This site uses cookies, tags and tracking settings to store information that help give you the very best browsing experience. If you don't change your settings, we'll assume you're happy with this. More information Dismiss this warning

Browse

You are looking at 51 - 60 of 14,371 items for

  • Refine by access: All content x
Clear All
Garam Yang Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Buk-Gu, Gwangju, Republic of Korea

Search for other papers by Garam Yang in
Google Scholar
PubMed
Close
,
Eunjeong Hong Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Buk-Gu, Gwangju, Republic of Korea

Search for other papers by Eunjeong Hong in
Google Scholar
PubMed
Close
,
Sejong Oh Division of Animal Science, College of Agriculture & Life Sciences, Chonnam National University, Buk-Gu, Gwangju, Republic of Korea

Search for other papers by Sejong Oh in
Google Scholar
PubMed
Close
, and
Eungseok Kim Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Buk-Gu, Gwangju, Republic of Korea

Search for other papers by Eungseok Kim in
Google Scholar
PubMed
Close

We previously reported that Lactobacillus amylovorus KU4 (LKU4) promotes adipocyte browning in mice fed a high-fat diet (HFD mice) in part by remodeling the PPARγ transcription complex. However, the mechanism through which LKU4 enables PPARγ to drive adipocyte browning remains elusive. Here, we report that LKU4 inhibits the expression of PP4C in inguinal white adipose tissue of HFD mice and in insulin-resistant 3T3-L1 adipocytes, which promotes SIRT1-dependent PPARγ deacetylation by activating AMPK, leading to the browning of adipocytes. Consistently, the silencing of PP4C further enhances this pathway. Furthermore, we observed that lactate, a key LKU4 metabolite, reduces insulin-induced PP4C expression and suppresses PP4C inhibition of PPARγ deacetylation and transcriptional activity via AMPK–SIRT1, thereby facilitating the browning of adipocytes. Together, these data demonstrate that LKU4 promotes the AMPK–SIRT1–PPARγ pathway by inhibiting PP4C, thereby facilitating adipocyte browning in HFD mice.

Restricted access
K L Davies Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK

Search for other papers by K L Davies in
Google Scholar
PubMed
Close
,
J Miles Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK

Search for other papers by J Miles in
Google Scholar
PubMed
Close
,
E J Camm Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia

Search for other papers by E J Camm in
Google Scholar
PubMed
Close
,
D J Smith Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK

Search for other papers by D J Smith in
Google Scholar
PubMed
Close
,
P Barker MRC Metabolic Diseases Unit, Mouse Biochemistry Laboratory, Cambridge Biomedical Campus, Cambridge, UK

Search for other papers by P Barker in
Google Scholar
PubMed
Close
,
K Taylor Endocrine Laboratory, Blood Sciences, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, UK

Search for other papers by K Taylor in
Google Scholar
PubMed
Close
,
A J Forhead Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK

Search for other papers by A J Forhead in
Google Scholar
PubMed
Close
, and
A L Fowden Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK

Search for other papers by A L Fowden in
Google Scholar
PubMed
Close

Adverse environmental conditions before birth are known to programme adult metabolic and endocrine phenotypes in several species. However, whether increments in fetal cortisol concentrations of the magnitude commonly seen in these conditions can cause developmental programming remains unknown. Thus, this study investigated the outcome of physiological increases in fetal cortisol concentrations on glucose–insulin dynamics and pituitary–adrenal function in adult sheep. Compared with saline treatment, intravenous fetal cortisol infusion for 5 days in late gestation did not affect birthweight but increased lamb body weight at 1–2 weeks after birth. Adult glucose dynamics, insulin sensitivity and insulin secretion were unaffected by prenatal cortisol overexposure, assessed by glucose tolerance tests, hyperinsulinaemic–euglycaemic clamps and acute insulin administration. In contrast, prenatal cortisol infusion induced adrenal hypo-responsiveness in adulthood with significantly reduced cortisol responses to insulin-induced hypoglycaemia and exogenous adrenocorticotropic hormone (ACTH) administration relative to saline treatment. The area of adrenal cortex expressed as a percentage of the total cross-sectional area of the adult adrenal gland was also lower after prenatal cortisol than saline infusion. In adulthood, basal circulating ACTH but not cortisol concentrations were significantly higher in the cortisol than saline-treated group. The results show that cortisol overexposure before birth programmes pituitary–adrenal development with consequences for adult stress responses. Physiological variations in cortisol concentrations before birth may, therefore, have an important role in determining adult phenotypical diversity and adaptability to environmental challenges.

Open access
Aryane Cruz Oliveira Pinho CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal

Search for other papers by Aryane Cruz Oliveira Pinho in
Google Scholar
PubMed
Close
,
Paula Laranjeira CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal

Search for other papers by Paula Laranjeira in
Google Scholar
PubMed
Close
, and
Eugenia Carvalho CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Casa Costa Alemão, Coimbra, Portugal
APDP-Portuguese Diabetes Association, Lisbon, Portugal

Search for other papers by Eugenia Carvalho in
Google Scholar
PubMed
Close

Despite the known link between obesity and insulin resistance (IR) to chronic low-grade inflammation, new markers capable of early IR detection are needed. Immune cells are components of adipose tissue’s (AT) stromal vascular fraction (SVF) that regulate AT homeostasis. The altered phenotype and function of AT-infiltrating immune cells may contribute to the development and maintenance of local AT inflammation observed under obesity-induced IR conditions. Impaired AT-specific immunometabolic function may influence the whole organism. Therefore, AT-infiltrating immune cells may be important players in the development of obesity-related metabolic complications, such as type 2 diabetes mellitus (T2DM). B and T cells, particularly CD20+ T cells, play important roles in human pathology, such as autoimmune disease and cancer. However, the question remains as to whether CD20+ T cells have an important contribution to the development of obesity-related IR. While circulating CD20+ T cells are mostly of the central memory phenotype (i.e. antigen-experienced T cells with the ability to home to secondary lymphoid organs), tissues-infiltrated CD20+ T cells are predominantly of the effector memory phenotype (i.e. antigen-experienced T cells that preferentially infiltrate peripheral tissues). The latter produce pro-inflammatory cytokines, such as IFN-γ and IL-17, which play a role in obesity-related IR development. This review describes the CD20 molecule and its presence in both B and T cells, shedding light on its ontogeny and function, in health and disease, with emphasis on AT. The link between CD20+ T cell dysregulation, obesity, and IR development supports the role of CD20+ T cells as markers of adipose tissue dysmetabolism.

Restricted access
Claudia Campana Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
Endocrinology Unit, Department of Internal Medicine and Medical Specialties, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy

Search for other papers by Claudia Campana in
Google Scholar
PubMed
Close
,
Anand M Iyer Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands

Search for other papers by Anand M Iyer in
Google Scholar
PubMed
Close
,
Diego Ferone Endocrinology Unit, Department of Internal Medicine and Medical Specialties, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy

Search for other papers by Diego Ferone in
Google Scholar
PubMed
Close
,
Federico Gatto Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy

Search for other papers by Federico Gatto in
Google Scholar
PubMed
Close
, and
Leo J Hofland Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands

Search for other papers by Leo J Hofland in
Google Scholar
PubMed
Close

Somatostatin receptors (SSTs) are widely expressed in pituitary tumors and neuroendocrine neoplasms (NENs) of different origins, i.e. the gastrointestinal tract and the thorax (lungs and thymus), thus representing a well-established target for medical treatment with SST ligands (SRLs). However, the response to SRLs is highly heterogeneous between tumors. Two main factors can contribute to this variability: (i) the differential SST expression among tumor types and (ii) the differential expression/modulation of the SST-related intracellular machinery. In this literature review, we provide an overview of available data on the variable expression of SSTs in pituitary tumors and NENs, together with the resulting clinical implications. Moreover, we aim to describe the complex intracellular machinery involved in SST signaling and trafficking. Particularly, we will focus on β-arrestins and describe their role in receptor internalization and recycling, as well as the various functions of these scaffold molecules in tumor pathogenesis and progression. This review highlights the interplay between membrane receptors and intracellular machinery, together with its role in determining the clinical behavior of the tumor and the response to treatment in patients with pituitary tumors or NENs.

Restricted access
Atsuya Tsuru Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Atsuya Tsuru in
Google Scholar
PubMed
Close
,
Mikihiro Yoshie Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Mikihiro Yoshie in
Google Scholar
PubMed
Close
,
Mei Suzuki Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Mei Suzuki in
Google Scholar
PubMed
Close
,
Hiroki Mochizuki Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Hiroki Mochizuki in
Google Scholar
PubMed
Close
,
Satoshi Kametaka Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Aichi, Japan

Search for other papers by Satoshi Kametaka in
Google Scholar
PubMed
Close
,
Takako Ohmaru-Nakanishi Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Search for other papers by Takako Ohmaru-Nakanishi in
Google Scholar
PubMed
Close
,
Mana Azumi Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Mana Azumi in
Google Scholar
PubMed
Close
,
Kazuya Kusama Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Kazuya Kusama in
Google Scholar
PubMed
Close
,
Kiyoko Kato Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Search for other papers by Kiyoko Kato in
Google Scholar
PubMed
Close
, and
Kazuhiro Tamura Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

Search for other papers by Kazuhiro Tamura in
Google Scholar
PubMed
Close

Mononuclear cytotrophoblasts (CTs) differentiate and fuse to form multinuclear syncytiotrophoblasts (STs), which produce human chorionic gonadotropin (hCG) and progesterone to maintain pregnancy. Impaired differentiation and fusion of CTs to form STs are associated with hypertensive disorders of pregnancy and fetal growth restriction. Progesterone receptor membrane component 1 (PGRMC1) is a multifunctional single transmembrane heme-binding protein. We previously demonstrated that downregulation of PGRMC1 promotes endometrial stromal cell differentiation (decidualization). Here, we explored the role of PGRMC1 in trophoblast differentiation and fusion. PGRMC1 expression was lower in STs than in CTs of first-trimester placental tissues. PGRMC1 expression in BeWo cells (a trophoblast-derived choriocarcinoma cell line) decreased upon dibutyryl-cAMP (db-cAMP)-induced differentiation. Both inhibition and knockdown of PGRMC1 stimulated hCG production in the presence of db-cAMP. Furthermore, a quantitative cell fusion assay we developed revealed that inhibition and knockdown of PGRMC1 enhanced db-cAMP-stimulated cell fusion. Peroxisome proliferator-activated receptor γ (PPARγ) agonists decreased PGRMC1 expression and stimulated the cell fusion in BeWo cells. These findings suggest that downregulation of PGRMC1 expression in part through activation of PPARγ during trophoblast differentiation promotes hCG production and cell fusion for formation and maintenance of placental villi during pregnancy.

Restricted access
Matthew T F Lamaudière Centre for Health & Life Sciences, Coventry University, Coventry, UK
Medicines & Healthcare products Regulatory Agency, Research and Innovation group, Hertfordshire, UK

Search for other papers by Matthew T F Lamaudière in
Google Scholar
PubMed
Close
,
Mark C Turner Centre for Health & Life Sciences, Coventry University, Coventry, UK

Search for other papers by Mark C Turner in
Google Scholar
PubMed
Close
,
Ramesh P Arasaradnam Divison of Biomedical Sciences, Warwick Medical School, University of Warwick, Warwick, UK
Institute of Precision & Diagnostic Medicine, University Hospitals of Coventry and Warwickshire, NHS trust, Coventry, UK

Search for other papers by Ramesh P Arasaradnam in
Google Scholar
PubMed
Close
, and
Igor Y Morozov Centre for Health & Life Sciences, Coventry University, Coventry, UK

Search for other papers by Igor Y Morozov in
Google Scholar
PubMed
Close

Over the last two decades, it has become clear that the human gut microbiota, a complex community of bacteria, archaea, fungi and viruses, are a critical determinant of human health and disease. Microbiota-derived metabolites provide the host with energy, protect against pathogens, modulate immune and endocrine systems as well as the level of reactive oxygen species in the gut. It has come with no surprise that the human gut microbiota is also linked to the production, utilisation and regulation of host hormones. This implies that the gut microbiota is capable of influencing human behaviour, appetite regulation and metabolism as well as development and immunity. Many of the advances in the field of crosstalk between the gut microbiota and host health, disease and behaviours are generally based on DNA analyses of microbial populations and transplantation of monocultured commensal species to germ-free animals. Recent reports on the activity of the gut microbiota in gastrointestinal diseases such as inflammatory bowel disease and colorectal cancer have highlighted two important points. First, microbial DNA-based abundance does not always correlate with their level of activity and secondly, that metabolism of the complex gut microbiota is regulated by host health status, including the production and metabolism of several human hormones. In this review, we will discuss the lessons learnt from studying the activity and metabolism of the human gut microbiota in health and across gastrointestinal diseases, and how these findings can shape future research on the microbiome–gut–endocrine axis.

Restricted access
Kristen R Lednovich Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA

Search for other papers by Kristen R Lednovich in
Google Scholar
PubMed
Close
,
Sophie Gough Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA

Search for other papers by Sophie Gough in
Google Scholar
PubMed
Close
,
Medha Priyadarshini Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA

Search for other papers by Medha Priyadarshini in
Google Scholar
PubMed
Close
,
Nupur Pandya Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA

Search for other papers by Nupur Pandya in
Google Scholar
PubMed
Close
,
Chioma Nnyamah Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA

Search for other papers by Chioma Nnyamah in
Google Scholar
PubMed
Close
,
Kai Xu Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA

Search for other papers by Kai Xu in
Google Scholar
PubMed
Close
,
Barton Wicksteed Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA

Search for other papers by Barton Wicksteed in
Google Scholar
PubMed
Close
,
Sidharth Mishra USF Center for Microbiome Research, University of South Florida Morsani College of Medicine, Tampa, Florida, USA

Search for other papers by Sidharth Mishra in
Google Scholar
PubMed
Close
,
Shalini Jain USF Center for Microbiome Research, University of South Florida Morsani College of Medicine, Tampa, Florida, USA

Search for other papers by Shalini Jain in
Google Scholar
PubMed
Close
,
Joseph L Zapater Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA

Search for other papers by Joseph L Zapater in
Google Scholar
PubMed
Close
,
Jose Cordoba-Chacon Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA

Search for other papers by Jose Cordoba-Chacon in
Google Scholar
PubMed
Close
,
Hariom Yadav USF Center for Microbiome Research, University of South Florida Morsani College of Medicine, Tampa, Florida, USA

Search for other papers by Hariom Yadav in
Google Scholar
PubMed
Close
, and
Brian T Layden Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA

Search for other papers by Brian T Layden in
Google Scholar
PubMed
Close

Short-chain fatty acids (SCFAs) are key nutrients that play a diverse set of roles in physiological function, including regulating metabolic homeostasis. Generated through the fermentation of dietary fibers in the distal colon by the gut microbiome, SCFAs and their effects are partially mediated by their cognate receptors, including free fatty acid receptor 2 (FFA2). FFA2 is highly expressed in the intestinal epithelial cells, where its putative functions are controversial, with numerous in vivo studies relying on global knockout mouse models to characterize intestine-specific roles of the receptor. Here, we used the Villin-Cre mouse line to generate a novel, intestine-specific knockout mouse model for FFA2 (Vil-FFA2) to investigate receptor function within the intestine. Because dietary changes are known to affect the composition of the gut microbiome, and can thereby alter SCFA production, we performed an obesogenic challenge on male Vil-FFA2 mice and their littermate controls (FFA2-floxed, FFA2fl/fl) to identify physiological changes on a high-fat, high-sugar ‘Western diet’ (WD) compared to a low-fat control diet (CD). We found that the WD-fed Vil-FFA2 mice were transiently protected from the obesogenic effects of the WD and had lower fat mass and improved glucose homeostasis compared to the WD-fed FFA2fl/fl control group during the first half of the study. Additionally, major differences in respiratory exchange ratio and energy expenditure were observed in the WD-fed Vil-FFA2 mice, and food intake was found to be significantly reduced at multiple points in the study. Taken together, this study uncovers a novel role of intestinal FFA2 in mediating the development of obesity.

Open access
Thomas G Hill Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK

Search for other papers by Thomas G Hill in
Google Scholar
PubMed
Close
,
Lorna I F Smith Diabetes Research Group, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK

Search for other papers by Lorna I F Smith in
Google Scholar
PubMed
Close
,
Inmaculada Ruz-Maldonado Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA

Search for other papers by Inmaculada Ruz-Maldonado in
Google Scholar
PubMed
Close
,
Peter M Jones Diabetes Research Group, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK

Search for other papers by Peter M Jones in
Google Scholar
PubMed
Close
, and
James E Bowe Diabetes Research Group, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK

Search for other papers by James E Bowe in
Google Scholar
PubMed
Close

During pregnancy the maternal pancreatic islets of Langerhans undergo adaptive changes to compensate for gestational insulin resistance. The lactogenic hormones are well established to play a key role in regulating the islet adaptation to pregnancy, and one of the mechanisms through which they act is through upregulating β-cell serotonin production. During pregnancy islet serotonin levels are significantly elevated, where it is released from the β-cells to drive the adaptive response through paracrine and autocrine effects. We have previously shown that placental kisspeptin (KP) also plays a role in promoting the elevated insulin secretion and β-cell proliferation observed during pregnancy, although the precise mechanisms involved are unclear. In the present study we investigated the effects of KP on expression of pro-proliferative genes and serotonin biosynthesis within rodent islets. Whilst KP had limited effect on pro-proliferative gene expression at the time points tested, KP did significantly stimulate expression of the serotonin biosynthesis enzyme Tph-1. Furthermore, the islets of pregnant β-cell-specific GPR54 knockdown mice were found to contain significantly fewer serotonin-positive β-cells when compared to pregnant controls. Our previous studies suggested that reduced placental kisspeptin production, with consequent impaired kisspeptin-dependent β-cell compensation, may be a factor in the development of GDM in humans. These current data suggest that, similar to the lactogenic hormones, KP may also contribute to serotonin biosynthesis and subsequent islet signalling during pregnancy. Furthermore, upregulation of serotonin biosynthesis may represent a common mechanism through which multiple signals might influence the islet adaptation to pregnancy.

Open access
Yizhou Zhang Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China

Search for other papers by Yizhou Zhang in
Google Scholar
PubMed
Close
,
Meiqin Chen Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China

Search for other papers by Meiqin Chen in
Google Scholar
PubMed
Close
,
Huan Chen Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China

Search for other papers by Huan Chen in
Google Scholar
PubMed
Close
,
Shixiong Mi Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China

Search for other papers by Shixiong Mi in
Google Scholar
PubMed
Close
,
Chang Wang Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China

Search for other papers by Chang Wang in
Google Scholar
PubMed
Close
,
Hongchun Zuo Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China

Search for other papers by Hongchun Zuo in
Google Scholar
PubMed
Close
,
Leigang Song Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China

Search for other papers by Leigang Song in
Google Scholar
PubMed
Close
,
Juan Du Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China

Search for other papers by Juan Du in
Google Scholar
PubMed
Close
,
Huixian Cui Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China

Search for other papers by Huixian Cui in
Google Scholar
PubMed
Close
, and
Sha Li Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China

Search for other papers by Sha Li in
Google Scholar
PubMed
Close

Aging-related reduction in androgen levels may be a possible risk factor for neurodegenerative diseases and contribute to cognitive impairment. Androgens may affect synaptic function and cognition in an androgen receptor (AR)-independent manner; however, the mechanisms connecting theses effects are unknown. Therefore, we used testicular feminization mutation (Tfm) male mice, a model with AR mutation, to test the effects of testosterone on synaptic function and cognition. Our results showed that testosterone ameliorated spatial memory deficit and neuronal damage, and increased dendritic spines density and postsynaptic density protein 95 (PSD95) and glutamate receptor 1 (GluA1) expression in the hippocampus of Tfm male mice. And these effects of testosterone were not inhibited by anastrozole, which suppressed conversion of testosterone to estradiol. Mechanistically, testosterone activated the extracellular signal-related kinase 1/2 (Erk1/2) and cyclic adenosine monophosphate response element-binding protein (CREB) in the hippocampus of Tfm male mice. Meanwhile, Erk1/2 inhibitor SCH772984 blocked the upregulation of phospho-CREB, PSD95, and GluA1 induced by testosterone in HT22 cells pretreated with flutamide, an androgen antagonist. Collectively, our data indicate that testosterone may ameliorate hippocampal synaptic damage and spatial memory deficit by activating the Erk1/2–CREB signaling pathway in an AR-independent manner.

Open access
Free access