Skip to main content
Log in

Variable Chaplygin gas: Constraining parameters using FRBs

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We investigate cosmological constraints on the Variable Chaplygin gas model parameters with latest observational data of the Fast Radio Bursts and compare the results with previous constraints obtained using SNe Ia (Pantheon+SHOES), Gamma Ray Bursts, Baryon Acoustic Oscillations and Hubble parameter observational data. The Variable Chaplygin gas model is shown to be compatible with these datasets. We have obtained tighter constraints on model parameters \(B_{s}\) and \(n\), using the FRB data set. By using the Markov chain Monte Carlo (MCMC) method we obtain, \(B_{s}\)=\(0.18\pm 0.10\), \(n=1.10\pm 1.15\) and \(H_{0}\)= \(70.46\pm 0.66\) with the SNe Ia data set, \(B_{s}\)= \(0.09\pm 0.06\), \(n= 0.44\pm 0.89 \) and \(H_{0}=70.57\pm 0.64 \) with the FRB data set, \(B_{s}\)=\(0.16\pm 0.11\), \(n=1.06\pm 1.25\) and \(H_{0}\)= \(70.37\pm 0.65\) with the BAO data set, \(B_{s}\)=\(0.05\pm 0.000\), \(n=1.46\pm 0.23\) and \(H_{0}\)= \(70.21\pm 0.57\) with the H(z) data set and \(B_{s}\)=\(0.20\pm 0.11\), \(n=1.25\pm 1.17\) and \(H_{0}\)= \(70.37\pm 0.64\) with the GRB data set. A good agreement for \(H_{0}\) is observed from these data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Notes

  1. We have used the fact that for a flat Universe, \(\Omega _{b0}+\Omega _{r0}+\Omega _{ch0}=1\), i.e the total matter density sums up to unity.

References

  • Aggarwal, B., Sethi, G., Thakur, S.: (2019). Variable Chaplygin gas: Constraints from supernovae, bao, look back time, and grbs

  • Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155–228 (2012). https://doi.org/10.1007/s10509-012-1181-8

    Article  ADS  Google Scholar 

  • Bannister, K.W., Deller, A.T., Phillips, C., Macquart, J.-P., Prochaska, J.X., Tejos, N., Ryder, S.D., Sadler, E.M., Shannon, R.M., Simha, S., Day, C.K., McQuinn, M., North-Hickey, F.O., Bhandari, S., Arcus, W.R., Bennert, V.N., Burchett, J., Bouwhuis, M., Dodson, R., Ekers, R.D., Farah, W., Flynn, C., James, C.W., Kerr, M., Lenc, E., Mahony, E.K., O’Meara, J., Osłowski, S., Qiu, H., Treu, T., Bateman, T.J., Bock, D.C.-J., Bolton, R.J., Brown, A., Bunton, J.D., Chippendale, A.P., Cooray, F.R., Cornwell, T., Gupta, N., Hayman, D.B., Kesteven, M., Koribalski, B.S., MacLeod, A., McClure-Griffiths, N.M., Neuhold, S., Norris, R.P., Pilawa, M.A., Qiao, R.-Y., Reynolds, J., Roxby, D.N., Shimwell, T.W., Voronkov, M.A., Wilson, C.D.: A single fast radio burst localized to a massive galaxy at cosmological distance. Science 365(6453), 565–570 (2019). https://doi.org/10.1126/science.aaw5903

    Article  ADS  Google Scholar 

  • Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66, 043507 (2002). https://doi.org/10.1103/PhysRevD.66.043507

    Article  ADS  Google Scholar 

  • Bhandari, S., Heintz, K.E., Aggarwal, K., Marnoch, L., Day, C.K., Sydnor, J., Burke-Spolaor, S., Law, C.J., Prochaska, J.X., Tejos, N., Bannister, K.W., Butler, B.J., Deller, A.T., Ekers, R.D., Flynn, C., Fong, W.F., James, C.W., Lazio, T.J.W., Luo, R., Mahony, E.K., Ryder, S.D., Sadler, E.M., Shannon, R.M., Han, J., Lee, K., Zhang, B.: Characterizing the fast radio burst host galaxy population and its connection to transients in the local and extragalactic universe. Astron. J. 163(2), 69 (2022). https://doi.org/10.3847/1538-3881/ac3aec

    Article  ADS  Google Scholar 

  • Blake, C., Davis, T., Poole, G.B., Parkinson, D., Brough, S., Colless, M., Contreras, C., Couch, W., Croom, S., Drinkwater, M.J., Forster, K., Gilbank, D., Gladders, M., Glazebrook, K., Jelliffe, B., Jurek, R.J., Li, I., Madore, B., Martin, D.C., Pimbblet, K., Pracy, M., Sharp, R., Wisnioski, E., Woods, D., Wyder, T.K., Yee, H.K.C.: The wigglez dark energy survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6: Wigglez survey: Baos at z = 0.6. Mon. Not. R. Astron. Soc. 415(3), 2892–2909 (2011). https://doi.org/10.1111/j.1365-2966.2011.19077.x

    Article  ADS  Google Scholar 

  • Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with \(w<- 1\) causes a cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003). https://doi.org/10.1103/PhysRevLett.91.071301

    Article  ADS  Google Scholar 

  • Camarena, D., Marra, V.: The tension in the absolute magnitude of Type Ia supernovae. (2023). arXiv:2307.02434. https://doi.org/10.48550/arXiv.2307.02434

  • Cao, S., Dainotti, M., Ratra, B.: Standardizing Platinum Dainotti-correlated gamma-ray bursts, and using them with standardized Amati-correlated gamma-ray bursts to constrain cosmological model parameters. Mon. Not. R. Astron. Soc. 512(1), 439–454 (2022). https://doi.org/10.1093/mnras/stac517

    Article  ADS  Google Scholar 

  • Chaplygin, S.: On gas jets. In: Scientific Memoirs, Moscow University Mathematic Physics, vol. 21, pp. 1–121 (1904)

    Google Scholar 

  • Chraya, A., Muralichandran, Y., Sethi, G.: Variable Chaplygin gas: constraints from supernovae, grb and gravitational wave merger events. Astrophys. Space Sci. 368(7) (2023). https://doi.org/10.1007/s10509-023-04211-4

  • Cordes, J.M., Lazio, T.J.W.: Ne2001.i. a new model for the galactic distribution of free electrons and its fluctuations (2003)

  • Dainotti, M.G., Postnikov, S., Hernandez, X., Ostrowski, M.: A fundamental plane for long gamma-ray bursts with X-ray plateaus. Astrophys. J. Lett. 825(2), L20 (2016). https://doi.org/10.3847/2041-8205/825/2/L20

    Article  ADS  Google Scholar 

  • Dainotti, M.G., Hernandez, X., Postnikov, S., Nagataki, S., O’brien, P., Willingale, R., Striegel, S.: A study of the gamma-ray burst fundamental plane. Astrophys. J. 848(2), 88 (2017). https://doi.org/10.3847/1538-4357/aa8a6b

    Article  ADS  Google Scholar 

  • Dainotti, M.G., Lenart, A.Ł., Sarracino, G., Nagataki, S., Capozziello, S., Fraija, N.: The x-ray fundamental plane of the platinum sample, the kilonovae, and the sne ib/c associated with grbs. Astrophys. J. 904(2), 97 (2020). https://doi.org/10.3847/1538-4357/abbe8a

    Article  ADS  Google Scholar 

  • Dainotti, M.G., Lenart, A.Ł., Chraya, A., Sarracino, G., Nagataki, S., Fraija, N., Capozziello, S., Bogdan, M.: The gamma-ray bursts fundamental plane correlation as a cosmological tool. Mon. Not. R. Astron. Soc. 518(2), 2201–2240 (2022). https://doi.org/10.1093/mnras/stac2752

    Article  ADS  Google Scholar 

  • Del Popolo, A., Pace, F., Maydanyuk, S.P., Lima, J.A.S., Jesus, J.F.: Shear and rotation in Chaplygin cosmology. Phys. Rev. D 87, 043527 (2013). https://doi.org/10.1103/PhysRevD.87.043527

    Article  ADS  Google Scholar 

  • Fan, X., Carilli, C.L., Keating, B.: Observational constraints on cosmic reionization. Annu. Rev. Astron. Astrophys. 44(1), 415–462 (2006). https://doi.org/10.1146/annurev.astro.44.051905.092514

    Article  ADS  Google Scholar 

  • Filippenko, A.V., Riess, A.G.: Results from the high-z supernova search team. Phys. Rep. 307(1–4), 31–44 (1998). https://doi.org/10.1016/S0370-1573(98)00052-0

    Article  ADS  Google Scholar 

  • Freitas, R.C., Gonçalves, S.V.B., Velten, H.E.S.: Constraints on the generalized Chaplygin gas model from gamma-ray bursts. Phys. Lett. B 703(3), 209–216 (2011). https://doi.org/10.1016/j.physletb.2011.07.070. https://www.sciencedirect.com/science/article/pii/S0370269311008744

    Article  ADS  Google Scholar 

  • Gao, H., Liang, N.A.N., Zong-Hong, Z.: Calibration of grb luminosity relations with cosmography. Int. J. Mod. Phys. D 21(02), 1250016 (2012). https://doi.org/10.1142/S0218271812500162

    Article  ADS  Google Scholar 

  • Gao, J., Zhou, Z., Du, M., Zou, R., Hu, J., Xu, L.: A measurement of Hubble constant using cosmographic approach combining fast radio bursts and supernovae. Mon. Not. R. Astron. Soc. 527(3), 7861–7870 (2023). https://doi.org/10.1093/mnras/stad3708

    Article  ADS  Google Scholar 

  • Guo, Z.-K., Ohta, N., Zhang, Y.-Z.: Parametrization of quintessence and its potential. Phys. Rev. D 72, 023504 (2005). https://doi.org/10.1103/PhysRevD.72.023504

    Article  ADS  Google Scholar 

  • Guo, Z.-K., Ohta, N., Zhang, Y.-Z.: Parametrizations of the dark energy density and scalar potentials. Mod. Phys. Lett. A 22(12), 883–890 (2007)

    Article  ADS  Google Scholar 

  • Hannestad, S., Mörtsell, E.: Probing the dark side: Constraints on the dark energy equation of state from cmb, large scale structure, and type ia supernovae. Phys. Rev. D 66(6) (2002). https://doi.org/10.1103/physrevd.66.063508

  • Hernández-Almada, A., García-Aspeitia, M.A., Rodríguez-Meza, M.A., Motta, V.: A hybrid model of viscous and Chaplygin gas to tackle the Universe acceleration. Eur. Phys. J. C 81(4), 295 (2021). https://doi.org/10.1140/epjc/s10052-021-09104-w

    Article  ADS  Google Scholar 

  • Kirsten, F., Marcote, B., Nimmo, K., Hessels, J.W.T., Bhardwaj, M., Tendulkar, S.P., Keimpema, A., Yang, J., Snelders, M.P., Scholz, P., Pearlman, A.B., Law, C.J., Peters, W.M., Giroletti, M., Paragi, Z., Bassa, C., Hewitt, D.M., Bach, U., Bezrukovs, V., Burgay, M., Buttaccio, S.T., Conway, J.E., Corongiu, A., Feiler, R., Forssén, O., GawroÅski, M.P., Karuppusamy, R., Kharinov, M.A., Lindqvist, M., Maccaferri, G., Melnikov, A., Ould-Boukattine, O.S., Possenti, A., Surcis, G., Wang, N., Yuan, J., Aggarwal, K., Anna-Thomas, R., Bower, G.C., Blaauw, R., Burke-Spolaor, S., Cassanelli, T., Clarke, T.E., Fonseca, E., Gaensler, B.M., Gopinath, A., Kaspi, V.M., Kassim, N., Lazio, T.J.W., Leung, C., Li, D.Z., Lin, H.H., Masui, K.W., Mckinven, R., Michilli, D., Mikhailov, A.G., Ng, C., Orbidans, A., Pen, U.L., Petroff, E., Rahman, M., Ransom, S.M., Shin, K., Smith, K.M., Stairs, I.H., Vlemmings, W.: A repeating fast radio burst source in a globular cluster. Nature 602(7898), 585–589 (2022). https://doi.org/10.1038/s41586-021-04354-w

    Article  ADS  Google Scholar 

  • Kumar, D., Rana, A., Jain, D., Mahajan, S., Mukherjee, A., Holanda, R.F.L.: A non-parametric test of variability of Type Ia supernovae luminosity and CDDR. J. Cosmol. Astropart. Phys. 2022(1), 053 (2022). https://doi.org/10.1088/1475-7516/2022/01/053

    Article  Google Scholar 

  • Law, C.J., Butler, B.J., Prochaska, J.X., Zackay, B., Burke-Spolaor, S., Mannings, A., Tejos, N., Josephy, A., Andersen, B., Chawla, P., Heintz, K.E., Aggarwal, K., Bower, G.C., Demorest, P.B., Kilpatrick, C.D., Lazio, T.J.W., Linford, J., Mckinven, R., Tendulkar, S., Simha, S.: A distant fast radio burst associated with its host galaxy by the very large array. Astrophys. J. 899(2), 161 (2020). https://doi.org/10.3847/1538-4357/aba4ac

    Article  ADS  Google Scholar 

  • Li, H., Yang, W., Gai, L.: Astronomical bounds on the modified Chaplygin gas as a unified dark fluid model. Astron. Astrophys. 623, A28 (2019). https://doi.org/10.1051/0004-6361/201833836

    Article  ADS  Google Scholar 

  • Li, Z., Zhang, B., Liang, N.: Testing dark energy models with gamma-ray bursts calibrated from the observationalh(z) data through a Gaussian process. Mon. Not. R. Astron. Soc. 521(3), 4406–4413 (2023). https://doi.org/10.1093/mnras/stad838

    Article  ADS  Google Scholar 

  • Liang, N., Xiao, W.K., Liu, Y., Zhang, S.N.: A cosmology-independent calibration of gamma-ray burst luminosity relations and the Hubble diagram. Astrophys. J. 685(1), 354 (2008). https://doi.org/10.1086/590903

    Article  ADS  Google Scholar 

  • Liang, N., Xu, L., Zhu, Z.-H.: Constraints on the generalized Chaplygin gas model including gamma-ray bursts via a Markov chain Monte Carlo approach. Astron. Astrophys. 527, A11 (2011). https://doi.org/10.1051/0004-6361/201015919

    Article  ADS  Google Scholar 

  • Liang, N., Li, Z., Xie, X., Wu, P.: Calibrating gamma-ray bursts by using a Gaussian process with type ia supernovae. Astrophys. J. 941(1), 84 (2022). https://doi.org/10.3847/1538-4357/aca08a

    Article  ADS  Google Scholar 

  • Liu, Y., Liang, N., Xie, X., Yuan, Z., Yu, H., Wu, P.: Gamma-ray burst constraints on cosmological models from the improved amati correlation. Astrophys. J. 935(1), 7 (2022). https://doi.org/10.3847/1538-4357/ac7de5

    Article  ADS  Google Scholar 

  • Liu, Y., Yu, H., Wu, P.: Cosmological-model-independent determination of Hubble constant from fast radio bursts and Hubble parameter measurements. Astrophys. J. Lett. 946(2), L49 (2023)

    Article  ADS  Google Scholar 

  • Lu, J.: Cosmology with a variable generalized Chaplygin gas. Phys. Lett. B 680, 404 (2009). https://doi.org/10.1016/j.physletb.2009.09.027

    Article  ADS  Google Scholar 

  • Luo, R., Wang, B.J., Men, Y.P., Zhang, C.F., Jiang, J.C., Xu, H., Wang, W.Y., Lee, K.J., Han, J.L., Zhang, B., Caballero, R.N., Chen, M.Z., Chen, X.L., Gan, H.Q., Guo, Y.J., Hao, L.F., Huang, Y.X., Jiang, P., Li, H., Li, J., Li, Z.X., Luo, J.T., Pan, J., Pei, X., Qian, L., Sun, J.H., Wang, M., Wang, N., Wen, Z.G., Xu, R.X., Xu, Y.H., Yan, J., Yan, W.M., Yu, D.J., Yuan, J.P., Zhang, S.B., Zhu, Y.: Diverse polarization angle swings from a repeating fast radio burst source. Nature 586(7831), 693–696 (2020). https://doi.org/10.1038/s41586-020-2827-2

    Article  ADS  Google Scholar 

  • Macquart, J.-P., Prochaska, J.X., McQuinn, M., Bannister, K.W., Bhandari, S., Day, C.K., Deller, A.T., Ekers, R.D., James, C.W., Marnoch, L., OsÅ owski, S., Phillips, C., Ryder, S.D., Scott, D.R., Shannon, R.M., Tejos, N.: A census of baryons in the universe from localized fast radio bursts. Nature 581(7809), 391–395 (2020). https://doi.org/10.1038/s41586-020-2300-2

    Article  ADS  Google Scholar 

  • Mahony, E.K., Ekers, R.D., Macquart, J.-P., Sadler, E.M., Bannister, K.W., Bhandari, S., Flynn, C., Koribalski, B.S., Prochaska, J.X., Ryder, S.D., Shannon, R.M., Tejos, N., Whiting, M.T., Wong, O.I.: A search for the host galaxy of frb 171020. Astrophys. J. Lett. 867(1), L10 (2018). https://doi.org/10.3847/2041-8213/aae7cb

    Article  ADS  Google Scholar 

  • Makhathini, C.L.: The effect of the variable Chaplygin gas on the cmb. University of Kwazulu Natal (2013). http://hdl.handle.net/10413/9206

  • Marcote, B., Nimmo, K., Hessels, J.W.T., Tendulkar, S.P., Bassa, C.G., Paragi, Z., Keimpema, A., Bhardwaj, M., Karuppusamy, R., Kaspi, V.M., Law, C.J., Michilli, D., Aggarwal, K., Andersen, B., Archibald, A.M., Bandura, K., Bower, G.C., Boyle, P.J., Brar, C., Burke-Spolaor, S., Butler, B.J., Cassanelli, T., Chawla, P., Demorest, P., Dobbs, M., Fonseca, E., Giri, U., Good, D.C., Gourdji, K., Josephy, A., Kirichenko, A.Y., Kirsten, F., Landecker, T.L., Lang, D., Lazio, T.J.W., Li, D.Z., Lin, H.-H., Linford, J.D., Masui, K., Mena-Parra, J., Naidu, A., Ng, C., Patel, C., Pen, U.-L., Pleunis, Z., Rafiei-Ravandi, M., Rahman, M., Renard, A., Scholz, P., Siegel, S.R., Smith, K.M., Stairs, I.H., Vanderlinde, K., Zwaniga, A.V.: A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 577(7789), 190–194 (2020). https://doi.org/10.1038/s41586-019-1866-z

    Article  ADS  Google Scholar 

  • Nelson, D., Springel, V., Pillepich, A., Rodriguez-Gomez, V., Torrey, P., Genel, S., Vogelsberger, M., Pakmor, R., Marinacci, F., Weinberger, R., Kelley, L., Lovell, M., Diemer, B., Hernquist, L.: The illustristng simulations: Public data release (2021)

  • Niu, C.-H., Aggarwal, K., Li, D., Zhang, X., Chatterjee, S., Tsai, C.-W., Yu, W., Law, C.J., Burke-Spolaor, S., Cordes, J.M., Zhang, Y.-K., Ocker, S.K., Yao, J.-M., Wang, P., Feng, Y., Niino, Y., Bochenek, C., Cruces, M., Connor, L., Jiang, J.-A., Dai, S., Luo, R., Li, G.-D., Miao, C.-C., Niu, J.-R., Anna-Thomas, R., Sydnor, J., Stern, D., Wang, W.-Y., Yuan, M., Yue, Y.-L., Zhou, D.-J., Yan, Z., Zhu, W.-W., Zhang, B.: A repeating fast radio burst associated with a persistent radio source. Nature 606(7916), 873–877 (2022). https://doi.org/10.1038/s41586-022-04755-5

    Article  ADS  Google Scholar 

  • Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., Deustua, S., Fabbro, S., Goobar, A., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.Y., Lee, J.C., Nunes, N.J., Pain, R., Pennypacker, C.R., Quimby, R., Lidman, C., Ellis, R.S., Irwin, M., McMahon, R.G., Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B.J., Filippenko, A.V., Matheson, T., Fruchter, A.S., Panagia, N., Newberg, H.J.M., Couch, W.J.: The Supernova Cosmology Project. Measurements of \(\omega \) and \(\lambda \) from 42 high-redshift supernovae. Astrophys. J. 517(2), 565 (1999). https://doi.org/10.1086/307221

    Article  ADS  Google Scholar 

  • Prochaska, J.X., Zheng, Y.: Probing galactic haloes with fast radio bursts. Mon. Not. R. Astron. Soc. 485(1), 648–665 (2019). https://doi.org/10.1093/mnras/stz261

    Article  ADS  Google Scholar 

  • Prochaska, J.X., Macquart, J.-P., McQuinn, M., Simha, S., Shannon, R.M., Day, C.K., Marnoch, L., Ryder, S., Deller, A., Bannister, K.W., Bhandari, S., Bordoloi, R., Bunton, J., Cho, H., Flynn, C., Mahony, E.K., Phillips, C., Qiu, H., Tejos, N.: The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science 366(6462), 231–234 (2019). https://doi.org/10.1126/science.aay0073

    Article  ADS  Google Scholar 

  • Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406–3427 (1988). https://doi.org/10.1103/PhysRevD.37.3406

    Article  ADS  Google Scholar 

  • Ravi, V., Catha, M., D’Addario, L., Djorgovski, S.G., Hallinan, G., Hobbs, R., Kocz, J., Kulkarni, S.R., Shi, J., Vedantham, H.K., Weinreb, S., Woody, D.P.: A fast radio burst localized to a massive galaxy. Nature 572(7769), 352–354 (2019). https://doi.org/10.1038/s41586-019-1389-7

    Article  ADS  Google Scholar 

  • Ravi, V., Law, C.J., Li, D., Aggarwal, K., Bhardwaj, M., Burke-Spolaor, S., Connor, L., Lazio, T.J.W., Simard, D., Somalwar, J., Tendulkar, S.P.: The host galaxy and persistent radio counterpart of FRB 20201124A. Mon. Not. R. Astron. Soc. 513(1), 982–990 (2022). https://doi.org/10.1093/mnras/stac465

    Article  ADS  Google Scholar 

  • Sandvik, H.B., Tegmark, M., Zaldarriaga, M., Waga, I.: The end of unified dark matter? Phys. Rev. D 69, 123524 (2004). https://doi.org/10.1103/PhysRevD.69.123524

    Article  ADS  Google Scholar 

  • Scolnic, D., Brout, D., Carr, A., Riess, A.G., Davis, T.M., Dwomoh, A., Jones, D.O., Ali, N., Charvu, P., Chen, R., Peterson, E.R., Popovic, B., Rose, B.M., Wood, C.M., Brown, P.J., Chambers, K., Coulter, D.A., Dettman, K.G., Dimitriadis, G., Filippenko, A.V., Foley, R.J., Jha, S.W., Kilpatrick, C.D., Kirshner, R.P., Pan, Y.-C., Rest, A., Rojas-Bravo, C., Siebert, M.R., Stahl, B.E., Zheng, W.: The pantheon+ analysis: the full data set and light-curve release. Astrophys. J. 938(2), 113 (2022). https://doi.org/10.3847/1538-4357/ac8b7a

    Article  ADS  Google Scholar 

  • Sen, A.: Tachyon matter. J. High Energy Phys. 2002(07), 065 (2002)

    Article  MathSciNet  Google Scholar 

  • Sethi, G., Singh, S.K., Kumar, P., Jain, D., Dev, A.: Variable Chaplygin gas: constraints from CMBR and SNe Ia. Int. J. Mod. Phys. D 15(07), 1089–1098 (2006). https://doi.org/10.1142/s0218271806008644

    Article  ADS  Google Scholar 

  • Shull, J.M., Smith, B.D., Danforth, C.W.: The baryon census in a multiphase intergalactic medium: 30% of the baryons may still be missing. Astrophys. J. 759(1), 23 (2012). https://doi.org/10.1088/0004-637X/759/1/23

    Article  ADS  Google Scholar 

  • Tendulkar, S.P., Bassa, C.G., Cordes, J.M., Bower, G.C., Law, C.J., Chatterjee, S., Adams, E.A.K., Bogdanov, S., Burke-Spolaor, S., Butler, B.J., Demorest, P., Hessels, J.W.T., Kaspi, V.M., Lazio, T.J.W., Maddox, N., Marcote, B., McLaughlin, M.A., Paragi, Z., Ransom, S.M., Scholz, P., Seymour, A., Spitler, L.G., van Langevelde, H.J., Wharton, R.S.: The host galaxy and redshift of the repeating fast radio burst frb 121102. Astrophys. J. Lett. 834(2), L7 (2017). https://doi.org/10.3847/2041-8213/834/2/L7

    Article  ADS  Google Scholar 

  • Thakur, R.K., Gupta, S., Nigam, R., Thiruvikraman, P.K.: Investigating the Hubble tension through Hubble parameter data. Res. Astron. Astrophys. 23(6), 065017 (2023). https://doi.org/10.1088/1674-4527/acd0e8

    Article  ADS  Google Scholar 

  • Torrado, J., Cobaya, A.L.: Bayesian Analysis in Cosmology. Astrophysics Source Code Library, record ascl:1910.019 (2019)

    Google Scholar 

  • Torrado, J., Lewis, A.: Cobaya: code for Bayesian analysis of hierarchical physical models. J. Cosmol. Astropart. Phys. 2021(05), 057 (2021). https://doi.org/10.1088/1475-7516/2021/05/057

    Article  MathSciNet  Google Scholar 

  • Tully, R.B.: Alignment of clusters and galaxies on scales up to 0.1 c. Astrophys. J. 303, 25 (1986). https://doi.org/10.1086/164049

    Article  ADS  Google Scholar 

  • Wang, Y., Wands, D., Xu, L., De-Santiago, J., Hojjati, A.: Cosmological constraints on a decomposed Chaplygin gas. Phys. Rev. D 87, 083503 (2013). https://doi.org/10.1103/PhysRevD.87.083503

    Article  ADS  Google Scholar 

  • Wang, J.S., Wang, F.Y., Cheng, K.S., Dai, Z.G.: Measuring dark energy with the eiso – ep correlation of gamma-ray bursts using model-independent methods. Astron. Astrophys. 585, A68 (2016). https://doi.org/10.1051/0004-6361/201526485

    Article  ADS  Google Scholar 

  • Wu, Q., Zhang, G.-Q., Wang, F.-Y.: An 8 per cent determination of the Hubble constant from localized fast radio bursts. Mon. Not. R. Astron. Soc. Lett. 515(1), L1–L5 (2022)

    Article  ADS  Google Scholar 

  • Yang, K.B., Wu, Q., Wang, F.Y.: Finding the missing baryons in the intergalactic medium with localized fast radio bursts. Astrophys. J. Lett. 940(2), L29 (2022). https://doi.org/10.3847/2041-8213/aca145

    Article  ADS  Google Scholar 

  • Zhang, G.Q., Yu, H., He, J.H., Wang, F.Y.: Dispersion measures of fast radio burst host galaxies derived from IllustrisTNG simulation. Astrophys. J. 900(2), 170 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Principal, St. Stephen’s College for his support and encouragement towards this research. We also thank Dr. Akshay Rana, St. Stephen’s College and Ashley Chraya, Vanderbilt University for their inputs and suggestions. We are also grateful to the reviewers for their suggestions and inputs.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Geetanjali Sethi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:  Stability analysis

Appendix:  Stability analysis

Derivations for equations (56) and (57)

$$ \begin{aligned} u&=\frac{k^{2} \rho _{VCG}}{3H^{2}} ; \ \ v= \frac{k^{2} p_{VCG} }{3H^{2}} ; \ \ N=ln(a) ; \\ \omega _{\gamma}&= \frac{p_{\gamma}}{\rho _{\gamma}} ; \ \ \dot{\rho _{VCG}} = -3H(\rho _{VCG} + p_{VCG}) \\ \frac{dN}{dt} &= \frac{\dot{a}}{a} =H \\ \frac{du}{dN} &= \frac{du}{dt}\frac{dt}{dN} = \frac{1}{H} \frac{du}{dt} \end{aligned} $$

Here t is the cosmic time. We can write

$$ \begin{aligned} 1&= \frac{k^{2}}{3H^{2}} \rho _{\gamma} + \frac{k^{2}}{3H^{2}} \rho _{v} \\ \frac{k^{2}}{3H^{2}} \rho _{\gamma}&= 1 - \frac{k^{2}}{3H^{2}} \rho _{v} \end{aligned} $$
$$ \begin{aligned} \frac{du}{dt} &= \frac{k^{2}}{3H^{2}} \dot{\rho _{VCG}} + \frac{k^{2} \rho _{VCG}}{3} \frac{d}{dt} (H^{-2}) \\ &= \frac{k^{2}}{3H^{2}}(-3H)(\rho _{VCG} + p_{VCG}) + \frac{k^{2} \rho _{VCG}}{3} (-2) H^{-3} \dot{H} \\ &= \frac{k^{2}}{3H^{2}}(-3H)(\rho _{VCG} + p_{VCG}) -2 \frac{k^{2} \rho _{VCG}}{3H^{2}} \frac{\dot{H}}{H} \end{aligned} $$
$$ \begin{aligned} &\frac{du}{dN} = \frac{1}{H} \frac{du}{dt} =-3 \Big[ (u+v) \\ &-\frac{u}{H^{2}}\Big\{ -k^{2}(\rho _{\gamma}+ p_{\gamma} + \rho _{VCG} + p_{VCG} \Big\} \Big] \\ &=-3(u+v) + 3u \Big\{ \frac{k^{2}}{3H^{2}}(\rho _{\gamma}+ p_{\gamma} + \rho _{VCG} + p_{VCG}) \Big\} \\ &=-3(u+v) + 3u \Big\{ \frac{k^{2}}{3H^{2}}(\omega _{\gamma} + 1)\rho _{ \gamma} + (u+v) \Big\} \\ &=-3(u+v) + 3u \Big\{ (\omega _{\gamma} + 1)(1-u) + (u+v) \Big\} \\ &=-3(u+v) + 3u \omega _{\gamma}(1-u) + 3u(u-1) + 3u(u+v) \\ &=-3(u+v) + 3u \omega _{\gamma}(1-u) +3u^{2} -3u + 3u^{2} + 3uv \\ &= -3c - 3(u-1)u\omega _{\gamma} + 3(u-1)v \end{aligned} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, G., Sharma, U. & Makhijani, N. Variable Chaplygin gas: Constraining parameters using FRBs. Astrophys Space Sci 369, 42 (2024). https://doi.org/10.1007/s10509-024-04306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-024-04306-6

Keywords

Navigation