Skip to main content
Log in

Local Resetting in a Bidirectional Transport System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Inspired by different stochastic mechanisms, such as the two-sided motion of ribosomes seen during the initiation of mRNA translation, which is backed by their decay, we investigate a totally asymmetric simple exclusion process with open boundaries in a bidirectional setting where two oppositely charged species of particles move opposite to each other and locally reset to the respective entry site. The steady-state characteristics, such as density profiles and phase diagrams, are investigated theoretically under the mean-field framework. The introduction of resetting into the system produces non-trivial effects in the form of two novel asymmetric phases that appear in the phase diagram. The system possesses several different combinations of symmetric phases as well as asymmetric phases for different resetting rates. A rich behavior is observed in the system, emphasizing the occurrence of spontaneous symmetry-breaking phenomena even in the small resetting regime. Moreover, the significance of the resetting rate is analyzed on the domain wall, and it is found that one of the stationary phases with a localized domain wall vanishes for a substantial resetting rate. Due to the interaction of both species at the boundaries, the consequences of the resetting dynamics on the boundary densities are also investigated. All the findings, including finite-system size, are thoroughly validated by the Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availibility Statement

Data supporting this study are included in the article.

References

  1. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4–6), 199–329 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Mahnke, R., Kaupužs, J., Lubashevsky, I.: Probabilistic description of traffic flow. Phys. Rep. 408(1–2), 1–130 (2005)

    Article  ADS  Google Scholar 

  3. Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic transport in complex systems: from molecules to vehicles. Elsevier (2010)

  4. Helbing, D.: traffic and related self-driven many-particle systems. Rev. Modern Phys. 73(4), 1067 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chou, T., Mallick, K., Zia, R.K.: Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep. Progr. Phys. 74(11), 116601 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. Krug, J.: Boundary-induced phase transitions in driven diffusive systems. Phys. Rev. Lett. 67(14), 1882 (1991)

    Article  ADS  Google Scholar 

  7. Popkov, V., Schütz, G.M.: steady-state selection in driven diffusive systems with open boundaries. Europhys. Lett. 48(3), 257 (1999)

    Article  ADS  Google Scholar 

  8. Katz, S., Lebowitz, J.L., Spohn, H.: Phase transitions in stationary nonequilibrium states of model lattice systems. Phys. Rev. B 28(3), 1655 (1983)

    Article  ADS  Google Scholar 

  9. Kolomeisky, A.B., Schütz, G.M., Kolomeisky, E.B., Straley, J.P.: Phase diagram of one-dimensional driven lattice gases with open boundaries. J. Phys. A: Math. General 31(33), 6911 (1998)

    Article  ADS  Google Scholar 

  10. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Phase Transitions and Critical Phenomena vol. 19, pp. 1–251. Elsevier (2001)

  11. Foulaadvand, M.E., Maass, P.: Phase transitions and optimal transport in stochastic roundabout traffic. Phys. Rev. E 94(1), 012304 (2016)

    Article  ADS  Google Scholar 

  12. MacDonald, C.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopoly. Original Res. Biomol. 6(1), 1–25 (1968)

    Google Scholar 

  13. Schütz, G.M.: Critical phenomena and universal dynamics in one-dimensional driven diffusive systems with two species of particles. J. Phys. Math. General 36(36), 339 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. Math. General 26(7), 1493 (1993)

    Article  ADS  Google Scholar 

  15. Schütz, G., Domany, E.: phase transitions in an exactly soluble one-dimensional exclusion process. J. Stat. Phys. 72(1–2), 277–296 (1993)

    Article  ADS  Google Scholar 

  16. Chowdhury, D., Schadschneider, A., Nishinari, K.: Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms. Phys. Life Rev. 2(4), 318–352 (2005)

    Article  ADS  Google Scholar 

  17. Derrida, B.: An exactly soluble non-equilibrium system: the asymmetric simple exclusion process. Phys. Rep. 301(1–3), 65–83 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  18. MacDonald, C.T., Gibbs, J.H.: Concerning the kinetics of polypeptide synthesis on polyribosomes. Biopoly. Original Res. Biomol. 7(5), 707–725 (1969)

    Google Scholar 

  19. Schütz, G.M.: the heisenberg chain as a dynamical model for protein synthesis-some theoretical and experimental results. Int. J. Modern Phys. B 11(01–02), 197–202 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  20. Shaw, L., Zia, R., Lee, K.: Modeling, simulations, and analyses of protein synthesis: driven lattice gas with extended objects. Technical report (2003)

  21. Shaw, L.B., Kolomeisky, A.B., Lee, K.H.: Local inhomogeneity in asymmetric simple exclusion processes with extended objects. J. Phys. A: Math. General 37(6), 2105 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  22. Chou, T., Lakatos, G.: Clustered bottlenecks in mrna translation and protein synthesis. Phys. Rev. Lett. 93(19), 198101 (2004)

    Article  ADS  Google Scholar 

  23. Chou, T., Lohse, D.: Entropy-driven pumping in zeolites and biological channels. Phys. Rev. Lett. 82(17), 3552 (1999)

    Article  ADS  Google Scholar 

  24. Klumpp, S., Nieuwenhuizen, T.M., Lipowsky, R.: Movements of molecular motors: Ratchets, random walks and traffic phenomena. Phys. Low-Dimens. Syst. Nanostruct. 29(1–2), 380–389 (2005)

    Article  ADS  Google Scholar 

  25. Parmeggiani, A., Franosch, T., Frey, E.: Totally asymmetric simple exclusion process with langmuir kinetics. Phys. Rev. E 70(4), 046101 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  26. Nishinari, K., Okada, Y., Schadschneider, A., Chowdhury, D.: Intracellular transport of single-headed molecular motors kif1a. Phys. Rev. Lett. 95(11), 118101 (2005)

    Article  ADS  Google Scholar 

  27. Howard, J., Clark, R.: Mechanics of motor proteins and the cytoskeleton. Appl. Mech. Rev. 55(2), 39–39 (2002)

    Article  Google Scholar 

  28. Parmeggiani, A., Franosch, T., Frey, E.: Phase coexistence in driven one-dimensional transport. Phys. Rev. Lett. 90(8), 086601 (2003)

    Article  ADS  Google Scholar 

  29. Evans, M.R., Juhász, R., Santen, L.: Shock formation in an exclusion process with creation and annihilation. Phys. Rev. E 68(2), 026117 (2003)

    Article  ADS  Google Scholar 

  30. Evans, M.R., Majumdar, S.N.: Diffusion with stochastic resetting. Phys. Rev. Lett. 106(16), 160601 (2011)

    Article  ADS  Google Scholar 

  31. Falcao, R., Evans, M.R.: Interacting brownian motion with resetting. J. Stat. Mech. Theo. Exp. 2017(2), 023204 (2017)

    Article  MathSciNet  Google Scholar 

  32. Evans, M.R., Majumdar, S.N.: Run and tumble particle under resetting: a renewal approach. J. Phys. Math. Theo. 51(47), 475003 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Karthika, S., Nagar, A.: Totally asymmetric simple exclusion process with resetting. J. Phys. Math. Theo. 53(11), 115003 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  34. Basu, U., Kundu, A., Pal, A.: Symmetric exclusion process under stochastic resetting. Phys. Rev. 100(3), 032136 (2019)

    ADS  Google Scholar 

  35. Montanari, A., Zecchina, R.: Optimizing searches via rare events. Phys. Rev. Lett. 88(17), 178701 (2002)

    Article  ADS  Google Scholar 

  36. Reuveni, S., Urbakh, M., Klafter, J.: The role of substrate unbinding in michaelis-menten enzymatic reactions. Biophys. J. 106(2), 677 (2014)

    Article  ADS  Google Scholar 

  37. Roldán, É., Lisica, A., Sánchez-Taltavull, D., Grill, S.W.: Stochastic resetting in backtrack recovery by rna polymerases. Phys. Rev. E 93(6), 062411 (2016)

    Article  ADS  Google Scholar 

  38. Miron, A., Reuveni, S.: Diffusion with local resetting and exclusion. Phys. Rev. Res. 3(1), 012023 (2021)

    Article  Google Scholar 

  39. Pelizzola, A., Pretti, M., Zamparo, M.: Simple exclusion processes with local resetting. Europhys. Lett. 133(6), 60003 (2021)

    Article  ADS  Google Scholar 

  40. Bhatia, N., Gupta, A.K.: Totally asymmetric simple exclusion process with local resetting in a resource-constrained environment. Phys. Rev. E 109(2), 024109 (2024)

    Article  ADS  MathSciNet  Google Scholar 

  41. Kretz, T., Grünebohm, A., Kaufman, M., Mazur, F., Schreckenberg, M.: Experimental study of pedestrian counterflow in a corridor. J. Stat. Mech. Theo. Exp. 2006(10), 10001 (2006)

    Article  Google Scholar 

  42. Evans, M.R., Foster, D.P., Godrèche, C., Mukamel, D.: Asymmetric exclusion model with two species: spontaneous symmetry breaking. J. Stat. Phys. 80, 69–102 (1995)

    Article  ADS  Google Scholar 

  43. Kolomeisky, A.B.: Exact solutions for a partially asymmetric exclusion model with two species. Phys. Stat. Mech. Appl. 245(3–4), 523–533 (1997)

    Article  Google Scholar 

  44. Evans, M.R., Foster, D.P., Godrèche, C., Mukamel, D.: Spontaneous symmetry breaking in a one dimensional driven diffusive system. Phys. Rev. Lett. 74(2), 208 (1995)

    Article  ADS  Google Scholar 

  45. Popkov, V., Peschel, I.: Symmetry breaking and phase coexistence in a driven diffusive two-channel system. Phys. Rev. 64(2), 026126 (2001)

    ADS  Google Scholar 

  46. Clincy, M., Evans, M., Mukamel, D.: Symmetry breaking through a sequence of transitions in a driven diffusive system. J. Phys. Math. General 34(47), 9923 (2001)

    Article  ADS  Google Scholar 

  47. Pronina, E., Kolomeisky, A.B.: Spontaneous symmetry breaking in two-channel asymmetric exclusion processes with narrow entrances. J. Phys. Math. Theo. 40(10), 2275 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  48. Sharma, N., Gupta, A.: Phase segregation and spontaneous symmetry breaking in a bidirectional two-channel non-conserving model with narrow entrances. J. Stat. Mech. Theo. Exp. 2017(4), 043211 (2017)

    Article  MathSciNet  Google Scholar 

  49. Erickson, D.W., Pruessner, G., Schmittmann, B., Zia, R.K.: Spurious phase in a model for traffic on a bridge. J. Phys. Math. Gen. 38(41), 659 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  50. Arndt, P.F., Heinzel, T., Rittenberg, V.: First-order phase transitions in one-dimensional steady states. J. Stat. Phys. 90, 783–815 (1998)

    Article  ADS  Google Scholar 

  51. Bonnin, P., Kern, N., Young, N.T., Stansfield, I., Romano, M.C.: Novel mrna-specific effects of ribosome drop-off on translation rate and polysome profile. PLoS Comput. Biol. 13(5), 1005555 (2017)

    Article  ADS  Google Scholar 

  52. Ciandrini, L., Stansfield, I., Romano, M.C.: Ribosome traffic on mrnas maps to gene ontology: genome-wide quantification of translation initiation rates and polysome size regulation. PLoS Comput. Biol. 9(1), 1002866 (2013)

    Article  ADS  Google Scholar 

  53. Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the lambert w function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  Google Scholar 

  54. Mukherji, S.: Fixed points and boundary layers in asymmetric simple exclusion processes. Phys. Rev. E 79(4), 041140 (2009)

    Article  ADS  Google Scholar 

  55. Franckenberg, S., Becker, T., Beckmann, R.: Structural view on recycling of archaeal and eukaryotic ribosomes after canonical termination and ribosome rescue. Curr. Opin. Struct. Biol. 22(6), 786–796 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind K. Gupta.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Communicated by Bruno Nachtergaele.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

This section provides an alternative approach to obtaining the stationary state density solution corresponding to each species with the help of Eq. (18). The primary advantage of utilizing this scheme is its reduced complexity in contrast to the computation of conditions for the existence of asymmetric phases discussed in Sect. 4.2. Secondly, this scheme can be readily extended if the model is generalized to incorporate additional dynamics where analytical approaches may not be applicable. The estimate of the (±) species of particle density is represented numerically by the notation \(\rho _{i,n}^{\pm }\) at \(i^{\text {th}}\) lattice site, \(n^{\text {th}}\) time step and in the limit n \(\rightarrow \infty \), the stationary-state solution is assured. The finite-difference equation for the continuum density evolution Eq. (12) in the bulk utilizing the forward-in-time and central-in-space (FTCS) scheme is given by:

$$\begin{aligned}{} & {} \rho _{i,n+1}^{+}=\rho _{i,n}^{+}+ \triangle t^{'}\Bigg (\frac{\epsilon }{2} \Big (\frac{\rho _{i+1,n}^{+}-2\rho _{i,n}^{+}+\rho _{i-1,n}^{+}}{\triangle x^2}\Big )+ \Big (\frac{\rho _{i+1,n}^{+}-\rho _{i-1,n}^{+}}{2\triangle x}\Big ) (2\rho _{i,n-1}^{+})\nonumber \\{} & {} -R(1-\rho _1^{+}-\rho _1^{-})\rho _{i,n}^{+}\Bigg ), \end{aligned}$$
(A1)

where the spatial (\(\triangle x=1/L\)) and temporal (\(\triangle t^{'}\)) grid spacing variables adhere to the condition \(\triangle t^{'}/\triangle x^2\le 1\) to ensure the stability of the scheme against small perturbations. As postulated in the model, explicit determination of boundary conditions in the continuum limit is unattainable because interactions between species and particle resetting from the bulk exclusively occur at the boundaries. At boundaries, we employ Eq. (5) and Eq. (6) to derive finite-difference scheme provided by:

$$\begin{aligned} \rho _{1,n+1}^{+}=\rho _{1,n}^{+}+L \triangle t^{'} \bigg ((1-\rho _{1,n}^{+}-\rho _{1,n}^{-})\Big (\alpha + r\displaystyle \sum _{i=2}^L \rho _{i,n}^{+} \Big )- \rho _{1,n}^{+}(1-\rho _{2,n}^{+})\bigg ), \end{aligned}$$
(A2)

and

$$\begin{aligned} \rho _{L,n+1}^{+}=\rho _{L,n}^{+}+L \triangle t^{'} \bigg ( \rho _{L-1,n}^{+}(1-\rho _{L,n}^{+}) -\rho _{L,n}^{+}\Big (\beta +r(1-\rho _{1,n}^{+}-\rho _{1,n}^{-})\Big )\bigg ). \end{aligned}$$
(A3)

Similarly, comparable finite-difference equations for the negative particles may also be constructed by simply switching the boundary conditions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, N., Gupta, A.K. Local Resetting in a Bidirectional Transport System. J Stat Phys 191, 79 (2024). https://doi.org/10.1007/s10955-024-03298-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-024-03298-5

Keywords

Navigation