Skip to main content

Advertisement

Log in

Identification of plasma metabolites associated with modifiable risk factors and endophenotypes reflecting Alzheimer’s disease pathology

  • NEURO-EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Modifiable factors can influence the risk for Alzheimer’s disease (AD) and serve as targets for intervention; however, the biological mechanisms linking these factors to AD are unknown. This study aims to identify plasma metabolites associated with modifiable factors for AD, including MIND diet, physical activity, smoking, and caffeine intake, and test their association with AD endophenotypes to identify their potential roles in pathophysiological mechanisms. The association between each of the 757 plasma metabolites and four modifiable factors was tested in the wisconsin registry for Alzheimer’s prevention cohort of initially cognitively unimpaired, asymptomatic middle-aged adults. After Bonferroni correction, the significant plasma metabolites were tested for association with each of the AD endophenotypes, including twelve cerebrospinal fluid (CSF) biomarkers, reflecting key pathophysiologies for AD, and four cognitive composite scores. Finally, causal mediation analyses were conducted to evaluate possible mediation effects. Analyses were performed using linear mixed-effects regression. A total of 27, 3, 23, and 24 metabolites were associated with MIND diet, physical activity, smoking, and caffeine intake, respectively. Potential mediation effects include beta-cryptoxanthin in the association between MIND diet and preclinical Alzheimer cognitive composite score, hippurate between MIND diet and immediate learning, glutamate between physical activity and CSF neurofilament light, and beta-cryptoxanthin between smoking and immediate learning. Our study identified several plasma metabolites that are associated with modifiable factors. These metabolites can be employed as biomarkers for tracking these factors, and they provide a potential biological pathway of how modifiable factors influence the human body and AD risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data available on request. The data underlying this article can be requested through the WRAP Application for Resources link on the following website: https://wrap.wisc.edu/data-requests-2/.

References

  1. Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015;11:1007–14. https://doi.org/10.1016/j.jalz.2014.11.009.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stephen R, Hongisto K, Solomon A, Lönnroos E. physical activity and Alzheimer’s disease: a systematic review. J Gerontol Ser A. 2017;72:733–9. https://doi.org/10.1093/gerona/glw251.

    Article  Google Scholar 

  3. Ott A, Slooter A, Hofman A, van Harskamp F, Witteman J, Van Broeckhoven C, van Duijn C, Breteler M. Smoking and risk of dementia and Alzheimer’s disease in a population-based cohort study: the Rotterdam study. The Lancet. 1998;351:1840–3. https://doi.org/10.1016/S0140-6736(97)07541-7.

    Article  CAS  Google Scholar 

  4. Panza F, Solfrizzi V, Barulli MR, Bonfiglio C, Guerra V, Osella A, Seripa D, Sabbà C, Pilotto A, Logroscino G. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: A systematic review. J Nutr Health Aging. 2015;19:313–28. https://doi.org/10.1007/s12603-014-0563-8.

    Article  CAS  PubMed  Google Scholar 

  5. Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL, Bennett DA, Aggarwal NT. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11:1015–22. https://doi.org/10.1016/j.jalz.2015.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Groot C, Hooghiemstra AM, Raijmakers PGHM, van Berckel BNM, Scheltens P, Scherder EJA, van der Flier WM, Ossenkoppele R. The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev. 2016;25:13–23. https://doi.org/10.1016/j.arr.2015.11.005.

    Article  CAS  PubMed  Google Scholar 

  7. Law LL, Rol RN, Schultz SA, Dougherty RJ, Edwards DF, Koscik RL, Gallagher CL, Carlsson CM, Bendlin BB, Zetterberg H, Blennow K, Asthana S, Sager MA, Hermann BP, Johnson SC, Cook DB, Okonkwo OC. Moderate intensity physical activity associates with CSF biomarkers in a cohort at risk for Alzheimer’s disease. Alzheimers Dement Diagn Assess Dis Monit. 2018;10:188–95. https://doi.org/10.1016/j.dadm.2018.01.001.

    Article  Google Scholar 

  8. Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis. 2009;16:85–91. https://doi.org/10.3233/JAD-2009-0920.

    Article  CAS  PubMed  Google Scholar 

  9. Rusanen M, Kivipelto M, Quesenberry CP, Zhou J, Whitmer RA. Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Arch Intern Med. 2011. https://doi.org/10.1001/archinternmed.2010.393.

    Article  PubMed  Google Scholar 

  10. Khan TK, Alkon DL. Peripheral biomarkers of Alzheimer’s disease. J Alzheimers Dis. 2015;44:729–44. https://doi.org/10.3233/JAD-142262.

    Article  CAS  PubMed  Google Scholar 

  11. Shi L, Baird AL, Westwood S, Hye A, Dobson R, Thambisetty M, Lovestone S. A decade of blood biomarkers for Alzheimer’s disease research: an evolving field, improving study designs, and the challenge of replication. J Alzheimers Dis. 2018;62:1181–98. https://doi.org/10.3233/JAD-170531.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zetterberg H. Blood-based biomarkers for Alzheimer’s disease—An update. J Neurosci Methods. 2019;319:2–6. https://doi.org/10.1016/j.jneumeth.2018.10.025.

    Article  CAS  PubMed  Google Scholar 

  13. Gibney MJ, Walsh M, Brennan L, Roche HM, German B, van Ommen B. Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr. 2005;82:497–503. https://doi.org/10.1093/ajcn/82.3.497.

    Article  CAS  PubMed  Google Scholar 

  14. Rue AL, Hermann B, Jones JE, Johnson S, Asthana S, Sager MA. Effect of parental family history of Alzheimer’s disease on serial position profiles. Alzheimers Dement. 2008;4:285–90. https://doi.org/10.1016/j.jalz.2008.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson SC, Koscik RL, Jonaitis EM, Clark LR, Mueller KD, Berman SE, Bendlin BB, Engelman CD, Okonkwo OC, Hogan KJ, Asthana S, Carlsson CM, Hermann BP, Sager MA. The Wisconsin registry for Alzheimer’s prevention: a review of findings and current directions. Alzheimers Dement Diagn Assess Dis Monit. 2018;10:130–42. https://doi.org/10.1016/j.dadm.2017.11.007.

    Article  Google Scholar 

  16. Bridgewater BREA. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. J Postgenomics Drug Biomark Dev. 2014. https://doi.org/10.4172/2153-0769.1000132.

    Article  Google Scholar 

  17. Darst BF, Lu Q, Johnson SC, Engelman CD. Integrated analysis of genomics, longitudinal metabolomics, and Alzheimer’s risk factors among 1111 cohort participants. Genetic Epidemiol. 2018. https://doi.org/10.1101/436923.

    Article  Google Scholar 

  18. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142. https://doi.org/10.1186/1471-2164-7-142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McTiernan A, Kooperberg C, White E, Wilcox S, Coates R, Adams-Campbell LL, Woods N, Ockene J. Recreational physical activity and the risk of breast cancer in postmenopausal women the women’s health initiative cohort study. JAMA. 2003;290:1331–6. https://doi.org/10.1001/jama.290.10.1331.

    Article  CAS  PubMed  Google Scholar 

  20. Van Hulle C, Jonaitis EM, Betthauser TJ, Batrla R, Wild N, Kollmorgen G, Andreasson U, Okonkwo O, Bendlin BB, Asthana S, Carlsson CM, Johnson SC, Zetterberg H, Blennow K. An examination of a novel multipanel of CSF biomarkers in the Alzheimer’s disease clinical and pathological continuum. Alzheimers Dement J Alzheimers Assoc. 2020. https://doi.org/10.1002/alz.12204.

    Article  Google Scholar 

  21. Donohue MC, Sperling RA, Salmon DP, Rentz DM, Raman R, Thomas RG, Weiner M, Aisen PS. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 2014;71:961–70. https://doi.org/10.1001/jamaneurol.2014.803.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jonaitis EM, Koscik RL, Clark LR, Ma Y, Betthauser TJ, Berman SE, Allison SL, Mueller KD, Hermann BP, Van Hulle CA, Christian BT, Bendlin BB, Blennow K, Zetterberg H, Carlsson CM, Asthana S, Johnson SC. Measuring longitudinal cognition: Individual tests versus composites. Alzheimers Dement Diagn Assess Dis Monit. 2019;11:74–84. https://doi.org/10.1016/j.dadm.2018.11.006.

    Article  Google Scholar 

  23. Clark LR, Racine AM, Koscik RL, Okonkwo OC, Engelman CD, Carlsson CM, Asthana S, Bendlin BB, Chappell R, Nicholas CR, Rowley HA, Oh JM, Hermann BP, Sager MA, Christian BT, Johnson SC. Beta-amyloid and cognitive decline in late middle age: findings from the Wisconsin registry for Alzheimer’s prevention study. Alzheimers Dement. 2016;12:805–14. https://doi.org/10.1016/j.jalz.2015.12.009.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation: R package for causal mediation analysis. Los Angeles: UCLA Stat Stat Association; 2014.

    Google Scholar 

  25. Maiani G, Castón MJP, Catasta G, Toti E, Cambrodón IG, Bysted A, Granado-Lorencio F, Olmedilla-Alonso B, Knuthsen P, Valoti M, Böhm V, Mayer-Miebach E, Behsnilian D, Schlemmer U. Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res. 2009;53:S194–218. https://doi.org/10.1002/mnfr.200800053.

    Article  PubMed  Google Scholar 

  26. Marks HS, Hilson JA, Leichtweis HC, Stoewsand GS. S-Methylcysteine sulfoxide in Brassica vegetables and formation of methyl methanethiosulfinate from Brussels sprouts. J Agric Food Chem. 1992;40:2098–101. https://doi.org/10.1021/jf00023a012.

    Article  CAS  Google Scholar 

  27. Whelan J. Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. J Nutr. 2009;139:5–10. https://doi.org/10.3945/jn.108.094268.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang T-T, Xu J, Wang Y-M, Xue C-H. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res. 2019;75:100997. https://doi.org/10.1016/j.plipres.2019.100997.

    Article  CAS  PubMed  Google Scholar 

  29. Cunnane SC, Plourde M, Pifferi F, Bégin M, Féart C, Barberger-Gateau P. Fish, docosahexaenoic acid and Alzheimer’s disease. Prog Lipid Res. 2009;48:239–56. https://doi.org/10.1016/j.plipres.2009.04.001.

    Article  CAS  PubMed  Google Scholar 

  30. El-Seedi HR, El-Said AMA, Khalifa SAM, Göransson U, Bohlin L, Borg-Karlson A-K, Verpoorte R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J Agric Food Chem. 2012;60:10877–95. https://doi.org/10.1021/jf301807g.

    Article  CAS  PubMed  Google Scholar 

  31. Ganesan K, Xu B. A critical review on polyphenols and health benefits of black soybeans. Nutrients. 2017;9:455. https://doi.org/10.3390/nu9050455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tuomainen M, Lindström J, Lehtonen M, Auriola S, Pihlajamäki J, Peltonen M, Tuomilehto J, Uusitupa M, de Mello VD, Hanhineva K. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes. 2018;8:35. https://doi.org/10.1038/s41387-018-0046-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henriksson J. Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J Exp Biol. 1991;160:149–65.

    Article  CAS  PubMed  Google Scholar 

  34. Agostini F, Biolo G. Effect of physical activity on glutamine metabolism. Curr Opin Clin Nutr Metab Care. 2010;13:58–64. https://doi.org/10.1097/MCO.0b013e328332f946.

    Article  CAS  PubMed  Google Scholar 

  35. Xiao Q, Moore SC, Keadle SK, Xiang Y-B, Zheng W, Peters TM, Leitzmann MF, Ji B-T, Sampson JN, Shu X-O, Matthews CE. Objectively measured physical activity and plasma metabolomics in the Shanghai physical activity study. Int J Epidemiol. 2016;45:1433–44. https://doi.org/10.1093/ije/dyw033.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gu F, Derkach A, Freedman ND, Landi MT, Albanes D, Weinstein SJ, Mondul AM, Matthews CE, Guertin KA, Xiao Q, Zheng W, Shu X, Sampson JN, Moore SC, Caporaso NE. Cigarette smoking behaviour and blood metabolomics. Int J Epidemiol. 2016;45:1421–32. https://doi.org/10.1093/ije/dyv330.

    Article  PubMed  Google Scholar 

  37. Cross AJ, Boca S, Freedman ND, Caporaso NE, Huang W-Y, Sinha R, Sampson JN, Moore SC. Metabolites of tobacco smoking and colorectal cancer risk. Carcinogenesis. 2014;35:1516–22. https://doi.org/10.1093/carcin/bgu071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2020;49:D1388–95. https://doi.org/10.1093/nar/gkaa971.

    Article  CAS  PubMed Central  Google Scholar 

  39. Rothwell JA, Keski-Rahkonen P, Robinot N, Assi N, Casagrande C, Jenab M, Ferrari P, Boutron-Ruault M-C, Mahamat-Saleh Y, Mancini FR, Boeing H, Katzke V, Kühn T, Niforou K, Trichopoulou A, Valanou E, Krogh V, Mattiello A, Palli D, Sacerdote C, Tumino R, Scalbert A. A metabolomic study of biomarkers of habitual coffee intake in four European Countries. Mol Nutr Food Res. 2019;63:1900659. https://doi.org/10.1002/mnfr.201900659.

    Article  CAS  Google Scholar 

  40. Langenau J, Oluwagbemigun K, Brachem C, Lieb W, di Giuseppe R, Artati A, Kastenmüller G, Weinhold L, Schmid M, Nöthlings U. Blood metabolomic profiling confirms and identifies biomarkers of food intake. Metabolites. 2020;10:468. https://doi.org/10.3390/metabo10110468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Camandola S, Plick N, Mattson MP. Impact of coffee and cacao purine metabolites on neuroplasticity and neurodegenerative disease. Neurochem Res. 2019;44:214–27. https://doi.org/10.1007/s11064-018-2492-0.

    Article  CAS  PubMed  Google Scholar 

  42. Ogawa M. Coffee and hippuric acid. In: Preedy VR, editor. Coffee in health and disease prevention. San Diego: Academic Press; 2015. p. 209–15.

    Chapter  Google Scholar 

  43. Burri BJ. Beta-cryptoxanthin as a source of vitamin A. J Sci Food Agric. 2015;95:1786–94. https://doi.org/10.1002/jsfa.6942.

    Article  CAS  PubMed  Google Scholar 

  44. Lee H-P, Casadesus G, Zhu X, Lee H, Perry G, Smith MA, Gustaw-Rothenberg K, Lerner A. All-trans retinoic acid as a novel therapeutic strategy for Alzheimer’s disease. Expert Rev Neurother. 2009;9:1615–21. https://doi.org/10.1586/ern.09.86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ono K, Yamada M. Vitamin A and Alzheimer’s disease. Geriatr Gerontol Int. 2012;12:180–8. https://doi.org/10.1111/j.1447-0594.2011.00786.x.

    Article  PubMed  Google Scholar 

  46. Wołoszynowska-Fraser MU, Kouchmeshky A, McCaffery P. Vitamin A and retinoic acid in cognition and cognitive disease. Annu Rev Nutr. 2020;40:247–72. https://doi.org/10.1146/annurev-nutr-122319-034227.

    Article  CAS  PubMed  Google Scholar 

  47. Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Sijben J, Groenendijk M, Stijnen T. Plasma nutrient status of patients with Alzheimer’s disease: systematic review and meta-analysis. Alzheimers Dement. 2014;10:485–502. https://doi.org/10.1016/j.jalz.2013.05.1771.

    Article  PubMed  Google Scholar 

  48. Lagiou B, Tebelis P, Naska T. Plasma carotenoid levels in relation to tobacco smoking and demographic factors. Int J Vitam Nutr Res. 2003;73:226–31. https://doi.org/10.1024/0300-9831.73.3.226.

    Article  CAS  PubMed  Google Scholar 

  49. Pallister T, Jackson MA, Martin TC, Zierer J, Jennings A, Mohney RP, MacGregor A, Steves CJ, Cassidy A, Spector TD, Menni C. Hippurate as a metabolomic marker of gut microbiome diversity: modulation by diet and relationship to metabolic syndrome. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-13722-4.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rutledge AG, Sandhu KA, Miller GM, Edirisinghe I, Burton-Freeman BB, Shukitt-Hale B. Blueberry phenolics are associated with cognitive enhancement in supplemented healthy older adults. Food Funct. 2021;12:107–18. https://doi.org/10.1039/D0FO02125C.

    Article  CAS  PubMed  Google Scholar 

  51. Dhiman K, Gupta VB, Villemagne VL, Eratne D, Graham PL, Fowler C, Bourgeat P, Li Q-X, Collins S, Bush AI, Rowe CC, Masters CL, Ames D, Hone E, Blennow K, Zetterberg H, Martins RN. Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer’s disease. Alzheimers Dement Diagn Assess Dis Monit. 2020;12:e12005. https://doi.org/10.1002/dad2.12005.

    Article  Google Scholar 

  52. Gafson AR, Barthélemy NR, Bomont P, Carare RO, Durham HD, Julien J-P, Kuhle J, Leppert D, Nixon RA, Weller RO, Zetterberg H, Matthews PM. Neurofilaments: neurobiological foundations for biomarker applications. Brain. 2020;143:1975–98. https://doi.org/10.1093/brain/awaa098.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 2020. https://doi.org/10.3389/fncel.2020.00051.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Green-Harris G, Coley SL, Koscik RL, Norris NC, Houston SL, Sager MA, Johnson SC, Edwards DF. Addressing disparities in Alzheimer’s disease and African-American participation in research: an asset-based community development approach. Front Aging Neurosci. 2019;11:125. https://doi.org/10.3389/fnagi.2019.00125.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors especially thank the WRAP participants and staff for their contributions to the studies. Without their efforts, this research would not be possible. We would like to thank Roche for providing the NTK kits for this study. The Roche NeuroToolKit is a panel of exploratory prototype assays designed to robustly evaluate biomarkers associated with key pathologic events characteristic of AD and other neurological disorders, used for research purposes only and not approved for clinical use. COBAS, COBAS E and ELECSYS are trademarks of Roche.

Funding

This study was supported by the National Institutes of Health (NIH) grants [R01AG27161 (Wisconsin Registry for Alzheimer Prevention: Biomarkers of Preclinical AD), R01AG054047 (Genomic and Metabolomic Data Integration in a Longitudinal Cohort at Risk for Alzheimer’s Disease), and R21AG067092 (Identifying Metabolomic Risk Factors in Plasma and Cerebrospinal Fluid for Alzheimer's Disease)], the Helen Bader Foundation, Northwestern Mutual Foundation, Extendicare Foundation, State of Wisconsin, the Clinical and Translational Science Award (CTSA) program through the NIH National Center for Advancing Translational Sciences (NCATS) grant [UL1TR000427], and the University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation. Computational resources were supported by core grants to the Center for Demography and Ecology [P2CHD047873] and the Center for Demography of Health and Aging [P30AG017266]. HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712), Swedish State Support for Clinical Research (#ALFGBG-720931), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C and #ADSF-21-831377-C), the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2019-0228), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), European Union Joint Program for Neurodegenerative Disorders (JPND2021-00694), and the UK Dementia Research Institute at UCL. KB is supported by the Swedish Research Council (#2017-00915), ADDF, USA [#RDAPB-201809-2016615], the Swedish Alzheimer Foundation [#AF-742881], Hjärnfonden, Sweden [#FO2017-0243], the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement [#ALFGBG-715986], and European Union Joint Program for Neurodegenerative Disorders [JPND2019-466–236].

Author information

Authors and Affiliations

Authors

Contributions

RD conceived and designed the analysis, performed the analysis, and wrote the paper. DF helped interpret the findings and write the discussion. CV conducted the Cerebrolspinal fluid NeuroToolKit biomarker data quality control and reviewed the paper. GK, IS, NW generated the Cerebrolspinal fluid NeuroToolKit biomarker data and reviewed the paper. QL, RA contributed to the analysis design and reviewed the paper. HZ, KB contributed the Cerebrialspinal fluid NeuroToolKit biomarker data generation and reviewed the paper. CC, SJ directed the WRAP study and reviewed the paper. CE contributed to the analysis design, helped interpret the findings, and reviewed and edited the paper.

Corresponding author

Correspondence to Corinne D. Engelman.

Ethics declarations

Conflict of interest

Gwendlyn Kollmorgen and Norbert Wild are full-time employees of Roche Diagnostics GmbH. Ivonne Suridjan is a full-time employee of Roche Diagnostics International Ltd and holds non-voting equities in F. Hoffmann-La Roche. HZ has served at scientific advisory boards and/or as a consultant for Abbvie, Alector, Annexon, Artery Therapeutics, AZTherapies, CogRx, Denali, Eisai, Nervgen, Pinteon Therapeutics, Red Abbey Labs, Passage Bio, Roche, Samumed, Siemens Healthineers, Triplet Therapeutics, and Wave, has given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure, Biogen, and Roche, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). KB has served as a consultant, at advisory boards, or at data monitoring committees for Abcam, Axon, Biogen, JOMDD/Shimadzu. Julius Clinical, Lilly, MagQu, Novartis, Pharmatrophix, Prothena, Roche Diagnostics, and Siemens Healthineers, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program, all unrelated to the work presented in this paper. SJ received grants from the NIH during the conduct of the study and personal fees from Roche Diagnostics outside the submitted work.

Consent to participate

All participants provided signed informed consent before participation.

Ethical approval

This study was conducted with the approval of the University of Wisconsin Institutional Review Board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 556 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, R., Denier-Fields, D.N., Van Hulle, C.A. et al. Identification of plasma metabolites associated with modifiable risk factors and endophenotypes reflecting Alzheimer’s disease pathology. Eur J Epidemiol 38, 559–571 (2023). https://doi.org/10.1007/s10654-023-00988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-023-00988-4

Keywords

Navigation