Skip to main content

Epidemiology and Risk Factors of Alzheimer’s Disease: A Focus on Diet

  • Protocol
  • First Online:
Biomarkers for Preclinical Alzheimer’s Disease

Part of the book series: Neuromethods ((NM,volume 137))

Abstract

Alzheimer’s disease (AD) appears to result from a highly dynamical, time-dependent cascade of neuropathological processes, which involve the balance between two antagonist pathways: an accumulation of lesions in the brain (evolving progressively over decades), balanced by a variety of cellular and tissular compensatory mechanisms. Preclinical research has indicated that several nutritional factors have the potential to modulate many components of this complex system; dietary interventions may thus constitute promising strategies for the prevention of AD. Extensive epidemiological research has been conducted on nutrition, diet, and AD dementia over the past two decades. This chapter reviews existing epidemiological literature on nutrition and cognitive aging and AD dementia, with a specific focus on observational, prospective studies, including both clinical outcomes and brain imaging biomarkers. Most studies investigated candidate foods and nutrients, including “good” fats (e.g., marine long-chain omega-3 polyunsaturated fatty acids provided by fish intake), antioxidant nutrients (i.e., vitamins C and E, carotenoids, and polyphenols, found in plant products), and B vitamins (e.g., folate provided by green leafy vegetables). Overall, associations between individual nutrients and both clinical outcomes and brain imaging biomarkers have been relatively inconsistent. Healthy dietary patterns such as the Mediterranean diet, which combine several healthy foods and nutrients, have been more consistently related to AD outcomes. Still, most randomized controlled trials on nutritional supplements for the prevention of AD have remained inconclusive so far. Future research should leverage innovative approaches such as “omics” methods to explore dietary exposures, novel imaging markers to capture prodromal AD, and longitudinal statistical approaches to model long-term trajectories of risk factors and AD markers, to better understand how and when diet may shape the brain and prevent AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 59.99
Price excludes VAT (USA)
Softcover Book
USD 59.99
Price excludes VAT (USA)
Hardcover Book
USD 59.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Alzheimer report 2016 (2016) https://www.alz.co.uk/research/world-report-2016. Accessed 16 May 2017

    Google Scholar 

  2. Lambert JC, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458. https://doi.org/10.1038/ng.2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scheltens P, Blennow K, Breteler MM et al (2016) Alzheimer’s disease. Lancet. https://doi.org/10.1016/S0140-6736(15)01124-1

  4. Grasset L, Brayne C, Joly P et al (2016) Trends in dementia incidence: evolution over a 10-year period in France. Alzheimers Dement 12(3):272–280. https://doi.org/10.1016/j.jalz.2015.11.001

    Article  PubMed  Google Scholar 

  5. Satizabal CL, Beiser AS, Chouraki V et al (2016) Incidence of dementia over three decades in the Framingham Heart Study. N Engl J Med 374(6):523–532. https://doi.org/10.1056/NEJMoa1504327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Small SA, Duff K (2008) Linking abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 60(4):534–542. https://doi.org/10.1016/j.neuron.2008.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar DK, Choi SH, Washicosky KJ et al (2016) Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 8(340):340ra372. https://doi.org/10.1126/scitranslmed.aaf1059

    Article  CAS  Google Scholar 

  8. Zhao Z, Nelson AR, Betsholtz C et al (2015) Establishment and dysfunction of the blood-brain barrier. Cell 163(5):1064–1078. https://doi.org/10.1016/j.cell.2015.10.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stern Y (2009) Cognitive reserve. Neuropsychologia 47(10):2015–2028

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shah H, Albanese E, Duggan C et al (2016) Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol 15(12):1285–1294. https://doi.org/10.1016/s1474-4422(16)30235-6

    Article  PubMed  Google Scholar 

  11. Cunnane SC, Plourde M, Pifferi F et al (2009) Fish, docosahexaenoic acid and Alzheimer’s disease. Prog Lipid Res 48(5):239–256. doi:S0163-7827(09)00018-6 [pii]10.1016/j.plipres.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  12. Su HM (2010) Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 21(5):364–373. https://doi.org/10.1016/j.jnutbio.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  13. Lim GP, Calon F, Morihara T et al (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 25(12):3032–3040

    Article  CAS  PubMed  Google Scholar 

  14. Barberger-Gateau P, Letenneur L, Deschamps V et al (2002) Fish, meat, and risk of dementia: cohort study. BMJ 325(7370):932–933

    Article  PubMed  PubMed Central  Google Scholar 

  15. Morris MC, Evans DA, Tangney CC et al (2005) Fish consumption and cognitive decline with age in a large community study. Arch Neurol 62(12):1849–1853

    Article  PubMed  Google Scholar 

  16. Schaefer EJ, Bongard V, Beiser AS et al (2006) Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol 63(11):1545–1550

    Article  PubMed  Google Scholar 

  17. Samieri C, Feart C, Letenneur L et al (2008) Low plasma eicosapentaenoic acid and depressive symptomatology are independent predictors of dementia risk. Am J Clin Nutr 88:714–721

    Article  CAS  PubMed  Google Scholar 

  18. Lopez LB, Kritz-Silverstein D, Barrett Connor E (2011) High dietary and plasma levels of the omega-3 fatty acid docosahexaenoic acid are associated with decreased dementia risk: the Rancho Bernardo study. J Nutr Health Aging 15(1):25–31

    Article  CAS  PubMed  Google Scholar 

  19. Huang TL (2010) Omega-3 fatty acids, cognitive decline, and Alzheimer’s disease: a critical review and evaluation of the literature. J Alzheimers Dis 21(3):673–690. https://doi.org/10.3233/JAD-2010-090934

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Chen J, Qiu J et al (2016) Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr 103(2):330–340. https://doi.org/10.3945/ajcn.115.124081

    Article  CAS  PubMed  Google Scholar 

  21. Burdge GC, Calder PC (2005) Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45(5):581–597. https://doi.org/10.1051/rnd:2005047

    Article  CAS  PubMed  Google Scholar 

  22. Morris MC, Brockman J, Schneider JA et al (2016) Association of seafood consumption, brain mercury level, and APOE epsilon4 status with brain neuropathology in older adults. JAMA 315(5):489–497. https://doi.org/10.1001/jama.2015.19451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van de Rest O, Wang Y, Barnes LL et al (2016) APOE epsilon4 and the associations of seafood and long-chain omega-3 fatty acids with cognitive decline. Neurology 86(22):2063–2070. https://doi.org/10.1212/WNL.0000000000002719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yassine HN, Braskie MN, Mack WJ et al (2017) Association of docosahexaenoic acid supplementation with Alzheimer disease stage in apolipoprotein E epsilon4 carriers: a review. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2016.4899

  25. Laitinen MH, Ngandu T, Rovio S et al (2006) Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement Geriatr Cogn Disord 22(1):99–107

    Article  CAS  PubMed  Google Scholar 

  26. Samieri C, Feart C, Proust-Lima C et al (2011) Omega-3 fatty acids and cognitive decline: modulation by ApoEepsilon4 allele and depression. Neurobiol Aging 32(12):2313–2322. https://doi.org/10.1016/j.neurobiolaging.2010.03.020

    Article  CAS  Google Scholar 

  27. Huang TL, Zandi PP, Tucker KL et al (2005) Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. Neurology 65(9):1409–1414

    Article  CAS  PubMed  Google Scholar 

  28. Barberger-Gateau P, Raffaitin C, Letenneur L et al (2007) Dietary patterns and risk of dementia: the Three-City cohort study. Neurology 69(20):1921–1930

    Article  CAS  PubMed  Google Scholar 

  29. Whalley LJ, Deary IJ, Starr JM et al (2008) n-3 Fatty acid erythrocyte membrane content, APOE {varepsilon}4, and cognitive variation: an observational follow-up study in late adulthood. Am J Clin Nutr 87(2):449–454

    Article  CAS  PubMed  Google Scholar 

  30. Daiello LA, Gongvatana A, Dunsiger S et al (2015) Association of fish oil supplement use with preservation of brain volume and cognitive function. Alzheimers Dement 11(2):226–235. https://doi.org/10.1016/j.jalz.2014.02.005

    Article  PubMed  Google Scholar 

  31. Yassine HN, Feng Q, Azizkhanian I et al (2016) Association of serum docosahexaenoic acid with cerebral amyloidosis. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2016.1924

  32. Grimm MO, Mett J, Hartmann T (2016) The impact of vitamin E and other fat-soluble vitamins on Alzheimer’s disease. Int J Mol Sci 17(11). https://doi.org/10.3390/ijms17111785

  33. Ransom J, Morgan PJ, McCaffery PJ et al (2014) The rhythm of retinoids in the brain. J Neurochem 129(3):366–376. https://doi.org/10.1111/jnc.12620

    Article  CAS  PubMed  Google Scholar 

  34. Geleijnse JM, Hollman P (2008) Flavonoids and cardiovascular health: which compounds, what mechanisms? Am J Clin Nutr 88(1):12–13

    Article  CAS  PubMed  Google Scholar 

  35. Corder R, Mullen W, Khan NQ et al (2006) Oenology: red wine procyanidins and vascular health. Nature 444(7119):566. https://doi.org/10.1038/444566a

    Article  CAS  PubMed  Google Scholar 

  36. Brickman AM, Khan UA, Provenzano FA et al (2014) Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci 17(12):1798–1803. https://doi.org/10.1038/nn.3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Andres-Lacueva C, Shukitt-Hale B, Galli RL et al (2005) Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 8(2):111–120. https://doi.org/10.1080/10284150500078117

    Article  CAS  PubMed  Google Scholar 

  38. Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280(45):37377–37382. https://doi.org/10.1074/jbc.M508246200

    Article  CAS  PubMed  Google Scholar 

  39. Ho L, Ferruzzi MG, Janle EM et al (2013) Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. FASEB J 27(2):769–781. https://doi.org/10.1096/fj.12-212118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang J, Ho L, Zhao Z et al (2006) Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer’s disease. FASEB J 20(13):2313–2320. https://doi.org/10.1096/fj.06-6281com

    Article  CAS  PubMed  Google Scholar 

  41. Boeing H, Bechthold A, Bub A et al (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51(6):637–663. https://doi.org/10.1007/s00394-012-0380-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu W, Wang H, Wan Y et al (2017) Alcohol consumption and dementia risk: a dose-response meta-analysis of prospective studies. Eur J Epidemiol. https://doi.org/10.1007/s10654-017-0225-3

  43. Samieri C, Feart C, Proust-Lima C et al (2011) Olive oil consumption, plasma oleic acid, and stroke incidence: the Three-City Study. Neurology 77(5):418–425. https://doi.org/10.1212/WNL.0b013e318220abeb

    Article  CAS  PubMed  Google Scholar 

  44. Berr C, Portet F, Carriere I et al (2009) Olive oil and cognition: results from the three-city study. Dement Geriatr Cogn Disord 28(4):357–364. https://doi.org/10.1159/000253483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim YS, Kwak SM, Myung SK (2015) Caffeine intake from coffee or tea and cognitive disorders: a meta-analysis of observational studies. Neuroepidemiology 44(1):51–63. https://doi.org/10.1159/000371710

    Article  PubMed  Google Scholar 

  46. Bjelakovic G, Nikolova D, Gluud LL et al (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297(8):842–857

    Article  CAS  PubMed  Google Scholar 

  47. Li FJ, Shen L, Ji HF (2012) Dietary intakes of vitamin E, vitamin C, and beta-carotene and risk of Alzheimer’s disease: a meta-analysis. J Alzheimers Dis 31(2):253–258. https://doi.org/10.3233/JAD-2012-120349

    CAS  PubMed  Google Scholar 

  48. Helmer C, Peuchant E, Letenneur L et al (2003) Association between antioxidant nutritional indicators and the incidence of dementia: results from the PAQUID prospective cohort study. Eur J Clin Nutr 57(12):1555–1561

    Article  CAS  PubMed  Google Scholar 

  49. Mangialasche F, Kivipelto M, Mecocci P et al (2010) High plasma levels of vitamin E forms and reduced Alzheimer’s disease risk in advanced age. J Alzheimers Dis 20(4):1029–1037. https://doi.org/10.3233/JAD-2010-091450

    Article  CAS  PubMed  Google Scholar 

  50. Cherubini A, Martin A, Andres-Lacueva C et al (2005) Vitamin E levels, cognitive impairment and dementia in older persons: the InCHIANTI study. Neurobiol Aging 26(7):987–994

    Article  CAS  PubMed  Google Scholar 

  51. Ravaglia G, Forti P, Lucicesare A et al (2008) Plasma tocopherols and risk of cognitive impairment in an elderly Italian cohort. Am J Clin Nutr 87(5):1306–1313

    Article  CAS  PubMed  Google Scholar 

  52. Mangialasche F, Solomon A, Kareholt I et al (2013) Serum levels of vitamin E forms and risk of cognitive impairment in a Finnish cohort of older adults. Exp Gerontol 48(12):1428–1435. https://doi.org/10.1016/j.exger.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  53. Sundelof J, Kilander L, Helmersson J et al (2009) Systemic tocopherols and F2-isoprostanes and the risk of Alzheimer's disease and dementia: a prospective population-based study. J Alzheimers Dis 18(1):71–78. https://doi.org/10.3233/JAD-2009-1125

    Article  PubMed  CAS  Google Scholar 

  54. Feart C, Letenneur L, Helmer C et al (2015) Plasma carotenoids are inversely associated with dementia risk in an elderly French cohort. J Gerontol A Biol Sci Med Sci. https://doi.org/10.1093/gerona/glv135

  55. Hu P, Bretsky P, Crimmins EM et al (2006) Association between serum beta-carotene levels and decline of cognitive function in high-functioning older persons with or without apolipoprotein E 4 alleles: MacArthur studies of successful aging. J Gerontol A Biol Sci Med Sci 61(6):616–620

    Article  PubMed  Google Scholar 

  56. Kang JH, Grodstein F (2008) Plasma carotenoids and tocopherols and cognitive function: a prospective study. Neurobiol Aging 29(9):1394–1403. https://doi.org/10.1016/j.neurobiolaging.2007.03.006

    Article  CAS  PubMed  Google Scholar 

  57. Commenges D, Scotet V, Renaud S et al (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16(4):357–363

    Article  CAS  PubMed  Google Scholar 

  58. Letenneur L, Proust-Lima C, Le Gouge A et al (2007) Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 165(12):1364–1371

    Article  CAS  PubMed  Google Scholar 

  59. Kesse-Guyot E, Fezeu L, Andreeva VA et al (2012) Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J Nutr 142(1):76–83. https://doi.org/10.3945/jn.111.144428

    Article  CAS  PubMed  Google Scholar 

  60. Devore EE, Kang JH, Breteler MM et al (2012) Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol 72(1):135–143. https://doi.org/10.1002/ana.23594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Root M, Ravine E, Harper A (2015) Flavonol intake and cognitive decline in middle-aged adults. J Med Food 18(12):1327–1332. https://doi.org/10.1089/jmf.2015.0010

    Article  CAS  PubMed  Google Scholar 

  62. Rabassa M, Cherubini A, Zamora-Ros R et al (2015) Low levels of a urinary biomarker of dietary polyphenol are associated with substantial cognitive decline over a 3-year period in older adults: the Invecchiare in Chianti study. J Am Geriatr Soc 63(5):938–946. https://doi.org/10.1111/jgs.13379

    Article  PubMed  Google Scholar 

  63. Reynolds E (2006) Vitamin B12, folic acid, and the nervous system. Lancet Neurol 5(11):949–960

    Article  CAS  PubMed  Google Scholar 

  64. Seshadri S, Beiser A, Selhub J et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346(7):476–483

    Article  CAS  PubMed  Google Scholar 

  65. Morris MS (2003) Homocysteine and Alzheimer’s disease. Lancet Neurol 2(7):425–428

    Article  CAS  PubMed  Google Scholar 

  66. Selhub J, Troen A, Rosenberg IH (2010) B vitamins and the aging brain. Nutr Rev 68(Suppl 2):S112–S118. https://doi.org/10.1111/j.1753-4887.2010.00346.x

    Article  PubMed  Google Scholar 

  67. Morris MS (2012) The role of B vitamins in preventing and treating cognitive impairment and decline. Adv Nutr 3(6):801–812. https://doi.org/10.3945/an.112.002535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Agnew-Blais JC, Wassertheil-Smoller S, Kang JH et al (2015) Folate, vitamin B-6, and vitamin B-12 intake and mild cognitive impairment and probable dementia in the Women’s Health Initiative Memory Study. J Acad Nutr Diet 115(2):231–241. https://doi.org/10.1016/j.jand.2014.07.006

    Article  PubMed  Google Scholar 

  69. Corrada MM, Kawas CH, Hallfrisch J et al (2005) Reduced risk of Alzheimer’s disease with high folate intake: the Baltimore Longitudinal Study of Aging. Alzheimers Dement 1(1):11–18. https://doi.org/10.1016/j.jalz.2005.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luchsinger JA, Tang MX, Miller J et al (2007) Relation of higher folate intake to lower risk of Alzheimer disease in the elderly. Arch Neurol 64(1):86–92

    Article  PubMed  Google Scholar 

  71. Lefevre-Arbogast S, Feart C, Dartigues JF et al (2016) Dietary B vitamins and a 10-year risk of dementia in older persons. Forum Nutr 8(12). https://doi.org/10.3390/nu8120761

  72. Nelson C, Wengreen HJ, Munger RG et al (2009) Dietary folate, vitamin B-12, vitamin B-6 and incident Alzheimer’s disease: the cache county memory, health and aging study. J Nutr Health Aging 13(10):899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morris MC, Evans DA, Schneider JA et al (2006) Dietary folate and vitamins B-12 and B-6 not associated with incident Alzheimer’s disease. J Alzheimers Dis 9(4):435–443

    Article  PubMed  PubMed Central  Google Scholar 

  74. Morris MC, Evans DA, Bienias JL et al (2005) Dietary folate and vitamin B12 intake and cognitive decline among community-dwelling older persons. Arch Neurol 62(4):641–645. https://doi.org/10.1001/archneur.62.4.641

    Article  PubMed  Google Scholar 

  75. Hinterberger M, Fischer P (2013) Folate and Alzheimer: when time matters. J Neural Transm 120(1):211–224. https://doi.org/10.1007/s00702-012-0822-y

    Article  CAS  PubMed  Google Scholar 

  76. Landel V, Annweiler C, Millet P et al (2016) Vitamin D, cognition, and Alzheimer’s disease: the therapeutic benefit is in the D-tails. J Alzheimers Dis. https://doi.org/10.3233/jad-150943

  77. Hilger J, Friedel A, Herr R et al (2014) A systematic review of vitamin D status in populations worldwide. Br J Nutr 111(1):23–45. https://doi.org/10.1017/S0007114513001840

    Article  CAS  PubMed  Google Scholar 

  78. Annweiler C, Montero-Odasso M, Llewellyn DJ et al (2013) Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis 37(1):147–171. https://doi.org/10.3233/JAD-130452

    CAS  PubMed  Google Scholar 

  79. Sommer I, Griebler U, Kien C et al (2017) Vitamin D deficiency as a risk factor for dementia: a systematic review and meta-analysis. BMC Geriatr 17(1):16. https://doi.org/10.1186/s12877-016-0405-0

    Article  PubMed  PubMed Central  Google Scholar 

  80. Feart C, Helmer C, Merle B et al (2017) Associations of lower vitamin D concentrations with cognitive decline and long-term risk of dementia and Alzheimer’s disease in older adults. Alzheimers Dement 13(11):1207–1216. https://doi.org/10.1016/j.jalz.2017.03.003.

  81. Karakis I, Pase MP, Beiser A et al (2016) Association of serum vitamin D with the risk of incident dementia and subclinical indices of brain aging: the Framingham Heart Study. J Alzheimers Dis 51(2):451–461. https://doi.org/10.3233/JAD-150991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Olsson E, Byberg L, Karlstrom B et al (2017) Vitamin D is not associated with incident dementia or cognitive impairment: an 18-y follow-up study in community-living old men. Am J Clin Nutr. https://doi.org/10.3945/ajcn.116.141531

  83. Nakagawa K, Kiko T, Hatade K et al (2009) Antioxidant effect of lutein towards phospholipid hydroperoxidation in human erythrocytes. Br J Nutr 102(9):1280–1284. https://doi.org/10.1017/S0007114509990316

    Article  CAS  PubMed  Google Scholar 

  84. Chen SJ, Huang LY, Hu CH (2015) Antioxidative reaction of carotenes against peroxidation of fatty acids initiated by nitrogen dioxide: a theoretical study. J Phys Chem B 119(30):9640–9650. https://doi.org/10.1021/acs.jpcb.5b04142

    Article  CAS  PubMed  Google Scholar 

  85. Feart C, Samieri C, Barberger-Gateau P (2015) Mediterranean diet and cognitive health: an update of available knowledge. Curr Opin Clin Nutr Metab Care 18(1):51–62. https://doi.org/10.1097/MCO.0000000000000131

    Article  CAS  PubMed  Google Scholar 

  86. Scarmeas N, Stern Y, Tang MX et al (2006) Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59(6):912–921

    Article  PubMed  PubMed Central  Google Scholar 

  87. Feart C, Samieri C, Rondeau V et al (2009) Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA 302(6):638–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Singh B, Parsaik AK, Mielke MM et al (2014) Association of mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 39(2):271–282. https://doi.org/10.3233/JAD-130830

    PubMed  PubMed Central  Google Scholar 

  89. Samieri C, Grodstein F, Rosner BA et al (2013) Mediterranean diet and cognitive function in older age. Epidemiology 24(4):490–499. https://doi.org/10.1097/EDE.0b013e318294a065

    Article  PubMed  PubMed Central  Google Scholar 

  90. Samieri C, Okereke OI, ED E et al (2013) Long-term adherence to the Mediterranean diet is associated with overall cognitive status, but not cognitive decline, in women. J Nutr 143(4):493–499. https://doi.org/10.3945/jn.112.169896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gardener SL, Rainey-Smith SR, Barnes MB et al (2014) Dietary patterns and cognitive decline in an Australian study of ageing. Mol Psychiatry. https://doi.org/10.1038/mp.2014.79

  92. Smyth A, Dehghan M, O'Donnell M et al (2015) Healthy eating and reduced risk of cognitive decline: a cohort from 40 countries. Neurology. https://doi.org/10.1212/WNL.0000000000001638

  93. Tangney CC, Li H, Wang Y et al (2014) Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology 83(16):1410–1416. https://doi.org/10.1212/WNL.0000000000000884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Berendsen AA, Kang JH, van de Rest O et al (2017) The dietary approaches to stop hypertension diet, cognitive function, and cognitive decline in American older women. J Am Med Dir Assoc. https://doi.org/10.1016/j.jamda.2016.11.026

  95. Morris MC, Tangney CC, Wang Y et al (2015) MIND diet slows cognitive decline with aging. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2015.04.011

  96. Morris MC, Tangney CC, Wang Y et al (2015) MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2014.11.009

  97. Gu Y, Scarmeas N (2011) Dietary patterns in Alzheimer’s disease and cognitive aging. Curr Alzheimer Res 8(5):510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alles B, Samieri C, Feart C et al (2012) Dietary patterns: a novel approach to examine the link between nutrition and cognitive function in older individuals. Nutr Res Rev 25(2):207–222. https://doi.org/10.1017/S0954422412000133

    Article  CAS  PubMed  Google Scholar 

  99. Akbaraly TN, Singh-Manoux A, Marmot MG et al (2009) Education attenuates the association between dietary patterns and cognition. Dement Geriatr Cogn Disord 27(2):147–154

    Article  PubMed  PubMed Central  Google Scholar 

  100. Granic A, Davies K, Adamson A et al (2016) Dietary patterns high in red meat, potato, gravy, and butter are associated with poor cognitive functioning but not with rate of cognitive decline in very old adults. J Nutr. https://doi.org/10.3945/jn.115.216952

  101. Shakersain B, Santoni G, Larsson SC et al (2016) Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimers Dement 12(2):100–109. https://doi.org/10.1016/j.jalz.2015.08.002

    Article  PubMed  Google Scholar 

  102. Gu Y, Nieves JW, Stern Y et al (2010) Food combination and Alzheimer disease risk: a protective diet. Arch Neurol 67(6):699–706. https://doi.org/10.1001/archneurol.2010.84

    Article  PubMed  PubMed Central  Google Scholar 

  103. Amadieu C, Lefevre-Arbogast S, Delcourt C et al (2017) Nutrient biomarker patterns and long-term risk of dementia in older adults. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2017.01.025

  104. Dubois B, Feldman HH, Jacova C et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13(6):614–629. https://doi.org/10.1016/S1474-4422(14)70090-0

    Article  PubMed  Google Scholar 

  105. Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292. https://doi.org/10.1016/j.jalz.2011.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dubois B, Hampel H, Feldman HH et al (2016) Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 12(3):292–323. https://doi.org/10.1016/j.jalz.2016.02.002

    Article  PubMed  Google Scholar 

  107. Virtanen JK, Siscovick DS, Longstreth WT Jr et al (2008) Fish consumption and risk of subclinical brain abnormalities on MRI in older adults. Neurology 71(6):439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Virtanen JK, Siscovick DS, Lemaitre RN et al (2013) Circulating omega-3 polyunsaturated fatty acids and subclinical brain abnormalities on MRI in older adults: the Cardiovascular Health Study. J Am Heart Assoc 2(5):e000305. https://doi.org/10.1161/JAHA.113.000305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Tan ZS, Harris WS, Beiser AS et al (2012) Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging. Neurology 78(9):658–664. doi:78/9/658 [pii] 10.1212/WNL.0b013e318249f6a9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pottala JV, Yaffe K, Robinson JG et al (2014) Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI Study. Neurology. https://doi.org/10.1212/WNL.0000000000000080

  111. Samieri C, Maillard P, Crivello F et al (2012) Plasma long-chain omega-3 fatty acids and atrophy of the medial temporal lobe. Neurology 79(7):642–650. https://doi.org/10.1212/WNL.0b013e318264e394

    Article  CAS  PubMed  Google Scholar 

  112. Walhovd KB, Storsve AB, Westlye LT et al (2014) Blood markers of fatty acids and vitamin D, cardiovascular measures, body mass index, and physical activity relate to longitudinal cortical thinning in normal aging. Neurobiol Aging 35(5):1055–1064. https://doi.org/10.1016/j.neurobiolaging.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  113. Gu Y, Brickman AM, Stern Y et al (2015) Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology. https://doi.org/10.1212/wnl.0000000000002121

  114. Titova OE, Ax E, Brooks SJ et al (2013) Mediterranean diet habits in older individuals: associations with cognitive functioning and brain volumes. Exp Gerontol 48(12):1443–1448. https://doi.org/10.1016/j.exger.2013.10.002

    Article  PubMed  Google Scholar 

  115. Pelletier A, Barul C, Feart C et al (2015) Mediterranean diet and preserved brain structural connectivity in older subjects. Alzheimers Dement 11(9):1023–1031. https://doi.org/10.1016/j.jalz.2015.06.1888

    Article  PubMed  Google Scholar 

  116. Luciano M, Corley J, Cox SR et al (2017) Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology. https://doi.org/10.1212/WNL.0000000000003559

  117. Mosconi L, Murray J, Tsui WH et al (2014) Mediterranean diet and magnetic resonance imaging-assessed brain atrophy in cognitively normal individuals at risk for Alzheimer’s disease. J Prev Alzheimers Dis 1(1):23–32

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Staubo SC, Aakre JA, Vemuri P et al (2017) Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness. Alzheimers Dement 13(2):168–177. https://doi.org/10.1016/j.jalz.2016.06.2359

    Article  PubMed  Google Scholar 

  119. Gu Y, Vorburger RS, Gazes Y et al (2016) White matter integrity as a mediator in the relationship between dietary nutrients and cognition in the elderly. Ann Neurol 79(6):1014–1025. https://doi.org/10.1002/ana.24674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Witte AV, Kerti L, Hermannstadter HM et al (2014) Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex 24(11):3059–3068. https://doi.org/10.1093/cercor/bht163

    Article  PubMed  Google Scholar 

  121. Mosconi L, Murray J, Davies M et al (2014) Nutrient intake and brain biomarkers of Alzheimer's disease in at-risk cognitively normal individuals: a cross-sectional neuroimaging pilot study. BMJ Open 4(6):e004850. https://doi.org/10.1136/bmjopen-2014-004850

    Article  PubMed  PubMed Central  Google Scholar 

  122. Berti V, Murray J, Davies M et al (2015) Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively normal individuals. J Nutr Health Aging 19(4):413–423. https://doi.org/10.1007/s12603-014-0534-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9(7):689–701. https://doi.org/10.1016/S1474-4422(10)70104-6

    Article  PubMed  Google Scholar 

  124. Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666

    Article  PubMed  PubMed Central  Google Scholar 

  125. Bowman GL, Silbert LC, Howieson D et al (2012) Nutrient biomarker patterns, cognitive function, and MRI measures of brain aging. Neurology 78(4):241–249. https://doi.org/10.1212/WNL.0b013e3182436598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Scarmeas N, Luchsinger JA, Stern Y et al (2011) Mediterranean diet and magnetic resonance imaging-assessed cerebrovascular disease. Ann Neurol 69(2):257–268. https://doi.org/10.1002/ana.22317

    Article  PubMed  PubMed Central  Google Scholar 

  127. Gottesman RF, Schneider AL, Zhou Y et al (2017) Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA 317(14):1443–1450. https://doi.org/10.1001/jama.2017.3090

    Article  CAS  PubMed  Google Scholar 

  128. Mazereeuw G, Lanctot KL, Chau SA et al (2012) Effects of omega-3 fatty acids on cognitive performance: a meta-analysis. Neurobiol Aging 33(7):1482 e1417–1482 e1429. https://doi.org/10.1016/j.neurobiolaging.2011.12.014

    Article  CAS  Google Scholar 

  129. Jiao J, Li Q, Chu J et al (2014) Effect of n-3 PUFA supplementation on cognitive function throughout the life span from infancy to old age: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 100(6):1422–1436. https://doi.org/10.3945/ajcn.114.095315

    Article  CAS  PubMed  Google Scholar 

  130. Farina N, Isaac MG, Clark AR et al (2012) Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev 11:CD002854. https://doi.org/10.1002/14651858.CD002854.pub3

    PubMed  Google Scholar 

  131. Clarke R, Bennett D, Parish S et al (2014) Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr. https://doi.org/10.3945/ajcn.113.076349

  132. Li MM, Yu JT, Wang HF et al (2014) Efficacy of vitamins B supplementation on mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Curr Alzheimer Res 11(9):844–852

    CAS  PubMed  Google Scholar 

  133. Feart C, Samieri C, Alles B et al (2013) Potential benefits of adherence to the Mediterranean diet on cognitive health. Proc Nutr Soc 72(1):140–152. https://doi.org/10.1017/S0029665112002959

    Article  PubMed  Google Scholar 

  134. Grodstein F, O'Brien J, Kang JH et al (2013) Long-term multivitamin supplementation and cognitive function in men: a randomized trial. Ann Intern Med 159(12):806–814

    Article  PubMed  PubMed Central  Google Scholar 

  135. Scheltens P, Twisk JW, Blesa R et al (2012) Efficacy of Souvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial. J Alzheimers Dis 31(1):225–236. https://doi.org/10.3233/JAD-2012-121189

    CAS  PubMed  Google Scholar 

  136. Shah RC, Kamphuis PJ, Leurgans S et al (2013) The S-Connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer’s disease. Alzheimers Res Ther 5(6):59. https://doi.org/10.1186/alzrt224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Soininen H, et al. Lancet Neurol. 2017 Dec;16(12):965–975. doi: 10.1016/S1474-4422(17)30332-0.

  138. Valls-Pedret C, Sala-Vila A, Serra-Mir M et al (2015) Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med. https://doi.org/10.1001/jamainternmed.2015.1668

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécilia Samieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Samieri, C. (2018). Epidemiology and Risk Factors of Alzheimer’s Disease: A Focus on Diet. In: Perneczky, R. (eds) Biomarkers for Preclinical Alzheimer’s Disease. Neuromethods, vol 137. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7674-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7674-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7673-7

  • Online ISBN: 978-1-4939-7674-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics