, H.R. Müller, J. Heerikhuisen, N.V. Pogorelov, W.T. Reach, G. Zank, Trajectories and distribution of interstellar dust grains in the heliosphere. Astrophys. J. 760, 46 (2012). https://doi.org/10.1088/0004-637X/760/1/46. 1210.1127

    Article  ADS  Google Scholar 

  • R. Srama, T.J. Ahrens, N. Altobelli, S. Auer, J.G. Bradley, M. Burton, V.V. Dikarev, T. Economou, H. Fechtig, M. Görlich, M. Grande, A. Graps, E. Grün, O. Havnes, S. Helfert, M. Horanyi, E. Igenbergs, E.K. Jessberger, T.V. Johnson, S. Kempf, A.V. Krivov, H. Krüger, A. Mocker-Ahlreep, G. Moragas-Klostermeyer, P. Lamy, M. Landgraf, D. Linkert, G. Linkert, F. Lura, J.A.M. McDonnell, D. Möhlmann, G.E. Morfill, M. Müller, M. Roy, G. Schäfer, G. Schlotzhauer, G.H. Schwehm, F. Spahn, M. Stübig, J. Svestka, V. Tschernjawski, A.J. Tuzzolino, R. Wäsch, H.A. Zook, The Cassini cosmic dust analyzer. Space Sci. Rev. 114, 465–518 (2004). https://doi.org/10.1007/s11214-004-1435-z

    Article  ADS  Google Scholar 

  • R. Srama, T. Stephan, E. Grün, N. Pailer, A. Kearsley, A. Graps, R. Laufer, P. Ehrenfreund, N. Altobelli, K. Altwegg, S. Auer, J. Baggaley, M.J. Burchell, J. Carpenter, L. Colangeli, F. Esposito, S.F. Green, H. Henkel, M. Horanyi, A. Jäckel, S. Kempf, N. McBride, G. Moragas-Klostermeyer, H. Krüger, P. Palumbo, A. Srowig, M. Trieloff, P. Tsou, Z. Sternovsky, O. Zeile, H.P. Röser, Sample return of interstellar matter (SARIM). Exp. Astron. 23, 303–328 (2009). https://doi.org/10.1007/s10686-008-9088-7

    Article  ADS  Google Scholar 

  • R. Srama, E. Gruün, A. Krivov, R. Soja, V. Sterken, Z. Sternovsky, S2d2: solar system debris disk (2013). http://www.irs.uni-stuttgart.de/cosmicdust/missions/debrisdisk/

  • O.C. St. Cyr, M.L. Kaiser, N. Meyer-Vernet, R.A. Howard, R.A. Harrison, S.D. Bale, W.T. Thompson, K. Goetz, M. Maksimovic, J.L. Bougeret, D. Wang, S. Crothers, STEREO SECCHI and S/WAVES observations of spacecraft debris caused by micron-size interplanetary dust impacts. Sol. Phys. 256, 475–488 (2009). https://doi.org/10.1007/s11207-009-9362-5

    Article  ADS  Google Scholar 

  • V.J. Sterken, N. Altobelli, S. Kempf, G. Schwehm, R. Srama, E. Grün, The flow of interstellar dust into the solar system. Astron. Astrophys. 538, A102 (2012). https://doi.org/10.1051/0004-6361/201117119

    Article  ADS  Google Scholar 

  • V.J. Sterken, N. Altobelli, S. Kempf, H. Krüger, R. Srama, P. Strub, E. Grün, The filtering of interstellar dust in the solar system. Astron. Astrophys. 552, A130 (2013). https://doi.org/10.1051/0004-6361/201219609

    Article  ADS  Google Scholar 

  • V.J. Sterken, A.J. Westphal, N. Altobelli, E. Grün, J.K. Hillier, F. Postberg, R. Srama, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.S. Bastien, N. Bassim, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, A.L. Butterworth, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, D. Frank, Z. Gainsforth, P.R. Heck, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A. Simionovici, V.A. Solé, T. Stephan, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. von Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination X: impact speeds and directions of interstellar grains on the Stardust dust collector. Meteorit. Planet. Sci. 49, 1680–1697 (2014). https://doi.org/10.1111/maps.12219

    Article  ADS  Google Scholar 

  • V.J. Sterken, P. Strub, H. Krüger, R. von Steiger, P. Frisch, Sixteen years of Ulysses interstellar dust measurements in the solar system. III. Simulations and data unveil new insights into local interstellar dust. Astrophys. J. 812, 141 (2015). https://doi.org/10.1088/0004-637X/812/2/141

    Article  ADS  Google Scholar 

  • V. Sterken, G. Moragas-Klostermeyer, J. Hillier, L. Fielding, J. Lovett, S. Armes, N. Fechler, R. Srama, S. Bugiel, K. Hornung, Impact ionization experiments with porous cosmic dust particle analogs, in EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, vol. 18 (2016), EPSC2016-16018

    Google Scholar 

  • R.M. Stroud, C. Allen, A. Ansari, D. Anderson, S. Bajt, N. Bassim, R.S. Bastien, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, A.L. Butterworth, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, D.R. Frank, Z. Gainsforth, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, J. Huth, B. Hvide, A. Kearsley, A.J. King, P. Kotula, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, K. Schreiber, G. Silversmit, A.S. Simionovici, V.A. Solé, R. Srama, T. Stephan, V.J. Sterken, J. Stodolna, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, A.J. Westphal, J. von Korff, D. Zevin, M.E. Zolensky, Stardust Interstellar Preliminary Examination XI: identification and elemental analysis of impact craters on Al foils from the Stardust Interstellar Dust Collector. Meteorit. Planet. Sci. 49, 1698–1719 (2014). https://doi.org/10.1111/maps.12136

    Article  ADS  Google Scholar 

  • P. Strub, V.J. Sterken, H. Krüger, E. Grün, M. Horanyi, Interstellar dust flow through the solar system, in American Institute of Physics Conference Series, ed. by V.Y. Nosenko, P.K. Shukla, M.H. Thoma, H.M. Thomas. American Institute of Physics Conference Series, vol. 1397 (2011), pp. 385–386. https://doi.org/10.1063/1.3659855

    Chapter  Google Scholar 

  • P. Strub, H. Krüger, V.J. Sterken, Sixteen years of Ulysses interstellar dust measurements in the solar system. II. Fluctuations in the dust flow from the data. Astrophys. J. 812, 140 (2015). https://doi.org/10.1088/0004-637X/812/2/140. 1508.03242

    Article  ADS  Google Scholar 

  • P. Strub, V.J. Sterken, R. Soja, H. Krüger, E. Grün, R. Srama, Heliospheric modulation of the interstellar dust flow on to Earth. Astron. Astrophys. 621, A54 (2019). https://doi.org/10.1051/0004-6361/201832644

    Article  ADS  Google Scholar 

  • F.M. Thayer, D.M. Malaspina, A. Collette, Z. Sternovsky, Variation in relative dust impact charge recollection with antenna to spacecraft potential on STEREO. J. Geophys. Res. Space Phys. 121, 4998–5004 (2016). https://doi.org/10.1002/2015JA021983

    Article  ADS  Google Scholar 

  • J.I. Thorpe, C. Parvini, J.M. Trigo-Rodríguez, Detection and measurement of micrometeoroids with LISA Pathfinder. Astron. Astrophys. 586, A107 (2016). https://doi.org/10.1051/0004-6361/201527658

    Article  ADS  Google Scholar 

  • J.I. Thorpe, T.B. Littenberg, J. Baker, J. Slutsky (The LISA Pathfinder Team) LISA Pathfinder as a micrometeoroid instrument. J. Phys. Conf. Ser. 840, 012007 (2017). https://doi.org/10.1088/1742-6596/840/1/012007

    Article  Google Scholar 

  • D. Tsintikidis, D.A. Gurnett, W.S. Kurth, L.J. Granroth, Micron-sized particles detected in the vicinity of Jupiter by the Voyager plasma wave instruments. Geophys. Res. Lett. 23, 997–1000 (1996). https://doi.org/10.1029/96GL00961

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, D.R. Clay, L.D. Zhang, B. Dasgupta, D. Brinza, M. Henry, A. Mendis, S. Moses, K.H. Glassmeier, G. Musmann, I. Richter, Dust impacts at comet P/Borrelly. Geophys. Res. Lett. 30, 2134 (2003). https://doi.org/10.1029/2003GL017580

    Article  ADS  Google Scholar 

  • M.K. Wallis, Penetration of charged interstellar dust into the solar system. Mon. Not. R. Astron. Soc. 227, 331–339 (1987). https://doi.org/10.1093/mnras/227.2.331

    Article  ADS  Google Scholar 

  • S. Wang, A. Li, B.W. Jiang, Very large interstellar grains as evidenced by the mid-infrared extinction. Astrophys. J. 811, 38 (2015). https://doi.org/10.1088/0004-637X/811/1/38. 1508.03403

    Article  ADS  Google Scholar 

  • J.C. Weingartner, B.T. Draine, Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296–309 (2001). https://doi.org/10.1086/318651. astro-ph/0008146

    Article  ADS  Google Scholar 

  • A.J. Westphal, D. Anderson, A.L. Butterworth, D.R. Frank, R. Lettieri, W. Marchant, J. von Korff, D. Zevin, A. Ardizzone, A. Campanile, M. Capraro, K. Courtney, M.N. Criswell, D. Crumpler, R. Cwik, F.J. Gray, B. Hudson, G. Imada, J. Karr, L.L.W. Wah, M. Mazzucato, P.G. Motta, C. Rigamonti, R.C. Spencer, S.B. Woodrough, I.C. Santoni, G. Sperry, J.N. Terry, N. Wordsworth, T. Yahnke, C. Allen, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, H.A. Bechtel, J. Borg, F.E. Brenker, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, G. Flynn, Z. Gainsforth, E. Grün, P.R. Heck, J.K. Hillier, P. Hoppe, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, L.R. Nittler, R. Ogliore, W.J. Ong, F. Postberg, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, A.S. Simionovici, V.A. Solé, R. Srama, T. Stephan, V.J. Sterken, J. Stodolna, R.M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, M.E. Zolensky, Stardust interstellar preliminary examination I: identification of tracks in aerogel. Meteorit. Planet. Sci. 49, 1509–1521 (2014a). https://doi.org/10.1111/maps.12168

    Article  ADS  Google Scholar 

  • A.J. Westphal, H.A. Bechtel, F.E. Brenker, A.L. Butterworth, G. Flynn, D.R. Frank, Z. Gainsforth, J.K. Hillier, F. Postberg, A.S. Simionovici, V.J. Sterken, R.M. Stroud, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, J. Borg, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, E. Grün, P.R. Heck, P. Hoppe, B. Hudson, J. Huth, B. Hvide, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, A. Leonard, R. Lettieri, W. Marchant, L.R. Nittler, R. Ogliore, W.J. Ong, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, G. Silversmit, V.A. Solé, R. Srama, F. Stadermann, T. Stephan, J. Stodolna, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, J. Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Final reports of the Stardust Interstellar Preliminary Examination. Meteorit. Planet. Sci. 49, 1720–1733 (2014b). https://doi.org/10.1111/maps.12221

    Article  ADS  Google Scholar 

  • A.J. Westphal, R.M. Stroud, H.A. Bechtel, F.E. Brenker, A.L. Butterworth, G.J. Flynn, D.R. Frank, Z. Gainsforth, J.K. Hillier, F. Postberg, A.S. Simionovici, V.J. Sterken, L.R. Nittler, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, E. Grün, P.R. Heck, P. Hoppe, B. Hudson, J. Huth, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, A. Leonard, H. Leroux, R. Lettieri, W. Marchant, R. Ogliore, W.J. Ong, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, K. Schreiber, G. Silversmit, V.A. Solé, R. Srama, F. Stadermann, T. Stephan, J. Stodolna, S. Sutton, M. Trieloff, P. Tsou, T. Tyliszczak, B. Vekemans, L. Vincze, J. Von Korff, N. Wordsworth, D. Zevin, M.E. Zolensky, Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft. Science 345, 786–791 (2014c). https://doi.org/10.1126/science.1252496

    Article  ADS  Google Scholar 

  • M. Witte, Kinetic parameters of interstellar neutral helium. Review of results obtained during one solar cycle with the Ulysses/GAS-instrument. Astron. Astrophys. 426, 835–844 (2004). https://doi.org/10.1051/0004-6361:20035956

    Article  ADS  Google Scholar 

  • S.R. Wood, D.M. Malaspina, L. Andersson, M. Horanyi, Hypervelocity dust impacts on the Wind spacecraft: correlations between Ulysses and Wind interstellar dust detections. J. Geophys. Res. Space Phys. 120, 7121–7129 (2015). https://doi.org/10.1002/2015JA021463

    Article  ADS  Google Scholar 

  • S.Y. Ye, W.S. Kurth, G.B. Hospodarsky, T.F. Averkamp, D.A. Gurnett, Dust detection in space using the monopole and dipole electric field antennas. J. Geophys. Res. Space Phys. 121, 11 (2016). https://doi.org/10.1002/2016JA023266

    Article  Google Scholar 

  • A. Zaslavsky, Floating potential perturbations due to micrometeoroid impacts: theory and application to S/WAVES data. J. Geophys. Res. Space Phys. 120, 855–867 (2015). https://doi.org/10.1002/2014JA020635

    Article  ADS  Google Scholar 

  • A. Zaslavsky, N. Meyer-Vernet, I. Mann, A. Czechowski, K. Issautier, G. Le Chat, F. Pantellini, K. Goetz, M. Maksimovic, S.D. Bale, J.C. Kasper, Interplanetary dust detection by radio antennas: mass calibration and fluxes measured by STEREO/WAVES. J. Geophys. Res. Space Phys. 117, A05102 (2012). https://doi.org/10.1029/2011JA017480

    Article  ADS  Google Scholar 

  • Q. Zhang, Prospects for backtracing 1I/‘Oumuamua and future interstellar objects. Astrophys. J. Lett. 852, L13 (2018). https://doi.org/10.3847/2041-8213/aaa2f7. 1712.08059

    Article  ADS  Google Scholar 

  • S. Zhukovska, H.P. Gail, M. Trieloff, Evolution of interstellar dust and stardust in the solar neighbourhood. Astron. Astrophys. 479, 453–480 (2008). https://doi.org/10.1051/0004-6361:20077789. 0706.1155

    Article  ADS  Google Scholar 

  • E. Zinner, Presolar grains, in Treatise on Geochemistry, Vol. 1. Meteorites and Cosmochemical Processes, 2nd edn. (2014), pp. 181–213

    Chapter  Google Scholar 

  • E. Zinner, S. Amari, R. Guinness, C. Jennings, A.F. Mertz, A.N. Nguyen, R. Gallino, P. Hoppe, M. Lugaro, L.R. Nittler, R.S. Lewis, NanoSIMS isotopic analysis of small presolar grains: search for \(\mbox{Si}_{3}\mbox{N}_{4}\) grains from AGB stars and Al and Ti isotopic compositions of rare presolar SiC grains. Geochim. Cosmochim. Acta 71, 4786–4813 (2007). https://doi.org/10.1016/j.gca.2007.07.012

    Article  ADS  Google Scholar 

  • V. Zubko, E. Dwek, R.G. Arendt, Interstellar dust models consistent with extinction, emission, and abundance constraints. Astrophys. J. Suppl. Ser. 152, 211–249 (2004). https://doi.org/10.1086/382351. astro-ph/0312641

    Article  ADS  Google Scholar 

Download references

Acknowledgements

FP received financial support from the German Research Foundation (DFG) projects PO 1015/3-1, /4-1, and ERC Consolidator Grant 724908-Habitat OASIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerle J. Sterken.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cosmic Dust from the Laboratory to the Stars

Edited by Rafael Rodrigo, Jürgen Blum, Hsiang-Wen Hsu, Detlef Koschny, Anny-Chantal Levasseur-Regourd, Jesús Martín-Pintado, Veerle Sterken and Andrew Westphal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterken, V.J., Westphal, A.J., Altobelli, N. et al. Interstellar Dust in the Solar System. Space Sci Rev 215, 43 (2019). https://doi.org/10.1007/s11214-019-0607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-019-0607-9

Keywords

Navigation