Abstract

Currently, the ability to produce black hole mass estimates using the C iv λ1549 line that are consistent with Hβ mass estimates is uncertain, due in large part to disagreement between velocity line width measurements for the two lines. This discrepancy between Hβ and C iv arises from the fact that both line profiles are treated the same way in single-epoch scaling relationships based on the assumption that the broad-line region is virialized, even though a non-virialized emission component is often significant in the C iv line and absent or weak in the Hβ line. Using quasi-simultaneous optical and ultraviolet spectra for a sample of 85 optically-bright quasars with redshifts in the range z = 0.03–1.4, we present a significant step along the path to rehabilitating the C iv line for black hole mass estimates. We show that the residuals of velocity line width between C iv and Hβ are significantly correlated with the peak flux ratio of Si iv+O iv] λ1400 to C iv. Using this relationship, we develop a prescription for estimating black hole masses from the ultraviolet spectrum that agree better with Hβ-based masses than the traditional C iv masses. The scatter between Hβ and C iv masses is initially 0.43 dex in our sample and is reduced to 0.33 dex when using our prescription. The peak flux ratio of Si iv+O iv] λ1400 to C iv is an ultraviolet indicator of the suite of spectral properties commonly known as ‘Eigenvector 1’; thus, the reduction in scatter between C iv and Hβ black hole masses is essentially due to removing an Eigenvector 1 bias in C iv-based masses.

INTRODUCTION

Accretion on to a central supermassive black hole is the engine that powers quasars, making the black hole mass a fundamental property of the quasar. As such, the ability to make accurate measurements of the black hole mass is critical for studies of active galactic nuclei (AGNs). There are methods for estimating the black hole mass (see Shen 2013, for a review), but the uncertainties are large and there is room for improvement.

In current practice, black hole masses can be estimated for large numbers of AGNs with single-epoch spectra using the black hole mass scaling relationships (e.g. Vestergaard & Peterson 2006). The scaling relationships take measures of the velocity of gas in the broad-line region (BLR) and the distance from the black hole, and return a virial mass under the assumption that the BLR motions in the vicinity of the black hole are dominated by the gravity of the black hole. The RL relationship (e.g. Kaspi et al. 2000; Bentz et al. 2009), a reverberation mapping result, allows the use of an easily observed continuum luminosity as a proxy for radius, and a velocity taken from the linewidth of Doppler-broadened emission lines. Commonly used linewidths include full width at half-maximum (FWHM) and line dispersion (σl), each with their own strengths and weaknesses (Denney et al. 2009, 2013).

The scaling relationships have been calibrated for multiple emission lines, including Hβ and C iv λ1549 among others. The best calibration is for the Hβ line because it is the basis for the majority of reverberation mapping programmes. However, at redshifts above z = 1.4, Hβ moves out of the optical wavelength window and the C iv line is more easily obtained. The reverberation mapping for C iv is more limited but does establish an RL relationship for C iv which seems to be consistent with the results from Hβ reverberation mapping (e.g. Peterson et al. 2005). As a result, there exists a C iv-based single-epoch mass scaling relationship that should yield mass estimates consistent with those derived from Hβ.

The reliability of the C iv line to reproduce the more trusted Hβ-based black hole mass estimates is not well established. The main criticism is that the single-epoch C iv profiles do not generally represent the reverberating BLR that provides the basis for virial mass estimates. This issue manifests itself in several specific issues that limit the successful use of C iv as a virial black hole mass estimator.

Many studies find very poor agreement and significant scatter between C iv and Hβ velocity line widths (e.g. Shen & Liu 2012). Reverberation mapping results and virial arguments suggest that the C iv emission originates in a region nearer the central black hole than does the Hβ emission (Peterson et al. 2004). This would imply that C iv linewidth measurements should yield broader widths than are measured for Hβ; however, the C iv linewidths are often narrower than those of Hβ (e.g. Baskin & Laor 2005; Shang et al. 2007; Trakhtenbrot & Netzer 2012). Although their velocity line widths are not expected to be equal, if C iv and Hβ are both emitted from the BLR, they are expected to be correlated. The fact that they are not suggests that the C iv linewidth measurements are not probing the velocity of the virialized C iv gas.

Linewidth measurements may fail to accurately reflect the velocity of the virialized gas because of contamination from other C iv-emitting regions. In regular, type 1 AGNs, the C iv line profile is often shifted from the systematic redshift of the object (Richards et al. 2002; Baskin & Laor 2005; Ho et al. 2012). This implies that the C iv-emitting gas may not be virialized as there may be a strong wind component to the gas. However, Vestergaard & Peterson (2006) find that this issue is exacerbated by including narrow-line Seyfert 1 sources, low-quality data, absorbed objects and objects where the C iv narrow-line component is uncertain in the Baskin & Laor (2005) sample, so this issue may be less significant than it appears.

Reverberation mapping results provide another indication that linewidth measurements of single-epoch spectra may not reflect the velocity of virialized gas in the BLR. Denney (2012) is able to decompose the C iv emission line into a reverberating component and a non-reverberating component by comparing mean spectra, which emulate single-epoch spectra, to rms spectra, which show the emission from gas that responds to changes in the continuum, for objects with reverberation mapping coverage. The non-reverberating component contributes a fairly narrow core to the C iv line that draws the FWHM to lower values. A measure of linewidth in a single-epoch spectrum that might be used in a black hole mass scaling relationship is unable to separate this component from the virialized emission. Denney et al. (2009) has simulated the effects of including a non-virialized narrow component in the linewidths used for black hole mass calculations. The results are conclusive: to obtain accurate and precise linewidth estimates, particularly when using FWHM, such contamination must be removed.

The narrow core component is much less significant in Hβ than in C iv, introducing scatter between Hβ- and C iv-based black hole mass estimates. Denney (2012) recommends the shape parameter, S = FWHM/σl, for distinguishing between objects with boxy profiles (S ∼ 1.5), indicative of a strong reverberating component, and peaky (S ∼ 0.5) profiles, indicative of a strong non-reverberating component. Furthermore, she provides a prescription for using the shape parameter to remove the bias in C iv black hole mass estimates. The shape parameter depends on the C iv FWHM, and is a clear source of scatter between Hβ and C iv black hole masses.

The shape parameter, which can be used to isolate the component of the C iv emission line that originates in virialized gas and improve the reliability of C iv black hole mass estimates, is actually one among many correlated spectral properties collectively termed ‘Eigenvector 1’ (EV1). EV1 describes the largest amount of variation between quasar spectra (Boroson & Green 1992), and is dominated by the anticorrelation between optical Fe ii and [O iii] λ5007 emission, with objects on one end having strong Fe ii emission and weak [O iii] emission. Originally defined at rest-frame optical wavelengths, EV1 has ultraviolet (UV) indicators (Brotherton & Francis 1999; Shang et al. 2003; Sulentic et al. 2007). There have been suggestions for physical drivers of EV1, including the Eddington ratio at low redshifts (Boroson & Green 1992), but it is not clear if this is the case and whether it holds at higher redshifts (Yuan & Wills 2003). Although the exact relationship between EV1 and black hole mass remains elusive, black hole mass is not the primary driver of EV1. Objects with similar black hole masses exhibit a range of EV1 properties as demonstrated in fig. 6 of Boroson (2002) and therefore, crucially for this work, an object's location on EV1 is not indicative of its intrinsic black hole mass. In some samples (e.g. the Palomar-Green sample) EV1 and black hole mass appear to be correlated but this may be the result of the sample selection and other primary correlations like the one between EV1 and Eddington fraction.

The spectral analysis of Wills et al. (1993a) suggests that it is in fact an EV1 bias that causes disagreement between the C iv and Hβ velocity widths. Their UV spectral composites demonstrate that with increasing C iv FWHM, the peak flux of the C iv line decreases compared to the peak flux of the nearby Si iv+O iv] blend at 1400 Å (which does not vary with the FWHM of C iv, Wills et al. 1993a; Richards et al. 2002) and the line profile changes from peaky to boxy. As a result, the velocity width of the C iv emission line is determined both by the black hole mass and the unknown physical driver of EV1. The shape of C iv is a UV indicator of EV1, suggesting that the shape correction of Denney (2012) is successful largely because of its ability to estimate the EV1 bias in C iv. However, line dispersion, and thus the shape parameter, requires high-signal-to-noise-ratio (high-S/N) spectra to obtain an accurate measurement and is thus not suitable for use with current survey-quality data (Denney et al. 2013). Instead, the application of a peak ratio of Si iv+O iv] to C iv, a UV EV1 indicator that is free of the S/N constraint that plagues the shape parameter, combined with C iv FWHM-based black hole mass estimates might provide a more Hβ-like black hole mass that can be measured for large numbers of quasars.

We investigate the use of the ratio of the Si iv+O iv] to C iv peak fluxes as a method to rehabilitate the C iv-based black hole mass estimates in the spectral energy distribution (SED) atlas of Shang et al. (2011). The quasi-simultaneous optical and UV spectrophotometry available in this data set is particularly valuable to this investigation, allowing us to consider the Hβ and C iv spectral regions free of variability concerns. We show that by using both the linewidth of C iv and the peak ratio it is possible to dramatically reduce the scatter between Hβ- and C iv-based black hole mass estimates and derive prescriptions for predicting the Hβ linewidth and black hole mass from information in the C iv spectral region.

This investigation is organized as follows. In Section 2, we present the sample and discuss our methods for making spectral measurements. Section 3 presents an analysis of the dependence of velocity line width residuals on the ratio of peak fluxes of Si iv+O iv] to C iv, including a correction for the observed effect that decreases the scatter between C iv- and Hβ-based black hole masses. The results are discussed in the context of other work in Section 4 and conclusions are presented in Section 5. Throughout this work, back hole masses and luminosities are calculated using a cosmology with H0 = 70 km s−1 Mpc−1, ΩΛ = 0.7 and Ωm = 0.3.

SAMPLE, DATA AND MEASUREMENTS

For this work we use the SED sample from Shang et al. (2011). The atlas includes 85 objects, 58 of which are radio loud (RL) and 27 of which are radio quiet (RQ), with redshifts in the range z = 0.030–1.404 and bolometric luminosities of |$45.1< {\rm log}(L_{\rm bol})<47.3$| in units of erg s−1.

Most objects have quasi-simultaneous optical and UV spectrophotometry. All of the objects were observed in the UV either with the Hubble Space Telescope Faint Object Spectrograph (FOS) or with the Space Telescope Imaging Spectrograph and most were followed up within a few weeks by low-resolution ground-base optical spectrophotometry either from the McDonald Observatory or from the Kitt Peak National Observatory.

The SED atlas does not comprise a complete sample, but it does include a nearly-complete subsample. The PGX subsample has 22 out of 23 Palomar–Green (PG) quasars selected to study the soft-X-ray regime (Laor et al. 1994b, 1997), is UV bright and has z ≤ 0.4. This subsample was presented in Shang et al. (2007), who found that the linewidths for these objects do not indicate a purely stratified ionization structure in the BLR. Furthermore, these objects have also been used to illustrate the issues associated with C iv linewidths (e.g. Trakhtenbrot & Netzer 2012). The atlas also includes the higher redshift, higher luminosity RL subsample and the FUSE subsample that contains mostly RQ objects with redshifts of a few tenths.

This atlas is particularly suited to this investigation for two reasons. First, the quasi-simultaneous optical and UV spectrophotometry makes this sample less susceptible to variability issues than similar investigations (e.g. Trakhtenbrot & Netzer 2012), allowing a meaningful comparison between physical properties calculated from the C iv and Hβ wavelength regimes. Secondly, the inclusion of the PGX subsample ensures that the total atlas covers the full range in EV1 properties. This is important because the sample contains a large number of RL sources which are isolated on one end of EV1 with strong [O iii] and weak Fe ii (e.g. Boroson & Green 1992; Bachev et al. 2004; Sulentic et al. 2007). The sample will exhibit EV1 properties within the range defined by the PGX subsample, making our conclusions robust; the fact that the overabundance of RL sources may cause the distribution of those properties to be biased does not compromise this.

The spectra have been corrected for Galactic extinction, reddening and host contamination in the optical (although these objects are optically bright and the host contribution is minimal). The redshift is determined from the [O iii] λ5007 line and the spectra were shifted to the rest frame. Shang et al. (2011) provides more details on these corrections.

Spectral fitting was done by Tang et al. (2012) following the method of Shang et al. (2007). Fitting is done by minimizing χ2 between the model and the data using the iraf package specfit (Kriss 1994). The Hβ, C iv λ1549and Si iv+O iv] λ1400 regions were fitted individually with model spectra consisting of a power-law continuum and two Gaussian components per broad emission line. In the case of the Si iv+O iv] blend, which we will hereafter refer to as ‘λ1400’, the fit was made between 1350 and 1460 Å and the power-law continuum is separated from that of C iv. The Gaussians ascribed to Si iv and O iv] were identical except in their centroids which were appropriate for their respective line centres. For the C iv doublet, the Gaussian pairs were also identical except in their centroids and they did not include a component to model emission from the narrow-line region (NLR) because, according to Wills et al. (1993b), there is no strong NLR component present in C iv. The Hβ broad emission line does include a contribution to emission from the NLR which was modelled with an additional Gaussian that is not included when measuring linewidths. An Fe ii template derived from the narrow-line Seyfert 1 I Zw1 (Boroson & Green 1992) was also included in the Hβ region and was allowed to vary in amplitude and velocity width in order to match the observed spectrum.

The spectral fits for λ1400 were done at the same time as the Hβ and C iv regions but not presented in Tang et al. (2012), so we present them here. A sample spectrum is given in Fig. 1 and the results of the fitting are given in Tables 1 and 2.

Spectral fitting for the wavelength region around λ1400 for PG 1415+451. The observed spectrum is shown by the dotted grey line, the total model spectrum by the red line, the power-law continuum by the orange line, the two Si iv components by the gold lines and the two O iv] components by the green lines.
Figure 1.

Spectral fitting for the wavelength region around λ1400 for PG 1415+451. The observed spectrum is shown by the dotted grey line, the total model spectrum by the red line, the power-law continuum by the orange line, the two Si iv components by the gold lines and the two O iv] components by the green lines.

Table 1.

EV1 measurements.

Objectλ1400 EWλ1400 peakλ1400 fluxC iv EWC iv peakC iv fluxFe ii EW[O iii] EW
(Å)(10−15(10−15(Å)(10−15(10−15(Å)(Å)
erg s−1 cm−2 Å−1)erg s−1 cm−2)erg s−1 cm−2 Å−1)erg s−1 cm−2)
3C 11012.77 ± 0.260.75 ± 0.0250.87 ± 0.98107.787.84 ± 0.02363.3927.0824.98
3C 17512.56 ± 0.590.43 ± 0.0237.53 ± 0.9555.593.24 ± 0.02158.6121.1020.05
3C 18615.70 ± 1.200.15 ± 0.0210.52 ± 0.9366.500.91 ± 0.0240.18⋅⋅⋅⋅⋅⋅
3C 20715.21 ± 0.880.38 ± 0.0212.99 ± 0.9486.322.31 ± 0.0275.6860.9723.34
3C 21518.88 ± 0.560.53 ± 0.0215.49 ± 0.95204.603.65 ± 0.02153.4955.1347.03
3C 23214.06 ± 0.241.11 ± 0.0245.03 ± 0.9833.542.30 ± 0.03100.0066.8755.39
3C 25419.84 ± 1.110.33 ± 0.0213.33 ± 0.93172.432.44 ± 0.02107.46102.79116.51
3C 26312.52 ± 0.362.01 ± 0.0268.07 ± 0.9775.5111.50 ± 0.02344.6958.8120.10
3C 277.117.56 ± 0.881.07 ± 0.0230.54 ± 0.94106.476.42 ± 0.02163.87103.86159.40
3C 28115.83 ± 0.970.38 ± 0.0222.56 ± 0.93119.673.45 ± 0.02149.1562.3246.79
3C 288.110.17 ± 0.410.13 ± 0.027.97 ± 0.9642.320.82 ± 0.0229.92121.7285.38
3C 33414.67 ± 0.230.84 ± 0.0253.29 ± 0.9874.986.35 ± 0.02250.6226.2240.53
3C 3734.00 ± 2.540.47 ± 0.0114.54 ± 0.90252.633.64 ± 0.0297.43204.08105.93
3C 44618.16 ± 6.350.10 ± 0.016.07 ± 0.8776.400.95 ± 0.0228.00⋅⋅⋅⋅⋅⋅
3C 4718.30 ± 1.140.79 ± 0.0223.17 ± 0.93172.914.98 ± 0.02212.3767.08116.19
4C 01.0450.12 ± 4.210.46 ± 0.0128.56 ± 0.88270.363.82 ± 0.02173.7795.0239.04
4C 06.6910.52 ± 0.640.70 ± 0.0238.24 ± 0.9545.163.71 ± 0.02150.9542.1142.89
4C 10.0621.33 ± 1.312.58 ± 0.02121.57 ± 0.92114.5717.44 ± 0.02598.9259.9024.80
4C 11.6911.98 ± 0.330.38 ± 0.0223.02 ± 0.9737.412.51 ± 0.0265.65⋅⋅⋅⋅⋅⋅
4C 12.4022.88 ± 1.050.24 ± 0.0214.50 ± 0.9397.161.51 ± 0.0259.50142.5340.87
4C 19.4411.90 ± 0.371.52 ± 0.0244.04 ± 0.9696.3711.94 ± 0.02309.7169.4978.62
4C 20.2425.06 ± 1.030.78 ± 0.0223.20 ± 0.93185.254.76 ± 0.02136.93⋅⋅⋅⋅⋅⋅
4C 22.2616.96 ± 1.260.22 ± 0.028.78 ± 0.92180.902.00 ± 0.0278.42⋅⋅⋅⋅⋅⋅
4C 30.2517.76 ± 1.240.14 ± 0.024.56 ± 0.92146.341.09 ± 0.0232.92⋅⋅⋅⋅⋅⋅
4C 31.638.31 ± 0.437.48 ± 0.02254.54 ± 0.9639.6029.13 ± 0.021109.30114.456.44
4C 34.4723.15 ± 1.467.47 ± 0.02201.50 ± 0.92213.0367.11 ± 0.021802.20167.1692.68
4C 39.259.75 ± 0.130.68 ± 0.0237.76 ± 1.0079.996.75 ± 0.03257.0721.9515.20
4C 40.2415.36 ± 1.160.22 ± 0.025.36 ± 0.93131.381.21 ± 0.0238.00⋅⋅⋅⋅⋅⋅
4C 41.2118.88 ± 0.382.46 ± 0.0299.06 ± 0.9696.0414.76 ± 0.02451.2961.7832.98
4C 49.2224.05 ± 1.251.77 ± 0.0262.16 ± 0.92178.7711.80 ± 0.02379.18156.3226.63
4C 55.174.32 ± 0.600.05 ± 0.022.65 ± 0.9534.570.53 ± 0.0220.00⋅⋅⋅⋅⋅⋅
4C 58.295.59 ± 0.790.13 ± 0.028.03 ± 1.0739.431.20 ± 0.0249.09⋅⋅⋅⋅⋅⋅
4C 64.1517.89 ± 1.550.11 ± 0.026.88 ± 0.9268.540.52 ± 0.0226.00⋅⋅⋅⋅⋅⋅
4C 73.1811.58 ± 0.636.02 ± 0.02158.98 ± 0.95111.7938.03 ± 0.021119.6041.1924.41
B2 0742+3113.29 ± 0.361.84 ± 0.0269.12 ± 0.97127.7813.99 ± 0.02550.2931.2141.31
B2 1351+317.66 ± 0.830.05 ± 0.022.89 ± 0.9447.730.39 ± 0.0214.73⋅⋅⋅⋅⋅⋅
B2 1555+3318.84 ± 2.280.13 ± 0.015.37 ± 0.90108.540.91 ± 0.0230.00⋅⋅⋅⋅⋅⋅
B2 1611+3413.03 ± 1.060.24 ± 0.0110.21 ± 0.7450.651.03 ± 0.0135.850.0017.44
IRAS F07546+39287.83 ± 0.696.55 ± 0.02117.47 ± 0.94105.3470.56 ± 0.021640.60188.6838.01
MC2 0042+10128.15 ± 4.010.17 ± 0.017.82 ± 0.90218.941.65 ± 0.0261.920.0050.37
MC2 1146+111⋅⋅⋅⋅⋅⋅⋅⋅⋅46.760.67 ± 0.0221.04111.2822.07
Mrk 50638.46 ± 1.2812.91 ± 0.02454.64 ± 0.92244.4275.10 ± 0.022670.80101.4935.72
Mrk 50924.41 ± 0.0963.26 ± 0.021988.98 ± 1.01140.75316.41 ± 0.1710404.0099.6683.64
OS 56211.70 ± 0.540.66 ± 0.0230.01 ± 0.9546.383.50 ± 0.02105.0477.3614.43
PG 0052+25115.65 ± 1.007.98 ± 0.02284.58 ± 0.93137.5851.26 ± 0.022181.0052.6253.81
PG 0844+34915.12 ± 0.2116.29 ± 0.02455.52 ± 0.9948.1946.03 ± 0.031332.70211.827.13
PG 0947+39611.87 ± 0.723.01 ± 0.0281.63 ± 0.9495.6618.56 ± 0.02590.26129.4423.68
PG 0953+4146.67 ± 0.527.74 ± 0.02178.25 ± 0.9549.3542.75 ± 0.021150.1042.9912.04
PG 1001+05426.76 ± 0.835.23 ± 0.02104.68 ± 0.9475.0810.01 ± 0.02272.12202.6912.11
PG 1100+7724.32 ± 0.833.29 ± 0.0263.84 ± 0.9479.6822.99 ± 0.02950.6254.8342.10
PG 1103−00614.56 ± 0.851.54 ± 0.0251.79 ± 0.9455.295.18 ± 0.02181.2697.9913.08
PG 1114+44517.48 ± 1.713.04 ± 0.02110.01 ± 0.9181.0615.27 ± 0.02497.8248.7015.75
PG 1115+40714.19 ± 0.766.50 ± 0.02181.79 ± 0.9447.5914.90 ± 0.02519.46149.958.05
PG 1116+21515.02 ± 0.4716.27 ± 0.02523.42 ± 0.9671.8470.19 ± 0.022160.80171.6816.72
PG 1202+28139.63 ± 1.953.66 ± 0.0198.11 ± 0.91306.3428.91 ± 0.02711.0459.7555.91
PG 1216+06910.27 ± 0.241.99 ± 0.0268.10 ± 0.9898.0317.29 ± 0.03557.1641.9910.49
PG 1226+0235.91 ± 0.5255.37 ± 0.021447.16 ± 0.9532.40222.96 ± 0.027417.20111.468.30
PG 1259+59311.29 ± 0.403.21 ± 0.02112.42 ± 0.9620.314.33 ± 0.02184.00403.054.45
PG 1309+3558.25 ± 0.583.89 ± 0.0291.00 ± 0.9556.3116.51 ± 0.02549.7966.2017.05
PG 1322+6597.53 ± 1.462.42 ± 0.0272.00 ± 0.9254.4415.67 ± 0.02454.9297.487.49
PG 1351+64022.06 ± 0.5217.53 ± 0.02358.64 ± 0.9578.6349.34 ± 0.021296.4029.2638.10
PG 1352+18317.48 ± 1.225.13 ± 0.02174.24 ± 0.9277.7520.50 ± 0.02650.23112.529.68
PG 1402+26114.05 ± 0.829.44 ± 0.02301.14 ± 0.9444.6024.73 ± 0.02831.74259.462.45
PG 1411+44217.40 ± 0.4020.56 ± 0.02426.44 ± 0.9644.6963.08 ± 0.02911.68122.9013.37
PG 1415+45122.81 ± 2.468.63 ± 0.01229.08 ± 0.9065.4923.30 ± 0.02588.64210.302.68
PG 1425+26710.30 ± 0.501.25 ± 0.0241.86 ± 0.95123.539.07 ± 0.02449.4334.4331.57
PG 1427+48016.11 ± 0.643.47 ± 0.02108.83 ± 0.9577.5921.38 ± 0.02463.3483.2927.86
PG 1440+35611.62 ± 0.4723.43 ± 0.02489.35 ± 0.9633.0278.97 ± 0.021246.80230.097.59
PG 1444+40714.67 ± 0.293.91 ± 0.02132.63 ± 0.9724.096.70 ± 0.02198.97287.491.49
PG 1512+3706.95 ± 0.270.93 ± 0.0228.00 ± 0.98119.2810.43 ± 0.02420.1423.4358.42
PG 1534+58016.05 ± 1.747.18 ± 0.02213.60 ± 0.91142.5165.41 ± 0.021740.3025.40114.48
PG 1543+48918.20 ± 0.223.19 ± 0.02100.46 ± 0.9839.075.69 ± 0.03209.09206.925.42
PG 1545+21020.56 ± 0.983.58 ± 0.02143.52 ± 0.93181.0526.77 ± 0.021047.4024.9541.54
PG 1626+55416.67 ± 1.267.21 ± 0.02281.87 ± 0.9270.8530.96 ± 0.021012.6072.185.44
PG 1704+6082.68 ± 0.380.42 ± 0.0223.79 ± 0.9661.2011.99 ± 0.02495.6013.6027.68
PG 2214+13912.94 ± 0.1315.89 ± 0.02562.97 ± 0.9951.8876.43 ± 0.022100.90173.2812.43
PG 2251+11312.12 ± 0.393.33 ± 0.02103.58 ± 0.9696.9119.56 ± 0.02713.28144.9828.07
PG 2349−01410.58 ± 1.823.53 ± 0.0193.80 ± 0.91155.3930.32 ± 0.021231.60106.5632.27
PKS 0112−01713.00 ± 0.280.19 ± 0.028.98 ± 0.9730.810.54 ± 0.0320.00⋅⋅⋅⋅⋅⋅
PKS 0403−1315.60 ± 0.620.97 ± 0.0229.98 ± 1.05138.327.92 ± 0.02213.3767.0819.87
PKS 0859−1410.09 ± 0.620.46 ± 0.0214.73 ± 0.9548.891.80 ± 0.0259.8894.148.67
PKS 1127−1412.62 ± 2.130.25 ± 0.0115.00 ± 0.9125.931.03 ± 0.0230.00⋅⋅⋅⋅⋅⋅
PKS 1656+0536.35 ± 0.660.40 ± 0.0217.06 ± 0.95⋅⋅⋅⋅⋅⋅⋅⋅⋅114.083.84
PKS 2216-0315.36 ± 0.820.88 ± 0.0232.83 ± 0.9459.313.49 ± 0.02121.2382.0031.66
TEX 1156+21314.69 ± 0.701.11 ± 0.0245.00 ± 0.94116.097.91 ± 0.02301.9758.4017.46
Objectλ1400 EWλ1400 peakλ1400 fluxC iv EWC iv peakC iv fluxFe ii EW[O iii] EW
(Å)(10−15(10−15(Å)(10−15(10−15(Å)(Å)
erg s−1 cm−2 Å−1)erg s−1 cm−2)erg s−1 cm−2 Å−1)erg s−1 cm−2)
3C 11012.77 ± 0.260.75 ± 0.0250.87 ± 0.98107.787.84 ± 0.02363.3927.0824.98
3C 17512.56 ± 0.590.43 ± 0.0237.53 ± 0.9555.593.24 ± 0.02158.6121.1020.05
3C 18615.70 ± 1.200.15 ± 0.0210.52 ± 0.9366.500.91 ± 0.0240.18⋅⋅⋅⋅⋅⋅
3C 20715.21 ± 0.880.38 ± 0.0212.99 ± 0.9486.322.31 ± 0.0275.6860.9723.34
3C 21518.88 ± 0.560.53 ± 0.0215.49 ± 0.95204.603.65 ± 0.02153.4955.1347.03
3C 23214.06 ± 0.241.11 ± 0.0245.03 ± 0.9833.542.30 ± 0.03100.0066.8755.39
3C 25419.84 ± 1.110.33 ± 0.0213.33 ± 0.93172.432.44 ± 0.02107.46102.79116.51
3C 26312.52 ± 0.362.01 ± 0.0268.07 ± 0.9775.5111.50 ± 0.02344.6958.8120.10
3C 277.117.56 ± 0.881.07 ± 0.0230.54 ± 0.94106.476.42 ± 0.02163.87103.86159.40
3C 28115.83 ± 0.970.38 ± 0.0222.56 ± 0.93119.673.45 ± 0.02149.1562.3246.79
3C 288.110.17 ± 0.410.13 ± 0.027.97 ± 0.9642.320.82 ± 0.0229.92121.7285.38
3C 33414.67 ± 0.230.84 ± 0.0253.29 ± 0.9874.986.35 ± 0.02250.6226.2240.53
3C 3734.00 ± 2.540.47 ± 0.0114.54 ± 0.90252.633.64 ± 0.0297.43204.08105.93
3C 44618.16 ± 6.350.10 ± 0.016.07 ± 0.8776.400.95 ± 0.0228.00⋅⋅⋅⋅⋅⋅
3C 4718.30 ± 1.140.79 ± 0.0223.17 ± 0.93172.914.98 ± 0.02212.3767.08116.19
4C 01.0450.12 ± 4.210.46 ± 0.0128.56 ± 0.88270.363.82 ± 0.02173.7795.0239.04
4C 06.6910.52 ± 0.640.70 ± 0.0238.24 ± 0.9545.163.71 ± 0.02150.9542.1142.89
4C 10.0621.33 ± 1.312.58 ± 0.02121.57 ± 0.92114.5717.44 ± 0.02598.9259.9024.80
4C 11.6911.98 ± 0.330.38 ± 0.0223.02 ± 0.9737.412.51 ± 0.0265.65⋅⋅⋅⋅⋅⋅
4C 12.4022.88 ± 1.050.24 ± 0.0214.50 ± 0.9397.161.51 ± 0.0259.50142.5340.87
4C 19.4411.90 ± 0.371.52 ± 0.0244.04 ± 0.9696.3711.94 ± 0.02309.7169.4978.62
4C 20.2425.06 ± 1.030.78 ± 0.0223.20 ± 0.93185.254.76 ± 0.02136.93⋅⋅⋅⋅⋅⋅
4C 22.2616.96 ± 1.260.22 ± 0.028.78 ± 0.92180.902.00 ± 0.0278.42⋅⋅⋅⋅⋅⋅
4C 30.2517.76 ± 1.240.14 ± 0.024.56 ± 0.92146.341.09 ± 0.0232.92⋅⋅⋅⋅⋅⋅
4C 31.638.31 ± 0.437.48 ± 0.02254.54 ± 0.9639.6029.13 ± 0.021109.30114.456.44
4C 34.4723.15 ± 1.467.47 ± 0.02201.50 ± 0.92213.0367.11 ± 0.021802.20167.1692.68
4C 39.259.75 ± 0.130.68 ± 0.0237.76 ± 1.0079.996.75 ± 0.03257.0721.9515.20
4C 40.2415.36 ± 1.160.22 ± 0.025.36 ± 0.93131.381.21 ± 0.0238.00⋅⋅⋅⋅⋅⋅
4C 41.2118.88 ± 0.382.46 ± 0.0299.06 ± 0.9696.0414.76 ± 0.02451.2961.7832.98
4C 49.2224.05 ± 1.251.77 ± 0.0262.16 ± 0.92178.7711.80 ± 0.02379.18156.3226.63
4C 55.174.32 ± 0.600.05 ± 0.022.65 ± 0.9534.570.53 ± 0.0220.00⋅⋅⋅⋅⋅⋅
4C 58.295.59 ± 0.790.13 ± 0.028.03 ± 1.0739.431.20 ± 0.0249.09⋅⋅⋅⋅⋅⋅
4C 64.1517.89 ± 1.550.11 ± 0.026.88 ± 0.9268.540.52 ± 0.0226.00⋅⋅⋅⋅⋅⋅
4C 73.1811.58 ± 0.636.02 ± 0.02158.98 ± 0.95111.7938.03 ± 0.021119.6041.1924.41
B2 0742+3113.29 ± 0.361.84 ± 0.0269.12 ± 0.97127.7813.99 ± 0.02550.2931.2141.31
B2 1351+317.66 ± 0.830.05 ± 0.022.89 ± 0.9447.730.39 ± 0.0214.73⋅⋅⋅⋅⋅⋅
B2 1555+3318.84 ± 2.280.13 ± 0.015.37 ± 0.90108.540.91 ± 0.0230.00⋅⋅⋅⋅⋅⋅
B2 1611+3413.03 ± 1.060.24 ± 0.0110.21 ± 0.7450.651.03 ± 0.0135.850.0017.44
IRAS F07546+39287.83 ± 0.696.55 ± 0.02117.47 ± 0.94105.3470.56 ± 0.021640.60188.6838.01
MC2 0042+10128.15 ± 4.010.17 ± 0.017.82 ± 0.90218.941.65 ± 0.0261.920.0050.37
MC2 1146+111⋅⋅⋅⋅⋅⋅⋅⋅⋅46.760.67 ± 0.0221.04111.2822.07
Mrk 50638.46 ± 1.2812.91 ± 0.02454.64 ± 0.92244.4275.10 ± 0.022670.80101.4935.72
Mrk 50924.41 ± 0.0963.26 ± 0.021988.98 ± 1.01140.75316.41 ± 0.1710404.0099.6683.64
OS 56211.70 ± 0.540.66 ± 0.0230.01 ± 0.9546.383.50 ± 0.02105.0477.3614.43
PG 0052+25115.65 ± 1.007.98 ± 0.02284.58 ± 0.93137.5851.26 ± 0.022181.0052.6253.81
PG 0844+34915.12 ± 0.2116.29 ± 0.02455.52 ± 0.9948.1946.03 ± 0.031332.70211.827.13
PG 0947+39611.87 ± 0.723.01 ± 0.0281.63 ± 0.9495.6618.56 ± 0.02590.26129.4423.68
PG 0953+4146.67 ± 0.527.74 ± 0.02178.25 ± 0.9549.3542.75 ± 0.021150.1042.9912.04
PG 1001+05426.76 ± 0.835.23 ± 0.02104.68 ± 0.9475.0810.01 ± 0.02272.12202.6912.11
PG 1100+7724.32 ± 0.833.29 ± 0.0263.84 ± 0.9479.6822.99 ± 0.02950.6254.8342.10
PG 1103−00614.56 ± 0.851.54 ± 0.0251.79 ± 0.9455.295.18 ± 0.02181.2697.9913.08
PG 1114+44517.48 ± 1.713.04 ± 0.02110.01 ± 0.9181.0615.27 ± 0.02497.8248.7015.75
PG 1115+40714.19 ± 0.766.50 ± 0.02181.79 ± 0.9447.5914.90 ± 0.02519.46149.958.05
PG 1116+21515.02 ± 0.4716.27 ± 0.02523.42 ± 0.9671.8470.19 ± 0.022160.80171.6816.72
PG 1202+28139.63 ± 1.953.66 ± 0.0198.11 ± 0.91306.3428.91 ± 0.02711.0459.7555.91
PG 1216+06910.27 ± 0.241.99 ± 0.0268.10 ± 0.9898.0317.29 ± 0.03557.1641.9910.49
PG 1226+0235.91 ± 0.5255.37 ± 0.021447.16 ± 0.9532.40222.96 ± 0.027417.20111.468.30
PG 1259+59311.29 ± 0.403.21 ± 0.02112.42 ± 0.9620.314.33 ± 0.02184.00403.054.45
PG 1309+3558.25 ± 0.583.89 ± 0.0291.00 ± 0.9556.3116.51 ± 0.02549.7966.2017.05
PG 1322+6597.53 ± 1.462.42 ± 0.0272.00 ± 0.9254.4415.67 ± 0.02454.9297.487.49
PG 1351+64022.06 ± 0.5217.53 ± 0.02358.64 ± 0.9578.6349.34 ± 0.021296.4029.2638.10
PG 1352+18317.48 ± 1.225.13 ± 0.02174.24 ± 0.9277.7520.50 ± 0.02650.23112.529.68
PG 1402+26114.05 ± 0.829.44 ± 0.02301.14 ± 0.9444.6024.73 ± 0.02831.74259.462.45
PG 1411+44217.40 ± 0.4020.56 ± 0.02426.44 ± 0.9644.6963.08 ± 0.02911.68122.9013.37
PG 1415+45122.81 ± 2.468.63 ± 0.01229.08 ± 0.9065.4923.30 ± 0.02588.64210.302.68
PG 1425+26710.30 ± 0.501.25 ± 0.0241.86 ± 0.95123.539.07 ± 0.02449.4334.4331.57
PG 1427+48016.11 ± 0.643.47 ± 0.02108.83 ± 0.9577.5921.38 ± 0.02463.3483.2927.86
PG 1440+35611.62 ± 0.4723.43 ± 0.02489.35 ± 0.9633.0278.97 ± 0.021246.80230.097.59
PG 1444+40714.67 ± 0.293.91 ± 0.02132.63 ± 0.9724.096.70 ± 0.02198.97287.491.49
PG 1512+3706.95 ± 0.270.93 ± 0.0228.00 ± 0.98119.2810.43 ± 0.02420.1423.4358.42
PG 1534+58016.05 ± 1.747.18 ± 0.02213.60 ± 0.91142.5165.41 ± 0.021740.3025.40114.48
PG 1543+48918.20 ± 0.223.19 ± 0.02100.46 ± 0.9839.075.69 ± 0.03209.09206.925.42
PG 1545+21020.56 ± 0.983.58 ± 0.02143.52 ± 0.93181.0526.77 ± 0.021047.4024.9541.54
PG 1626+55416.67 ± 1.267.21 ± 0.02281.87 ± 0.9270.8530.96 ± 0.021012.6072.185.44
PG 1704+6082.68 ± 0.380.42 ± 0.0223.79 ± 0.9661.2011.99 ± 0.02495.6013.6027.68
PG 2214+13912.94 ± 0.1315.89 ± 0.02562.97 ± 0.9951.8876.43 ± 0.022100.90173.2812.43
PG 2251+11312.12 ± 0.393.33 ± 0.02103.58 ± 0.9696.9119.56 ± 0.02713.28144.9828.07
PG 2349−01410.58 ± 1.823.53 ± 0.0193.80 ± 0.91155.3930.32 ± 0.021231.60106.5632.27
PKS 0112−01713.00 ± 0.280.19 ± 0.028.98 ± 0.9730.810.54 ± 0.0320.00⋅⋅⋅⋅⋅⋅
PKS 0403−1315.60 ± 0.620.97 ± 0.0229.98 ± 1.05138.327.92 ± 0.02213.3767.0819.87
PKS 0859−1410.09 ± 0.620.46 ± 0.0214.73 ± 0.9548.891.80 ± 0.0259.8894.148.67
PKS 1127−1412.62 ± 2.130.25 ± 0.0115.00 ± 0.9125.931.03 ± 0.0230.00⋅⋅⋅⋅⋅⋅
PKS 1656+0536.35 ± 0.660.40 ± 0.0217.06 ± 0.95⋅⋅⋅⋅⋅⋅⋅⋅⋅114.083.84
PKS 2216-0315.36 ± 0.820.88 ± 0.0232.83 ± 0.9459.313.49 ± 0.02121.2382.0031.66
TEX 1156+21314.69 ± 0.701.11 ± 0.0245.00 ± 0.94116.097.91 ± 0.02301.9758.4017.46

Note: EWs are given in the rest frame and fluxes in the observed frame.

Table 1.

EV1 measurements.

Objectλ1400 EWλ1400 peakλ1400 fluxC iv EWC iv peakC iv fluxFe ii EW[O iii] EW
(Å)(10−15(10−15(Å)(10−15(10−15(Å)(Å)
erg s−1 cm−2 Å−1)erg s−1 cm−2)erg s−1 cm−2 Å−1)erg s−1 cm−2)
3C 11012.77 ± 0.260.75 ± 0.0250.87 ± 0.98107.787.84 ± 0.02363.3927.0824.98
3C 17512.56 ± 0.590.43 ± 0.0237.53 ± 0.9555.593.24 ± 0.02158.6121.1020.05
3C 18615.70 ± 1.200.15 ± 0.0210.52 ± 0.9366.500.91 ± 0.0240.18⋅⋅⋅⋅⋅⋅
3C 20715.21 ± 0.880.38 ± 0.0212.99 ± 0.9486.322.31 ± 0.0275.6860.9723.34
3C 21518.88 ± 0.560.53 ± 0.0215.49 ± 0.95204.603.65 ± 0.02153.4955.1347.03
3C 23214.06 ± 0.241.11 ± 0.0245.03 ± 0.9833.542.30 ± 0.03100.0066.8755.39
3C 25419.84 ± 1.110.33 ± 0.0213.33 ± 0.93172.432.44 ± 0.02107.46102.79116.51
3C 26312.52 ± 0.362.01 ± 0.0268.07 ± 0.9775.5111.50 ± 0.02344.6958.8120.10
3C 277.117.56 ± 0.881.07 ± 0.0230.54 ± 0.94106.476.42 ± 0.02163.87103.86159.40
3C 28115.83 ± 0.970.38 ± 0.0222.56 ± 0.93119.673.45 ± 0.02149.1562.3246.79
3C 288.110.17 ± 0.410.13 ± 0.027.97 ± 0.9642.320.82 ± 0.0229.92121.7285.38
3C 33414.67 ± 0.230.84 ± 0.0253.29 ± 0.9874.986.35 ± 0.02250.6226.2240.53
3C 3734.00 ± 2.540.47 ± 0.0114.54 ± 0.90252.633.64 ± 0.0297.43204.08105.93
3C 44618.16 ± 6.350.10 ± 0.016.07 ± 0.8776.400.95 ± 0.0228.00⋅⋅⋅⋅⋅⋅
3C 4718.30 ± 1.140.79 ± 0.0223.17 ± 0.93172.914.98 ± 0.02212.3767.08116.19
4C 01.0450.12 ± 4.210.46 ± 0.0128.56 ± 0.88270.363.82 ± 0.02173.7795.0239.04
4C 06.6910.52 ± 0.640.70 ± 0.0238.24 ± 0.9545.163.71 ± 0.02150.9542.1142.89
4C 10.0621.33 ± 1.312.58 ± 0.02121.57 ± 0.92114.5717.44 ± 0.02598.9259.9024.80
4C 11.6911.98 ± 0.330.38 ± 0.0223.02 ± 0.9737.412.51 ± 0.0265.65⋅⋅⋅⋅⋅⋅
4C 12.4022.88 ± 1.050.24 ± 0.0214.50 ± 0.9397.161.51 ± 0.0259.50142.5340.87
4C 19.4411.90 ± 0.371.52 ± 0.0244.04 ± 0.9696.3711.94 ± 0.02309.7169.4978.62
4C 20.2425.06 ± 1.030.78 ± 0.0223.20 ± 0.93185.254.76 ± 0.02136.93⋅⋅⋅⋅⋅⋅
4C 22.2616.96 ± 1.260.22 ± 0.028.78 ± 0.92180.902.00 ± 0.0278.42⋅⋅⋅⋅⋅⋅
4C 30.2517.76 ± 1.240.14 ± 0.024.56 ± 0.92146.341.09 ± 0.0232.92⋅⋅⋅⋅⋅⋅
4C 31.638.31 ± 0.437.48 ± 0.02254.54 ± 0.9639.6029.13 ± 0.021109.30114.456.44
4C 34.4723.15 ± 1.467.47 ± 0.02201.50 ± 0.92213.0367.11 ± 0.021802.20167.1692.68
4C 39.259.75 ± 0.130.68 ± 0.0237.76 ± 1.0079.996.75 ± 0.03257.0721.9515.20
4C 40.2415.36 ± 1.160.22 ± 0.025.36 ± 0.93131.381.21 ± 0.0238.00⋅⋅⋅⋅⋅⋅
4C 41.2118.88 ± 0.382.46 ± 0.0299.06 ± 0.9696.0414.76 ± 0.02451.2961.7832.98
4C 49.2224.05 ± 1.251.77 ± 0.0262.16 ± 0.92178.7711.80 ± 0.02379.18156.3226.63
4C 55.174.32 ± 0.600.05 ± 0.022.65 ± 0.9534.570.53 ± 0.0220.00⋅⋅⋅⋅⋅⋅
4C 58.295.59 ± 0.790.13 ± 0.028.03 ± 1.0739.431.20 ± 0.0249.09⋅⋅⋅⋅⋅⋅
4C 64.1517.89 ± 1.550.11 ± 0.026.88 ± 0.9268.540.52 ± 0.0226.00⋅⋅⋅⋅⋅⋅
4C 73.1811.58 ± 0.636.02 ± 0.02158.98 ± 0.95111.7938.03 ± 0.021119.6041.1924.41
B2 0742+3113.29 ± 0.361.84 ± 0.0269.12 ± 0.97127.7813.99 ± 0.02550.2931.2141.31
B2 1351+317.66 ± 0.830.05 ± 0.022.89 ± 0.9447.730.39 ± 0.0214.73⋅⋅⋅⋅⋅⋅
B2 1555+3318.84 ± 2.280.13 ± 0.015.37 ± 0.90108.540.91 ± 0.0230.00⋅⋅⋅⋅⋅⋅
B2 1611+3413.03 ± 1.060.24 ± 0.0110.21 ± 0.7450.651.03 ± 0.0135.850.0017.44
IRAS F07546+39287.83 ± 0.696.55 ± 0.02117.47 ± 0.94105.3470.56 ± 0.021640.60188.6838.01
MC2 0042+10128.15 ± 4.010.17 ± 0.017.82 ± 0.90218.941.65 ± 0.0261.920.0050.37
MC2 1146+111⋅⋅⋅⋅⋅⋅⋅⋅⋅46.760.67 ± 0.0221.04111.2822.07
Mrk 50638.46 ± 1.2812.91 ± 0.02454.64 ± 0.92244.4275.10 ± 0.022670.80101.4935.72
Mrk 50924.41 ± 0.0963.26 ± 0.021988.98 ± 1.01140.75316.41 ± 0.1710404.0099.6683.64
OS 56211.70 ± 0.540.66 ± 0.0230.01 ± 0.9546.383.50 ± 0.02105.0477.3614.43
PG 0052+25115.65 ± 1.007.98 ± 0.02284.58 ± 0.93137.5851.26 ± 0.022181.0052.6253.81
PG 0844+34915.12 ± 0.2116.29 ± 0.02455.52 ± 0.9948.1946.03 ± 0.031332.70211.827.13
PG 0947+39611.87 ± 0.723.01 ± 0.0281.63 ± 0.9495.6618.56 ± 0.02590.26129.4423.68
PG 0953+4146.67 ± 0.527.74 ± 0.02178.25 ± 0.9549.3542.75 ± 0.021150.1042.9912.04
PG 1001+05426.76 ± 0.835.23 ± 0.02104.68 ± 0.9475.0810.01 ± 0.02272.12202.6912.11
PG 1100+7724.32 ± 0.833.29 ± 0.0263.84 ± 0.9479.6822.99 ± 0.02950.6254.8342.10
PG 1103−00614.56 ± 0.851.54 ± 0.0251.79 ± 0.9455.295.18 ± 0.02181.2697.9913.08
PG 1114+44517.48 ± 1.713.04 ± 0.02110.01 ± 0.9181.0615.27 ± 0.02497.8248.7015.75
PG 1115+40714.19 ± 0.766.50 ± 0.02181.79 ± 0.9447.5914.90 ± 0.02519.46149.958.05
PG 1116+21515.02 ± 0.4716.27 ± 0.02523.42 ± 0.9671.8470.19 ± 0.022160.80171.6816.72
PG 1202+28139.63 ± 1.953.66 ± 0.0198.11 ± 0.91306.3428.91 ± 0.02711.0459.7555.91
PG 1216+06910.27 ± 0.241.99 ± 0.0268.10 ± 0.9898.0317.29 ± 0.03557.1641.9910.49
PG 1226+0235.91 ± 0.5255.37 ± 0.021447.16 ± 0.9532.40222.96 ± 0.027417.20111.468.30
PG 1259+59311.29 ± 0.403.21 ± 0.02112.42 ± 0.9620.314.33 ± 0.02184.00403.054.45
PG 1309+3558.25 ± 0.583.89 ± 0.0291.00 ± 0.9556.3116.51 ± 0.02549.7966.2017.05
PG 1322+6597.53 ± 1.462.42 ± 0.0272.00 ± 0.9254.4415.67 ± 0.02454.9297.487.49
PG 1351+64022.06 ± 0.5217.53 ± 0.02358.64 ± 0.9578.6349.34 ± 0.021296.4029.2638.10
PG 1352+18317.48 ± 1.225.13 ± 0.02174.24 ± 0.9277.7520.50 ± 0.02650.23112.529.68
PG 1402+26114.05 ± 0.829.44 ± 0.02301.14 ± 0.9444.6024.73 ± 0.02831.74259.462.45
PG 1411+44217.40 ± 0.4020.56 ± 0.02426.44 ± 0.9644.6963.08 ± 0.02911.68122.9013.37
PG 1415+45122.81 ± 2.468.63 ± 0.01229.08 ± 0.9065.4923.30 ± 0.02588.64210.302.68
PG 1425+26710.30 ± 0.501.25 ± 0.0241.86 ± 0.95123.539.07 ± 0.02449.4334.4331.57
PG 1427+48016.11 ± 0.643.47 ± 0.02108.83 ± 0.9577.5921.38 ± 0.02463.3483.2927.86
PG 1440+35611.62 ± 0.4723.43 ± 0.02489.35 ± 0.9633.0278.97 ± 0.021246.80230.097.59
PG 1444+40714.67 ± 0.293.91 ± 0.02132.63 ± 0.9724.096.70 ± 0.02198.97287.491.49
PG 1512+3706.95 ± 0.270.93 ± 0.0228.00 ± 0.98119.2810.43 ± 0.02420.1423.4358.42
PG 1534+58016.05 ± 1.747.18 ± 0.02213.60 ± 0.91142.5165.41 ± 0.021740.3025.40114.48
PG 1543+48918.20 ± 0.223.19 ± 0.02100.46 ± 0.9839.075.69 ± 0.03209.09206.925.42
PG 1545+21020.56 ± 0.983.58 ± 0.02143.52 ± 0.93181.0526.77 ± 0.021047.4024.9541.54
PG 1626+55416.67 ± 1.267.21 ± 0.02281.87 ± 0.9270.8530.96 ± 0.021012.6072.185.44
PG 1704+6082.68 ± 0.380.42 ± 0.0223.79 ± 0.9661.2011.99 ± 0.02495.6013.6027.68
PG 2214+13912.94 ± 0.1315.89 ± 0.02562.97 ± 0.9951.8876.43 ± 0.022100.90173.2812.43
PG 2251+11312.12 ± 0.393.33 ± 0.02103.58 ± 0.9696.9119.56 ± 0.02713.28144.9828.07
PG 2349−01410.58 ± 1.823.53 ± 0.0193.80 ± 0.91155.3930.32 ± 0.021231.60106.5632.27
PKS 0112−01713.00 ± 0.280.19 ± 0.028.98 ± 0.9730.810.54 ± 0.0320.00⋅⋅⋅⋅⋅⋅
PKS 0403−1315.60 ± 0.620.97 ± 0.0229.98 ± 1.05138.327.92 ± 0.02213.3767.0819.87
PKS 0859−1410.09 ± 0.620.46 ± 0.0214.73 ± 0.9548.891.80 ± 0.0259.8894.148.67
PKS 1127−1412.62 ± 2.130.25 ± 0.0115.00 ± 0.9125.931.03 ± 0.0230.00⋅⋅⋅⋅⋅⋅
PKS 1656+0536.35 ± 0.660.40 ± 0.0217.06 ± 0.95⋅⋅⋅⋅⋅⋅⋅⋅⋅114.083.84
PKS 2216-0315.36 ± 0.820.88 ± 0.0232.83 ± 0.9459.313.49 ± 0.02121.2382.0031.66
TEX 1156+21314.69 ± 0.701.11 ± 0.0245.00 ± 0.94116.097.91 ± 0.02301.9758.4017.46
Objectλ1400 EWλ1400 peakλ1400 fluxC iv EWC iv peakC iv fluxFe ii EW[O iii] EW
(Å)(10−15(10−15(Å)(10−15(10−15(Å)(Å)
erg s−1 cm−2 Å−1)erg s−1 cm−2)erg s−1 cm−2 Å−1)erg s−1 cm−2)
3C 11012.77 ± 0.260.75 ± 0.0250.87 ± 0.98107.787.84 ± 0.02363.3927.0824.98
3C 17512.56 ± 0.590.43 ± 0.0237.53 ± 0.9555.593.24 ± 0.02158.6121.1020.05
3C 18615.70 ± 1.200.15 ± 0.0210.52 ± 0.9366.500.91 ± 0.0240.18⋅⋅⋅⋅⋅⋅
3C 20715.21 ± 0.880.38 ± 0.0212.99 ± 0.9486.322.31 ± 0.0275.6860.9723.34
3C 21518.88 ± 0.560.53 ± 0.0215.49 ± 0.95204.603.65 ± 0.02153.4955.1347.03
3C 23214.06 ± 0.241.11 ± 0.0245.03 ± 0.9833.542.30 ± 0.03100.0066.8755.39
3C 25419.84 ± 1.110.33 ± 0.0213.33 ± 0.93172.432.44 ± 0.02107.46102.79116.51
3C 26312.52 ± 0.362.01 ± 0.0268.07 ± 0.9775.5111.50 ± 0.02344.6958.8120.10
3C 277.117.56 ± 0.881.07 ± 0.0230.54 ± 0.94106.476.42 ± 0.02163.87103.86159.40
3C 28115.83 ± 0.970.38 ± 0.0222.56 ± 0.93119.673.45 ± 0.02149.1562.3246.79
3C 288.110.17 ± 0.410.13 ± 0.027.97 ± 0.9642.320.82 ± 0.0229.92121.7285.38
3C 33414.67 ± 0.230.84 ± 0.0253.29 ± 0.9874.986.35 ± 0.02250.6226.2240.53
3C 3734.00 ± 2.540.47 ± 0.0114.54 ± 0.90252.633.64 ± 0.0297.43204.08105.93
3C 44618.16 ± 6.350.10 ± 0.016.07 ± 0.8776.400.95 ± 0.0228.00⋅⋅⋅⋅⋅⋅
3C 4718.30 ± 1.140.79 ± 0.0223.17 ± 0.93172.914.98 ± 0.02212.3767.08116.19
4C 01.0450.12 ± 4.210.46 ± 0.0128.56 ± 0.88270.363.82 ± 0.02173.7795.0239.04
4C 06.6910.52 ± 0.640.70 ± 0.0238.24 ± 0.9545.163.71 ± 0.02150.9542.1142.89
4C 10.0621.33 ± 1.312.58 ± 0.02121.57 ± 0.92114.5717.44 ± 0.02598.9259.9024.80
4C 11.6911.98 ± 0.330.38 ± 0.0223.02 ± 0.9737.412.51 ± 0.0265.65⋅⋅⋅⋅⋅⋅
4C 12.4022.88 ± 1.050.24 ± 0.0214.50 ± 0.9397.161.51 ± 0.0259.50142.5340.87
4C 19.4411.90 ± 0.371.52 ± 0.0244.04 ± 0.9696.3711.94 ± 0.02309.7169.4978.62
4C 20.2425.06 ± 1.030.78 ± 0.0223.20 ± 0.93185.254.76 ± 0.02136.93⋅⋅⋅⋅⋅⋅
4C 22.2616.96 ± 1.260.22 ± 0.028.78 ± 0.92180.902.00 ± 0.0278.42⋅⋅⋅⋅⋅⋅
4C 30.2517.76 ± 1.240.14 ± 0.024.56 ± 0.92146.341.09 ± 0.0232.92⋅⋅⋅⋅⋅⋅
4C 31.638.31 ± 0.437.48 ± 0.02254.54 ± 0.9639.6029.13 ± 0.021109.30114.456.44
4C 34.4723.15 ± 1.467.47 ± 0.02201.50 ± 0.92213.0367.11 ± 0.021802.20167.1692.68
4C 39.259.75 ± 0.130.68 ± 0.0237.76 ± 1.0079.996.75 ± 0.03257.0721.9515.20
4C 40.2415.36 ± 1.160.22 ± 0.025.36 ± 0.93131.381.21 ± 0.0238.00⋅⋅⋅⋅⋅⋅
4C 41.2118.88 ± 0.382.46 ± 0.0299.06 ± 0.9696.0414.76 ± 0.02451.2961.7832.98
4C 49.2224.05 ± 1.251.77 ± 0.0262.16 ± 0.92178.7711.80 ± 0.02379.18156.3226.63
4C 55.174.32 ± 0.600.05 ± 0.022.65 ± 0.9534.570.53 ± 0.0220.00⋅⋅⋅⋅⋅⋅
4C 58.295.59 ± 0.790.13 ± 0.028.03 ± 1.0739.431.20 ± 0.0249.09⋅⋅⋅⋅⋅⋅
4C 64.1517.89 ± 1.550.11 ± 0.026.88 ± 0.9268.540.52 ± 0.0226.00⋅⋅⋅⋅⋅⋅
4C 73.1811.58 ± 0.636.02 ± 0.02158.98 ± 0.95111.7938.03 ± 0.021119.6041.1924.41
B2 0742+3113.29 ± 0.361.84 ± 0.0269.12 ± 0.97127.7813.99 ± 0.02550.2931.2141.31
B2 1351+317.66 ± 0.830.05 ± 0.022.89 ± 0.9447.730.39 ± 0.0214.73⋅⋅⋅⋅⋅⋅
B2 1555+3318.84 ± 2.280.13 ± 0.015.37 ± 0.90108.540.91 ± 0.0230.00⋅⋅⋅⋅⋅⋅
B2 1611+3413.03 ± 1.060.24 ± 0.0110.21 ± 0.7450.651.03 ± 0.0135.850.0017.44
IRAS F07546+39287.83 ± 0.696.55 ± 0.02117.47 ± 0.94105.3470.56 ± 0.021640.60188.6838.01
MC2 0042+10128.15 ± 4.010.17 ± 0.017.82 ± 0.90218.941.65 ± 0.0261.920.0050.37
MC2 1146+111⋅⋅⋅⋅⋅⋅⋅⋅⋅46.760.67 ± 0.0221.04111.2822.07
Mrk 50638.46 ± 1.2812.91 ± 0.02454.64 ± 0.92244.4275.10 ± 0.022670.80101.4935.72
Mrk 50924.41 ± 0.0963.26 ± 0.021988.98 ± 1.01140.75316.41 ± 0.1710404.0099.6683.64
OS 56211.70 ± 0.540.66 ± 0.0230.01 ± 0.9546.383.50 ± 0.02105.0477.3614.43
PG 0052+25115.65 ± 1.007.98 ± 0.02284.58 ± 0.93137.5851.26 ± 0.022181.0052.6253.81
PG 0844+34915.12 ± 0.2116.29 ± 0.02455.52 ± 0.9948.1946.03 ± 0.031332.70211.827.13
PG 0947+39611.87 ± 0.723.01 ± 0.0281.63 ± 0.9495.6618.56 ± 0.02590.26129.4423.68
PG 0953+4146.67 ± 0.527.74 ± 0.02178.25 ± 0.9549.3542.75 ± 0.021150.1042.9912.04
PG 1001+05426.76 ± 0.835.23 ± 0.02104.68 ± 0.9475.0810.01 ± 0.02272.12202.6912.11
PG 1100+7724.32 ± 0.833.29 ± 0.0263.84 ± 0.9479.6822.99 ± 0.02950.6254.8342.10
PG 1103−00614.56 ± 0.851.54 ± 0.0251.79 ± 0.9455.295.18 ± 0.02181.2697.9913.08
PG 1114+44517.48 ± 1.713.04 ± 0.02110.01 ± 0.9181.0615.27 ± 0.02497.8248.7015.75
PG 1115+40714.19 ± 0.766.50 ± 0.02181.79 ± 0.9447.5914.90 ± 0.02519.46149.958.05
PG 1116+21515.02 ± 0.4716.27 ± 0.02523.42 ± 0.9671.8470.19 ± 0.022160.80171.6816.72
PG 1202+28139.63 ± 1.953.66 ± 0.0198.11 ± 0.91306.3428.91 ± 0.02711.0459.7555.91
PG 1216+06910.27 ± 0.241.99 ± 0.0268.10 ± 0.9898.0317.29 ± 0.03557.1641.9910.49
PG 1226+0235.91 ± 0.5255.37 ± 0.021447.16 ± 0.9532.40222.96 ± 0.027417.20111.468.30
PG 1259+59311.29 ± 0.403.21 ± 0.02112.42 ± 0.9620.314.33 ± 0.02184.00403.054.45
PG 1309+3558.25 ± 0.583.89 ± 0.0291.00 ± 0.9556.3116.51 ± 0.02549.7966.2017.05
PG 1322+6597.53 ± 1.462.42 ± 0.0272.00 ± 0.9254.4415.67 ± 0.02454.9297.487.49
PG 1351+64022.06 ± 0.5217.53 ± 0.02358.64 ± 0.9578.6349.34 ± 0.021296.4029.2638.10
PG 1352+18317.48 ± 1.225.13 ± 0.02174.24 ± 0.9277.7520.50 ± 0.02650.23112.529.68
PG 1402+26114.05 ± 0.829.44 ± 0.02301.14 ± 0.9444.6024.73 ± 0.02831.74259.462.45
PG 1411+44217.40 ± 0.4020.56 ± 0.02426.44 ± 0.9644.6963.08 ± 0.02911.68122.9013.37
PG 1415+45122.81 ± 2.468.63 ± 0.01229.08 ± 0.9065.4923.30 ± 0.02588.64210.302.68
PG 1425+26710.30 ± 0.501.25 ± 0.0241.86 ± 0.95123.539.07 ± 0.02449.4334.4331.57
PG 1427+48016.11 ± 0.643.47 ± 0.02108.83 ± 0.9577.5921.38 ± 0.02463.3483.2927.86
PG 1440+35611.62 ± 0.4723.43 ± 0.02489.35 ± 0.9633.0278.97 ± 0.021246.80230.097.59
PG 1444+40714.67 ± 0.293.91 ± 0.02132.63 ± 0.9724.096.70 ± 0.02198.97287.491.49
PG 1512+3706.95 ± 0.270.93 ± 0.0228.00 ± 0.98119.2810.43 ± 0.02420.1423.4358.42
PG 1534+58016.05 ± 1.747.18 ± 0.02213.60 ± 0.91142.5165.41 ± 0.021740.3025.40114.48
PG 1543+48918.20 ± 0.223.19 ± 0.02100.46 ± 0.9839.075.69 ± 0.03209.09206.925.42
PG 1545+21020.56 ± 0.983.58 ± 0.02143.52 ± 0.93181.0526.77 ± 0.021047.4024.9541.54
PG 1626+55416.67 ± 1.267.21 ± 0.02281.87 ± 0.9270.8530.96 ± 0.021012.6072.185.44
PG 1704+6082.68 ± 0.380.42 ± 0.0223.79 ± 0.9661.2011.99 ± 0.02495.6013.6027.68
PG 2214+13912.94 ± 0.1315.89 ± 0.02562.97 ± 0.9951.8876.43 ± 0.022100.90173.2812.43
PG 2251+11312.12 ± 0.393.33 ± 0.02103.58 ± 0.9696.9119.56 ± 0.02713.28144.9828.07
PG 2349−01410.58 ± 1.823.53 ± 0.0193.80 ± 0.91155.3930.32 ± 0.021231.60106.5632.27
PKS 0112−01713.00 ± 0.280.19 ± 0.028.98 ± 0.9730.810.54 ± 0.0320.00⋅⋅⋅⋅⋅⋅
PKS 0403−1315.60 ± 0.620.97 ± 0.0229.98 ± 1.05138.327.92 ± 0.02213.3767.0819.87
PKS 0859−1410.09 ± 0.620.46 ± 0.0214.73 ± 0.9548.891.80 ± 0.0259.8894.148.67
PKS 1127−1412.62 ± 2.130.25 ± 0.0115.00 ± 0.9125.931.03 ± 0.0230.00⋅⋅⋅⋅⋅⋅
PKS 1656+0536.35 ± 0.660.40 ± 0.0217.06 ± 0.95⋅⋅⋅⋅⋅⋅⋅⋅⋅114.083.84
PKS 2216-0315.36 ± 0.820.88 ± 0.0232.83 ± 0.9459.313.49 ± 0.02121.2382.0031.66
TEX 1156+21314.69 ± 0.701.11 ± 0.0245.00 ± 0.94116.097.91 ± 0.02301.9758.4017.46

Note: EWs are given in the rest frame and fluxes in the observed frame.

Table 2.

Physical measurements.

Objectlog |$\lambda \,L_{\lambda }(1450\, {{A\!\!\!\!\!^{^\circ}})}$|log |$\lambda \,L_{\lambda }(5100\, {{A\!\!\!\!\!^{^\circ}})}$||$\sigma _{l,\rm {C\,{\small {IV}}}}$||$\sigma _{l, {\rm H}\beta }$|FWHM|$_{{\rm C}\,{\small {IV}}}$|FWHMFWHMλ1400
(erg s−1)(erg s−1)(km s−1)(km s−1)(km s−1)(km s−1)(km s−1)
3C 11046.4345.995260 ± 7895431 ± 8145700 ± 85512450 ± 186713817 ± 2072
3C 17546.3446.115322 ± 7989599 ± 14396915 ± 103720925 ± 313817544 ± 2631
3C 18646.0745.794521 ± 678⋅⋅⋅6290 ± 943⋅⋅⋅14101 ± 2115
3C 20745.6545.483386 ± 5075342 ± 8014935 ± 7403505 ± 5254992 ± 748
3C 21545.0244.945049 ± 7573475 ± 5215605 ± 8406760 ± 10144459 ± 668
3C 23245.8745.724053 ± 6083328 ± 4997145 ± 10714655 ± 6986153 ± 923
3C 25445.6345.365105 ± 7657142 ± 10715205 ± 78014095 ± 21146305 ± 945
3C 26346.3346.014483 ± 6724041 ± 6063310 ± 4964970 ± 7455025 ± 753
3C 277.145.0444.673333 ± 5003051 ± 4573215 ± 4823835 ± 5754339 ± 650
3C 28145.6845.325184 ± 7774579 ± 6864865 ± 7297985 ± 119712003 ± 1800
3C 288.146.0145.624780 ± 7173906 ± 5854015 ± 6028970 ± 134512217 ± 1832
3C 33446.0045.583983 ± 5974722 ± 7085745 ± 8616345 ± 95112737 ± 1910
3C 3745.2844.893225 ± 4833893 ± 5843360 ± 5044280 ± 6424619 ± 692
3C 44646.1946.433780 ± 567⋅⋅⋅3390 ± 508⋅⋅⋅12181 ± 1827
3C 4745.2744.885265 ± 7896892 ± 10335450 ± 81714005 ± 21004415 ± 662
4C 01.0444.4344.694553 ± 6834196 ± 6296665 ± 9999905 ± 148512310 ± 1846
4C 06.6946.7346.434288 ± 6432340 ± 3515620 ± 8434015 ± 60210807 ± 1621
4C 10.0645.8545.474566 ± 6845922 ± 8883785 ± 5674735 ± 7108366 ± 1254
4C 11.6946.5146.383527 ± 529⋅⋅⋅3185 ± 477⋅⋅⋅12207 ± 1831
4C 12.4045.5345.134485 ± 6722329 ± 3495300 ± 7953565 ± 53412378 ± 1856
4C 19.4446.3045.993624 ± 5433152 ± 4722730 ± 4094575 ± 6864367 ± 655
4C 20.2446.2245.953654 ± 548⋅⋅⋅3525 ± 528⋅⋅⋅4477 ± 671
4C 22.2645.8345.524390 ± 658⋅⋅⋅5015 ± 752⋅⋅⋅5931 ± 889
4C 30.2545.6445.133715 ± 557⋅⋅⋅3730 ± 559⋅⋅⋅4806 ± 720
4C 31.6346.2145.614322 ± 6482699 ± 4044840 ± 7263395 ± 5095033 ± 754
4C 34.4745.2744.973785 ± 5673277 ± 4912855 ± 4285015 ± 7524159 ± 623
4C 39.2546.2545.974429 ± 6643538 ± 5304775 ± 7166400 ± 96011040 ± 1656
4C 40.2445.9645.743265 ± 489⋅⋅⋅4920 ± 738⋅⋅⋅3973 ± 595
4C 41.2146.2745.643736 ± 5603170 ± 4753800 ± 5703445 ± 5166075 ± 911
4C 49.2245.2144.843465 ± 5192741 ± 4114535 ± 6803910 ± 5865151 ± 772
4C 55.1745.8345.723777 ± 566⋅⋅⋅6420 ± 963⋅⋅⋅9769 ± 1465
4C 58.2946.7346.424211 ± 631⋅⋅⋅5745 ± 861⋅⋅⋅12128 ± 1819
4C 58.2946.7346.424211 ± 631⋅⋅⋅5745 ± 861⋅⋅⋅12128 ± 1819
4C 64.1546.1445.985230 ± 784⋅⋅⋅7245 ± 1086⋅⋅⋅12366 ± 1854
4C 73.1845.8045.553585 ± 5372704 ± 4053560 ± 5343095 ± 4644172 ± 625
B2 0742+3145.8945.774475 ± 6715203 ± 7804890 ± 73310690 ± 16035623 ± 843
B2 1351+3146.0745.814728 ± 709⋅⋅⋅3690 ± 553⋅⋅⋅12220 ± 1833
B2 1555+3345.5745.393785 ± 567⋅⋅⋅4240 ± 636⋅⋅⋅6663 ± 999
B2 1611+3446.5046.293836 ± 5753074 ± 4614625 ± 6934795 ± 7196557 ± 983
IRAS F07546+392844.7644.863486 ± 5222999 ± 4493035 ± 4552785 ± 4173624 ± 543
MC2 0042+10144.9944.944616 ± 6923517 ± 5274195 ± 6298270 ± 12407893 ± 1184
MC2 1146+11145.6645.523926 ± 5883438 ± 5153715 ± 5577835 ± 1175⋅⋅⋅
Mrk 50643.8843.773563 ± 5343248 ± 4875290 ± 7934840 ± 7265408 ± 811
Mrk 50944.5144.193785 ± 5672645 ± 3964710 ± 7063825 ± 5734886 ± 732
OS 56246.2145.824234 ± 6352715 ± 4073470 ± 5203305 ± 4957870 ± 1180
PG 0052+25145.2744.884589 ± 6883864 ± 5795815 ± 8726460 ± 9695610 ± 841
PG 0844+34944.6644.392880 ± 4322010 ± 3014550 ± 6822870 ± 4304607 ± 691
PG 0947+39645.1544.793812 ± 5712822 ± 4233925 ± 5884340 ± 6514977 ± 746
PG 0953+41445.8745.383239 ± 4852429 ± 3643810 ± 5712990 ± 4484213 ± 631
PG 1001+05444.6644.403832 ± 5741529 ± 2293130 ± 4692615 ± 3923737 ± 560
PG 1100+77245.9045.444784 ± 7174158 ± 6234775 ± 7169390 ± 14083556 ± 533
PG 1103−00645.6745.304212 ± 6313187 ± 4784515 ± 6775270 ± 7904964 ± 744
PG 1114+44544.7544.803942 ± 5913789 ± 5683935 ± 5904825 ± 7236283 ± 942
PG 1115+40745.1144.614049 ± 6071838 ± 2754585 ± 6871895 ± 2845073 ± 761
PG 1116+21545.6945.103650 ± 5472167 ± 3253865 ± 5792975 ± 4465682 ± 852
PG 1202+28144.4844.503932 ± 5895100 ± 7652945 ± 4414950 ± 7424882 ± 732
PG 1216+06945.6245.485141 ± 7713376 ± 5063105 ± 4655950 ± 8926216 ± 932
PG 1226+02346.4545.973724 ± 5582791 ± 4184530 ± 6793405 ± 5104571 ± 685
PG 1259+59346.2645.694105 ± 6153664 ± 5496880 ± 10324035 ± 6055311 ± 796
PG 1309+35545.2145.074775 ± 7164632 ± 6942815 ± 4223640 ± 5464246 ± 636
PG 1322+65945.0744.703510 ± 5261776 ± 2663690 ± 5533285 ± 4924544 ± 681
PG 1351+64044.7144.902953 ± 4423355 ± 5034050 ± 6076205 ± 9303790 ± 568
PG 1352+18344.9644.523827 ± 5743162 ± 4743755 ± 5634210 ± 6315981 ± 897
PG 1402+26145.4144.843894 ± 5841992 ± 2984550 ± 6822100 ± 3156397 ± 959
PG 1411+44244.8644.672003 ± 3003465 ± 5192040 ± 3062800 ± 4203921 ± 588
PG 1415+45144.7044.452656 ± 3981950 ± 2923725 ± 5582560 ± 3844711 ± 706
PG 1425+26745.5445.285076 ± 7616235 ± 9357060 ± 10599875 ± 14816565 ± 984
PG 1427+48045.2144.742758 ± 4133975 ± 5962835 ± 4252405 ± 3605796 ± 869
PG 1440+35644.9744.601959 ± 2931109 ± 1662130 ± 3191745 ± 2613917 ± 587
PG 1444+40745.5545.173428 ± 5142037 ± 3054425 ± 6632750 ± 4126224 ± 933
PG 1512+37045.5545.155238 ± 7855458 ± 8183970 ± 5957690 ± 11535628 ± 844
PG 1534+58043.6143.373239 ± 4852888 ± 4333790 ± 5684505 ± 6754609 ± 691
PG 1543+48945.8045.383842 ± 5761491 ± 2235625 ± 8432320 ± 3485424 ± 813
PG 1545+21045.3945.074654 ± 6983382 ± 5074560 ± 6846885 ± 10326148 ± 922
PG 1626+55445.0644.614291 ± 6432998 ± 4493815 ± 5724390 ± 6586502 ± 975
PG 1704+60845.9145.725340 ± 8014637 ± 6954015 ± 60210465 ± 156911557 ± 1733
PG 2214+13944.8444.543678 ± 5513137 ± 4702690 ± 4035845 ± 8766551 ± 982
PG 2251+11345.7345.534234 ± 6352996 ± 4494805 ± 7204060 ± 6094660 ± 699
PG 2349−01445.0944.784211 ± 6313728 ± 5595675 ± 8516325 ± 9484476 ± 671
PKS 0112−01746.4446.074019 ± 602⋅⋅⋅5030 ± 754⋅⋅⋅8572 ± 1285
PKS 0403−1345.6945.533977 ± 5962856 ± 4283325 ± 4983735 ± 5604577 ± 686
PKS 0859−1446.6846.453737 ± 5605260 ± 7894520 ± 6784615 ± 6924737 ± 710
PKS 1127−1446.5046.213501 ± 525⋅⋅⋅3695 ± 554⋅⋅⋅12263 ± 1839
PKS 1656+05346.4446.26⋅⋅⋅2832 ± 424⋅⋅⋅3510 ± 5266933 ± 1040
PKS 2216−0346.3846.314504 ± 6752962 ± 4443600 ± 5404415 ± 6625580 ± 837
TEX 1156+21345.3645.005129 ± 7693604 ± 5403880 ± 5827740 ± 11616156 ± 923
Objectlog |$\lambda \,L_{\lambda }(1450\, {{A\!\!\!\!\!^{^\circ}})}$|log |$\lambda \,L_{\lambda }(5100\, {{A\!\!\!\!\!^{^\circ}})}$||$\sigma _{l,\rm {C\,{\small {IV}}}}$||$\sigma _{l, {\rm H}\beta }$|FWHM|$_{{\rm C}\,{\small {IV}}}$|FWHMFWHMλ1400
(erg s−1)(erg s−1)(km s−1)(km s−1)(km s−1)(km s−1)(km s−1)
3C 11046.4345.995260 ± 7895431 ± 8145700 ± 85512450 ± 186713817 ± 2072
3C 17546.3446.115322 ± 7989599 ± 14396915 ± 103720925 ± 313817544 ± 2631
3C 18646.0745.794521 ± 678⋅⋅⋅6290 ± 943⋅⋅⋅14101 ± 2115
3C 20745.6545.483386 ± 5075342 ± 8014935 ± 7403505 ± 5254992 ± 748
3C 21545.0244.945049 ± 7573475 ± 5215605 ± 8406760 ± 10144459 ± 668
3C 23245.8745.724053 ± 6083328 ± 4997145 ± 10714655 ± 6986153 ± 923
3C 25445.6345.365105 ± 7657142 ± 10715205 ± 78014095 ± 21146305 ± 945
3C 26346.3346.014483 ± 6724041 ± 6063310 ± 4964970 ± 7455025 ± 753
3C 277.145.0444.673333 ± 5003051 ± 4573215 ± 4823835 ± 5754339 ± 650
3C 28145.6845.325184 ± 7774579 ± 6864865 ± 7297985 ± 119712003 ± 1800
3C 288.146.0145.624780 ± 7173906 ± 5854015 ± 6028970 ± 134512217 ± 1832
3C 33446.0045.583983 ± 5974722 ± 7085745 ± 8616345 ± 95112737 ± 1910
3C 3745.2844.893225 ± 4833893 ± 5843360 ± 5044280 ± 6424619 ± 692
3C 44646.1946.433780 ± 567⋅⋅⋅3390 ± 508⋅⋅⋅12181 ± 1827
3C 4745.2744.885265 ± 7896892 ± 10335450 ± 81714005 ± 21004415 ± 662
4C 01.0444.4344.694553 ± 6834196 ± 6296665 ± 9999905 ± 148512310 ± 1846
4C 06.6946.7346.434288 ± 6432340 ± 3515620 ± 8434015 ± 60210807 ± 1621
4C 10.0645.8545.474566 ± 6845922 ± 8883785 ± 5674735 ± 7108366 ± 1254
4C 11.6946.5146.383527 ± 529⋅⋅⋅3185 ± 477⋅⋅⋅12207 ± 1831
4C 12.4045.5345.134485 ± 6722329 ± 3495300 ± 7953565 ± 53412378 ± 1856
4C 19.4446.3045.993624 ± 5433152 ± 4722730 ± 4094575 ± 6864367 ± 655
4C 20.2446.2245.953654 ± 548⋅⋅⋅3525 ± 528⋅⋅⋅4477 ± 671
4C 22.2645.8345.524390 ± 658⋅⋅⋅5015 ± 752⋅⋅⋅5931 ± 889
4C 30.2545.6445.133715 ± 557⋅⋅⋅3730 ± 559⋅⋅⋅4806 ± 720
4C 31.6346.2145.614322 ± 6482699 ± 4044840 ± 7263395 ± 5095033 ± 754
4C 34.4745.2744.973785 ± 5673277 ± 4912855 ± 4285015 ± 7524159 ± 623
4C 39.2546.2545.974429 ± 6643538 ± 5304775 ± 7166400 ± 96011040 ± 1656
4C 40.2445.9645.743265 ± 489⋅⋅⋅4920 ± 738⋅⋅⋅3973 ± 595
4C 41.2146.2745.643736 ± 5603170 ± 4753800 ± 5703445 ± 5166075 ± 911
4C 49.2245.2144.843465 ± 5192741 ± 4114535 ± 6803910 ± 5865151 ± 772
4C 55.1745.8345.723777 ± 566⋅⋅⋅6420 ± 963⋅⋅⋅9769 ± 1465
4C 58.2946.7346.424211 ± 631⋅⋅⋅5745 ± 861⋅⋅⋅12128 ± 1819
4C 58.2946.7346.424211 ± 631⋅⋅⋅5745 ± 861⋅⋅⋅12128 ± 1819
4C 64.1546.1445.985230 ± 784⋅⋅⋅7245 ± 1086⋅⋅⋅12366 ± 1854
4C 73.1845.8045.553585 ± 5372704 ± 4053560 ± 5343095 ± 4644172 ± 625
B2 0742+3145.8945.774475 ± 6715203 ± 7804890 ± 73310690 ± 16035623 ± 843
B2 1351+3146.0745.814728 ± 709⋅⋅⋅3690 ± 553⋅⋅⋅12220 ± 1833
B2 1555+3345.5745.393785 ± 567⋅⋅⋅4240 ± 636⋅⋅⋅6663 ± 999
B2 1611+3446.5046.293836 ± 5753074 ± 4614625 ± 6934795 ± 7196557 ± 983
IRAS F07546+392844.7644.863486 ± 5222999 ± 4493035 ± 4552785 ± 4173624 ± 543
MC2 0042+10144.9944.944616 ± 6923517 ± 5274195 ± 6298270 ± 12407893 ± 1184
MC2 1146+11145.6645.523926 ± 5883438 ± 5153715 ± 5577835 ± 1175⋅⋅⋅
Mrk 50643.8843.773563 ± 5343248 ± 4875290 ± 7934840 ± 7265408 ± 811
Mrk 50944.5144.193785 ± 5672645 ± 3964710 ± 7063825 ± 5734886 ± 732
OS 56246.2145.824234 ± 6352715 ± 4073470 ± 5203305 ± 4957870 ± 1180
PG 0052+25145.2744.884589 ± 6883864 ± 5795815 ± 8726460 ± 9695610 ± 841
PG 0844+34944.6644.392880 ± 4322010 ± 3014550 ± 6822870 ± 4304607 ± 691
PG 0947+39645.1544.793812 ± 5712822 ± 4233925 ± 5884340 ± 6514977 ± 746
PG 0953+41445.8745.383239 ± 4852429 ± 3643810 ± 5712990 ± 4484213 ± 631
PG 1001+05444.6644.403832 ± 5741529 ± 2293130 ± 4692615 ± 3923737 ± 560
PG 1100+77245.9045.444784 ± 7174158 ± 6234775 ± 7169390 ± 14083556 ± 533
PG 1103−00645.6745.304212 ± 6313187 ± 4784515 ± 6775270 ± 7904964 ± 744
PG 1114+44544.7544.803942 ± 5913789 ± 5683935 ± 5904825 ± 7236283 ± 942
PG 1115+40745.1144.614049 ± 6071838 ± 2754585 ± 6871895 ± 2845073 ± 761
PG 1116+21545.6945.103650 ± 5472167 ± 3253865 ± 5792975 ± 4465682 ± 852
PG 1202+28144.4844.503932 ± 5895100 ± 7652945 ± 4414950 ± 7424882 ± 732
PG 1216+06945.6245.485141 ± 7713376 ± 5063105 ± 4655950 ± 8926216 ± 932
PG 1226+02346.4545.973724 ± 5582791 ± 4184530 ± 6793405 ± 5104571 ± 685
PG 1259+59346.2645.694105 ± 6153664 ± 5496880 ± 10324035 ± 6055311 ± 796
PG 1309+35545.2145.074775 ± 7164632 ± 6942815 ± 4223640 ± 5464246 ± 636
PG 1322+65945.0744.703510 ± 5261776 ± 2663690 ± 5533285 ± 4924544 ± 681
PG 1351+64044.7144.902953 ± 4423355 ± 5034050 ± 6076205 ± 9303790 ± 568
PG 1352+18344.9644.523827 ± 5743162 ± 4743755 ± 5634210 ± 6315981 ± 897
PG 1402+26145.4144.843894 ± 5841992 ± 2984550 ± 6822100 ± 3156397 ± 959
PG 1411+44244.8644.672003 ± 3003465 ± 5192040 ± 3062800 ± 4203921 ± 588
PG 1415+45144.7044.452656 ± 3981950 ± 2923725 ± 5582560 ± 3844711 ± 706
PG 1425+26745.5445.285076 ± 7616235 ± 9357060 ± 10599875 ± 14816565 ± 984
PG 1427+48045.2144.742758 ± 4133975 ± 5962835 ± 4252405 ± 3605796 ± 869
PG 1440+35644.9744.601959 ± 2931109 ± 1662130 ± 3191745 ± 2613917 ± 587
PG 1444+40745.5545.173428 ± 5142037 ± 3054425 ± 6632750 ± 4126224 ± 933
PG 1512+37045.5545.155238 ± 7855458 ± 8183970 ± 5957690 ± 11535628 ± 844
PG 1534+58043.6143.373239 ± 4852888 ± 4333790 ± 5684505 ± 6754609 ± 691
PG 1543+48945.8045.383842 ± 5761491 ± 2235625 ± 8432320 ± 3485424 ± 813
PG 1545+21045.3945.074654 ± 6983382 ± 5074560 ± 6846885 ± 10326148 ± 922
PG 1626+55445.0644.614291 ± 6432998 ± 4493815 ± 5724390 ± 6586502 ± 975
PG 1704+60845.9145.725340 ± 8014637 ± 6954015 ± 60210465 ± 156911557 ± 1733
PG 2214+13944.8444.543678 ± 5513137 ± 4702690 ± 4035845 ± 8766551 ± 982
PG 2251+11345.7345.534234 ± 6352996 ± 4494805 ± 7204060 ± 6094660 ± 699
PG 2349−01445.0944.784211 ± 6313728 ± 5595675 ± 8516325 ± 9484476 ± 671
PKS 0112−01746.4446.074019 ± 602⋅⋅⋅5030 ± 754⋅⋅⋅8572 ± 1285
PKS 0403−1345.6945.533977 ± 5962856 ± 4283325 ± 4983735 ± 5604577 ± 686
PKS 0859−1446.6846.453737 ± 5605260 ± 7894520 ± 6784615 ± 6924737 ± 710
PKS 1127−1446.5046.213501 ± 525⋅⋅⋅3695 ± 554⋅⋅⋅12263 ± 1839
PKS 1656+05346.4446.26⋅⋅⋅2832 ± 424⋅⋅⋅3510 ± 5266933 ± 1040
PKS 2216−0346.3846.314504 ± 6752962 ± 4443600 ± 5404415 ± 6625580 ± 837
TEX 1156+21345.3645.005129 ± 7693604 ± 5403880 ± 5827740 ± 11616156 ± 923
Table 2.

Physical measurements.

Objectlog |$\lambda \,L_{\lambda }(1450\, {{A\!\!\!\!\!^{^\circ}})}$|log |$\lambda \,L_{\lambda }(5100\, {{A\!\!\!\!\!^{^\circ}})}$||$\sigma _{l,\rm {C\,{\small {IV}}}}$||$\sigma _{l, {\rm H}\beta }$|FWHM|$_{{\rm C}\,{\small {IV}}}$|FWHMFWHMλ1400
(erg s−1)(erg s−1)(km s−1)(km s−1)(km s−1)(km s−1)(km s−1)
3C 11046.4345.995260 ± 7895431 ± 8145700 ± 85512450 ± 186713817 ± 2072
3C 17546.3446.115322 ± 7989599 ± 14396915 ± 103720925 ± 313817544 ± 2631
3C 18646.0745.794521 ± 678⋅⋅⋅6290 ± 943⋅⋅⋅14101 ± 2115
3C 20745.6545.483386 ± 5075342 ± 8014935 ± 7403505 ± 5254992 ± 748
3C 21545.0244.945049 ± 7573475 ± 5215605 ± 8406760 ± 10144459 ± 668
3C 23245.8745.724053 ± 6083328 ± 4997145 ± 10714655 ± 6986153 ± 923
3C 25445.6345.365105 ± 7657142 ± 10715205 ± 78014095 ± 21146305 ± 945
3C 26346.3346.014483 ± 6724041 ± 6063310 ± 4964970 ± 7455025 ± 753
3C 277.145.0444.673333 ± 5003051 ± 4573215 ± 4823835 ± 5754339 ± 650
3C 28145.6845.325184 ± 7774579 ± 6864865 ± 7297985 ± 119712003 ± 1800
3C 288.146.0145.624780 ± 7173906 ± 5854015 ± 6028970 ± 134512217 ± 1832
3C 33446.0045.583983 ± 5974722 ± 7085745 ± 8616345 ± 95112737 ± 1910
3C 3745.2844.893225 ± 4833893 ± 5843360 ± 5044280 ± 6424619 ± 692
3C 44646.1946.433780 ± 567⋅⋅⋅3390 ± 508⋅⋅⋅12181 ± 1827
3C 4745.2744.885265 ± 7896892 ± 10335450 ± 81714005 ± 21004415 ± 662
4C 01.0444.4344.694553 ± 6834196 ± 6296665 ± 9999905 ± 148512310 ± 1846
4C 06.6946.7346.434288 ± 6432340 ± 3515620 ± 8434015 ± 60210807 ± 1621
4C 10.0645.8545.474566 ± 6845922 ± 8883785 ± 5674735 ± 7108366 ± 1254
4C 11.6946.5146.383527 ± 529⋅⋅⋅3185 ± 477⋅⋅⋅12207 ± 1831
4C 12.4045.5345.134485 ± 6722329 ± 3495300 ± 7953565 ± 53412378 ± 1856
4C 19.4446.3045.993624 ± 5433152 ± 4722730 ± 4094575 ± 6864367 ± 655
4C 20.2446.2245.953654 ± 548⋅⋅⋅3525 ± 528⋅⋅⋅4477 ± 671
4C 22.2645.8345.524390 ± 658⋅⋅⋅5015 ± 752⋅⋅⋅5931 ± 889
4C 30.2545.6445.133715 ± 557⋅⋅⋅3730 ± 559⋅⋅⋅4806 ± 720
4C 31.6346.2145.614322 ± 6482699 ± 4044840 ± 7263395 ± 5095033 ± 754
4C 34.4745.2744.973785 ± 5673277 ± 4912855 ± 4285015 ± 7524159 ± 623
4C 39.2546.2545.974429 ± 6643538 ± 5304775 ± 7166400 ± 96011040 ± 1656
4C 40.2445.9645.743265 ± 489⋅⋅⋅4920 ± 738⋅⋅⋅3973 ± 595
4C 41.2146.2745.643736 ± 5603170 ± 4753800 ± 5703445 ± 5166075 ± 911
4C 49.2245.2144.843465 ± 5192741 ± 4114535 ± 6803910 ± 5865151 ± 772
4C 55.1745.8345.723777 ± 566⋅⋅⋅6420 ± 963⋅⋅⋅9769 ± 1465
4C 58.2946.7346.424211 ± 631⋅⋅⋅5745 ± 861⋅⋅⋅12128 ± 1819
4C 58.2946.7346.424211 ± 631⋅⋅⋅5745 ± 861⋅⋅⋅12128 ± 1819
4C 64.1546.1445.985230 ± 784⋅⋅⋅7245 ± 1086⋅⋅⋅12366 ± 1854
4C 73.1845.8045.553585 ± 5372704 ± 4053560 ± 5343095 ± 4644172 ± 625
B2 0742+3145.8945.774475 ± 6715203 ± 7804890 ± 73310690 ± 16035623 ± 843
B2 1351+3146.0745.814728 ± 709⋅⋅⋅3690 ± 553⋅⋅⋅12220 ± 1833
B2 1555+3345.5745.393785 ± 567⋅⋅⋅4240 ± 636⋅⋅⋅6663 ± 999
B2 1611+3446.5046.293836 ± 5753074 ± 4614625 ± 6934795 ± 7196557 ± 983
IRAS F07546+392844.7644.863486 ± 5222999 ± 4493035 ± 4552785 ± 4173624 ± 543
MC2 0042+10144.9944.944616 ± 6923517 ± 5274195 ± 6298270 ± 12407893 ± 1184
MC2 1146+11145.6645.523926 ± 5883438 ± 5153715 ± 5577835 ± 1175⋅⋅⋅
Mrk 50643.8843.773563 ± 5343248 ± 4875290 ± 7934840 ± 7265408 ± 811
Mrk 50944.5144.193785 ± 5672645 ± 3964710 ± 7063825 ± 5734886 ± 732
OS 56246.2145.824234 ± 6352715 ± 4073470 ± 5203305 ± 4957870 ± 1180
PG 0052+25145.2744.884589 ± 6883864 ± 5795815 ± 8726460 ± 9695610 ± 841
PG 0844+34944.6644.392880 ± 4322010 ± 3014550 ± 6822870 ± 4304607 ± 691
PG 0947+39645.1544.793812 ± 5712822 ± 4233925 ± 5884340 ± 6514977 ± 746
PG 0953+41445.8745.383239 ± 4852429 ± 3643810 ± 5712990 ± 4484213 ± 631
PG 1001+05444.6644.403832 ± 5741529 ± 2293130 ± 4692615 ± 3923737 ± 560
PG 1100+77245.9045.444784 ± 7174158 ± 6234775 ± 7169390 ± 14083556 ± 533
PG 1103−00645.6745.304212 ± 6313187 ± 4784515 ± 6775270 ± 7904964 ± 744
PG 1114+44544.7544.803942 ± 5913789 ± 5683935 ± 5904825 ± 7236283 ± 942
PG 1115+40745.1144.614049 ± 6071838 ± 2754585 ± 6871895 ± 2845073 ± 761
PG 1116+21545.6945.103650 ± 5472167 ± 3253865 ± 5792975 ± 4465682 ± 852
PG 1202+28144.4844.503932 ± 5895100 ± 7652945 ± 4414950 ± 7424882 ± 732
PG 1216+06945.6245.485141 ± 7713376 ± 5063105 ± 4655950 ± 8926216 ± 932
PG 1226+02346.4545.973724 ± 5582791 ± 4184530 ± 6793405 ± 5104571 ± 685
PG 1259+59346.2645.694105 ± 6153664 ± 5496880 ± 10324035 ± 6055311 ± 796
PG 1309+35545.2145.074775 ± 7164632 ± 6942815 ± 4223640 ± 5464246 ± 636
PG 1322+65945.0744.703510 ± 5261776 ± 2663690 ± 5533285 ± 4924544 ± 681
PG 1351+64044.7144.902953 ± 4423355 ± 5034050 ± 6076205 ± 9303790 ± 568
PG 1352+18344.9644.523827 ± 5743162 ± 4743755 ± 5634210 ± 6315981 ± 897
PG 1402+26145.4144.843894 ± 5841992 ± 2984550 ± 6822100 ± 3156397 ± 959
PG 1411+44244.8644.672003 ± 3003465 ± 5192040 ± 3062800 ± 4203921 ± 588
PG 1415+45144.7044.452656 ± 3981950 ± 2923725 ± 5582560 ± 3844711 ± 706
PG 1425+26745.5445.285076 ± 7616235 ± 9357060 ± 10599875 ± 14816565 ± 984
PG 1427+48045.2144.742758 ± 4133975 ± 5962835 ± 4252405 ± 3605796 ± 869
PG 1440+35644.9744.601959 ± 2931109 ± 1662130 ± 3191745 ± 2613917 ± 587
PG 1444+40745.5545.173428 ± 5142037 ± 3054425 ± 6632750 ± 4126224 ± 933
PG 1512+37045.5545.155238 ± 7855458 ± 8183970 ± 5957690 ± 11535628 ± 844
PG 1534+58043.6143.373239 ± 4852888 ± 4333790 ± 5684505 ± 6754609 ± 691
PG 1543+48945.8045.383842 ± 5761491 ± 2235625 ± 8432320 ± 3485424 ± 813
PG 1545+21045.3945.074654 ± 6983382 ± 5074560 ± 6846885 ± 10326148 ± 922
PG 1626+55445.0644.614291 ± 6432998 ± 4493815 ± 5724390 ± 6586502 ± 975
PG 1704+60845.9145.725340 ± 8014637 ± 6954015 ± 60210465 ± 156911557 ± 1733
PG 2214+13944.8444.543678 ± 5513137 ± 4702690 ± 4035845 ± 8766551 ± 982
PG 2251+11345.7345.534234 ± 6352996 ± 4494805 ± 7204060 ± 6094660 ± 699
PG 2349−01445.0944.784211 ± 6313728 ± 5595675 ± 8516325 ± 9484476 ± 671
PKS 0112−01746.4446.074019 ± 602⋅⋅⋅5030 ± 754⋅⋅⋅8572 ± 1285
PKS 0403−1345.6945.533977 ± 5962856 ± 4283325 ± 4983735 ± 5604577 ± 686
PKS 0859−1446.6846.453737 ± 5605260 ± 7894520 ± 6784615 ± 6924737 ± 710
PKS 1127−1446.5046.213501 ± 525⋅⋅⋅3695 ± 554⋅⋅⋅12263 ± 1839
PKS 1656+05346.4446.26⋅⋅⋅2832 ± 424⋅⋅⋅3510 ± 5266933 ± 1040
PKS 2216−0346.3846.314504 ± 6752962 ± 4443600 ± 5404415 ± 6625580 ± 837
TEX 1156+21345.3645.005129 ± 7693604 ± 5403880 ± 5827740 ± 11616156 ± 923
Objectlog |$\lambda \,L_{\lambda }(1450\, {{A\!\!\!\!\!^{^\circ}})}$|log |$\lambda \,L_{\lambda }(5100\, {{A\!\!\!\!\!^{^\circ}})}$||$\sigma _{l,\rm {C\,{\small {IV}}}}$||$\sigma _{l, {\rm H}\beta }$|FWHM|$_{{\rm C}\,{\small {IV}}}$|FWHMFWHMλ1400
(erg s−1)(erg s−1)(km s−1)(km s−1)(km s−1)(km s−1)(km s−1)
3C 11046.4345.995260 ± 7895431 ± 8145700 ± 85512450 ± 186713817 ± 2072
3C 17546.3446.115322 ± 7989599 ± 14396915 ± 103720925 ± 313817544 ± 2631
3C 18646.0745.794521 ± 678⋅⋅⋅6290 ± 943⋅⋅⋅14101 ± 2115
3C 20745.6545.483386 ± 5075342 ± 8014935 ± 7403505 ± 5254992 ± 748
3C 21545.0244.945049 ± 7573475 ± 5215605 ± 8406760 ± 10144459 ± 668
3C 23245.8745.724053 ± 6083328 ± 4997145 ± 10714655 ± 6986153 ± 923
3C 25445.6345.365105 ± 7657142 ± 10715205 ± 78014095 ± 21146305 ± 945
3C 26346.3346.014483 ± 6724041 ± 6063310 ± 4964970 ± 7455025 ± 753
3C 277.145.0444.673333 ± 5003051 ± 4573215 ± 4823835 ± 5754339 ± 650
3C 28145.6845.325184 ± 7774579 ± 6864865 ± 7297985 ± 119712003 ± 1800
3C 288.146.0145.624780 ± 7173906 ± 5854015 ± 6028970 ± 134512217 ± 1832
3C 33446.0045.583983 ± 5974722 ± 7085745 ± 8616345 ± 95112737 ± 1910
3C 3745.2844.893225 ± 4833893 ± 5843360 ± 5044280 ± 6424619 ± 692
3C 44646.1946.433780 ± 567⋅⋅⋅3390 ± 508⋅⋅⋅12181 ± 1827
3C 4745.2744.885265 ± 7896892 ± 10335450 ± 81714005 ± 21004415 ± 662
4C 01.0444.4344.694553 ± 6834196 ± 6296665 ± 9999905 ± 148512310 ± 1846
4C 06.6946.7346.434288 ± 6432340 ± 3515620 ± 8434015 ± 60210807 ± 1621
4C 10.0645.8545.474566 ± 6845922 ± 8883785 ± 5674735 ± 7108366 ± 1254
4C 11.6946.5146.383527 ± 529⋅⋅⋅3185 ± 477⋅⋅⋅12207 ± 1831
4C 12.4045.5345.134485 ± 6722329 ± 3495300 ± 7953565 ± 53412378 ± 1856
4C 19.4446.3045.993624 ± 5433152 ± 4722730 ± 4094575 ± 6864367 ± 655
4C 20.2446.2245.953654 ± 548⋅⋅⋅3525 ± 528⋅⋅⋅4477 ± 671
4C 22.2645.8345.524390 ± 658⋅⋅⋅5015 ± 752⋅⋅⋅5931 ± 889
4C 30.2545.6445.133715 ± 557⋅⋅⋅3730 ± 559⋅⋅⋅4806 ± 720
4C 31.6346.2145.614322 ± 6482699 ± 4044840 ± 7263395 ± 5095033 ± 754
4C 34.4745.2744.973785 ± 5673277 ± 4912855 ± 4285015 ± 7524159 ± 623
4C 39.2546.2545.974429 ± 6643538 ± 5304775 ± 7166400 ± 96011040 ± 1656
4C 40.2445.9645.743265 ± 489⋅⋅⋅4920 ± 738⋅⋅⋅3973 ± 595
4C 41.2146.2745.643736 ± 5603170 ± 4753800 ± 5703445 ± 5166075 ± 911
4C 49.2245.2144.843465 ± 5192741 ± 4114535 ± 6803910 ± 5865151 ± 772
4C 55.1745.8345.723777 ± 566⋅⋅⋅6420 ± 963⋅⋅⋅9769 ± 1465
4C 58.2946.7346.424211 ± 631⋅⋅⋅5745 ± 861⋅⋅⋅12128 ± 1819
4C 58.2946.7346.424211 ± 631⋅⋅⋅5745 ± 861⋅⋅⋅12128 ± 1819
4C 64.1546.1445.985230 ± 784⋅⋅⋅7245 ± 1086⋅⋅⋅12366 ± 1854
4C 73.1845.8045.553585 ± 5372704 ± 4053560 ± 5343095 ± 4644172 ± 625
B2 0742+3145.8945.774475 ± 6715203 ± 7804890 ± 73310690 ± 16035623 ± 843
B2 1351+3146.0745.814728 ± 709⋅⋅⋅3690 ± 553⋅⋅⋅12220 ± 1833
B2 1555+3345.5745.393785 ± 567⋅⋅⋅4240 ± 636⋅⋅⋅6663 ± 999
B2 1611+3446.5046.293836 ± 5753074 ± 4614625 ± 6934795 ± 7196557 ± 983
IRAS F07546+392844.7644.863486 ± 5222999 ± 4493035 ± 4552785 ± 4173624 ± 543
MC2 0042+10144.9944.944616 ± 6923517 ± 5274195 ± 6298270 ± 12407893 ± 1184
MC2 1146+11145.6645.523926 ± 5883438 ± 5153715 ± 5577835 ± 1175⋅⋅⋅
Mrk 50643.8843.773563 ± 5343248 ± 4875290 ± 7934840 ± 7265408 ± 811
Mrk 50944.5144.193785 ± 5672645 ± 3964710 ± 7063825 ± 5734886 ± 732
OS 56246.2145.824234 ± 6352715 ± 4073470 ± 5203305 ± 4957870 ± 1180
PG 0052+25145.2744.884589 ± 6883864 ± 5795815 ± 8726460 ± 9695610 ± 841
PG 0844+34944.6644.392880 ± 4322010 ± 3014550 ± 6822870 ± 4304607 ± 691
PG 0947+39645.1544.793812 ± 5712822 ± 4233925 ± 5884340 ± 6514977 ± 746
PG 0953+41445.8745.383239 ± 4852429 ± 3643810 ± 5712990 ± 4484213 ± 631
PG 1001+05444.6644.403832 ± 5741529 ± 2293130 ± 4692615 ± 3923737 ± 560
PG 1100+77245.9045.444784 ± 7174158 ± 6234775 ± 7169390 ± 14083556 ± 533
PG 1103−00645.6745.304212 ± 6313187 ± 4784515 ± 6775270 ± 7904964 ± 744
PG 1114+44544.7544.803942 ± 5913789 ± 5683935 ± 5904825 ± 7236283 ± 942
PG 1115+40745.1144.614049 ± 6071838 ± 2754585 ± 6871895 ± 2845073 ± 761
PG 1116+21545.6945.103650 ± 5472167 ± 3253865 ± 5792975 ± 4465682 ± 852
PG 1202+28144.4844.503932 ± 5895100 ± 7652945 ± 4414950 ± 7424882 ± 732
PG 1216+06945.6245.485141 ± 7713376 ± 5063105 ± 4655950 ± 8926216 ± 932
PG 1226+02346.4545.973724 ± 5582791 ± 4184530 ± 6793405 ± 5104571 ± 685
PG 1259+59346.2645.694105 ± 6153664 ± 5496880 ± 10324035 ± 6055311 ± 796
PG 1309+35545.2145.074775 ± 7164632 ± 6942815 ± 4223640 ± 5464246 ± 636
PG 1322+65945.0744.703510 ± 5261776 ± 2663690 ± 5533285 ± 4924544 ± 681
PG 1351+64044.7144.902953 ± 4423355 ± 5034050 ± 6076205 ± 9303790 ± 568
PG 1352+18344.9644.523827 ± 5743162 ± 4743755 ± 5634210 ± 6315981 ± 897
PG 1402+26145.4144.843894 ± 5841992 ± 2984550 ± 6822100 ± 3156397 ± 959
PG 1411+44244.8644.672003 ± 3003465 ± 5192040 ± 3062800 ± 4203921 ± 588
PG 1415+45144.7044.452656 ± 3981950 ± 2923725 ± 5582560 ± 3844711 ± 706
PG 1425+26745.5445.285076 ± 7616235 ± 9357060 ± 10599875 ± 14816565 ± 984
PG 1427+48045.2144.742758 ± 4133975 ± 5962835 ± 4252405 ± 3605796 ± 869
PG 1440+35644.9744.601959 ± 2931109 ± 1662130 ± 3191745 ± 2613917 ± 587
PG 1444+40745.5545.173428 ± 5142037 ± 3054425 ± 6632750 ± 4126224 ± 933
PG 1512+37045.5545.155238 ± 7855458 ± 8183970 ± 5957690 ± 11535628 ± 844
PG 1534+58043.6143.373239 ± 4852888 ± 4333790 ± 5684505 ± 6754609 ± 691
PG 1543+48945.8045.383842 ± 5761491 ± 2235625 ± 8432320 ± 3485424 ± 813
PG 1545+21045.3945.074654 ± 6983382 ± 5074560 ± 6846885 ± 10326148 ± 922
PG 1626+55445.0644.614291 ± 6432998 ± 4493815 ± 5724390 ± 6586502 ± 975
PG 1704+60845.9145.725340 ± 8014637 ± 6954015 ± 60210465 ± 156911557 ± 1733
PG 2214+13944.8444.543678 ± 5513137 ± 4702690 ± 4035845 ± 8766551 ± 982
PG 2251+11345.7345.534234 ± 6352996 ± 4494805 ± 7204060 ± 6094660 ± 699
PG 2349−01445.0944.784211 ± 6313728 ± 5595675 ± 8516325 ± 9484476 ± 671
PKS 0112−01746.4446.074019 ± 602⋅⋅⋅5030 ± 754⋅⋅⋅8572 ± 1285
PKS 0403−1345.6945.533977 ± 5962856 ± 4283325 ± 4983735 ± 5604577 ± 686
PKS 0859−1446.6846.453737 ± 5605260 ± 7894520 ± 6784615 ± 6924737 ± 710
PKS 1127−1446.5046.213501 ± 525⋅⋅⋅3695 ± 554⋅⋅⋅12263 ± 1839
PKS 1656+05346.4446.26⋅⋅⋅2832 ± 424⋅⋅⋅3510 ± 5266933 ± 1040
PKS 2216−0346.3846.314504 ± 6752962 ± 4443600 ± 5404415 ± 6625580 ± 837
TEX 1156+21345.3645.005129 ± 7693604 ± 5403880 ± 5827740 ± 11616156 ± 923

In most cases, errors on the fit parameters were calculated by Tang et al. (2012) (see also Shang et al. 2007; Laor et al. 1994a). For spectra with high S/N, the largest uncertainty comes from placing the continuum in each wavelength region rather than formal errors from the fitting process. Therefore, they estimated the errors in the continuum placement by calculating the 1σ errors on the flux in the observed spectrum at each end of the local continuum. They then calculate four new continua, corresponding to adding and subtracting the 1σ flux errors at each end of the local continuum, and recalculate the measured quantities. The largest positive and negative changes in the measured quantities were taken to be the errors. Uncertainties in the equivalent width (EW) and flux in the line measurements for the Hβ and C iv regions that are not listed here are given in Tang et al. (2012) and calculated via the above method.

The above method for calculating uncertainties is problematic for some parameters (namely line dispersion), which led us to perform a Monte Carlo fitting procedure similar to that of DiPompeo et al. (2012) to determine the uncertainties on these parameters. The resulting errors on all fit parameters were very small, indicating that the formal errors on our fitting procedure are small. The uncertainties on each parameter are actually a combination of the fit uncertainties and systematic uncertainties, where the systematic uncertainties likely dominate in our sample.

For the FWHM measurements, which are at the core of this analysis, it is particularly important not to underestimate the measurement uncertainties by ignoring systematic uncertainties. A comparison of measurements of the FWHM of C iv made with similar but not identical methodologies in the literature (Vestergaard & Peterson 2006; Shang et al. 2007) for some objects in our sample shows that measurements typically vary by 15 per cent. This is larger than all but two of the per cent errors listed for C iv FWHM (the largest of which is 16 per cent) in Table 2, suggesting that the errors on FWHM may be underestimated. We expect that the uncertainty in the line dispersion parameter will be at least as large as for FWHM, indicating that these are likely also at least 15 per cent. While applying our fitting procedure across the literature might yield more consistent results than this, we must also consider the possibility that different fitting procedures behave systematically differently for different line profiles. Thus, in order to be appropriately conservative, we adopt 15 per cent uncertainty for all velocity line width measurements.

Measurements associated with the optical and UV indicators of EV1 are provided in Table 1. Runnoe, Brotherton & Shang (2012) measured continuum luminosities for this sample in the Hβ and C iv wavelength regimes that are listed in Table 2 along with linewidth measurements.

ANALYSIS

The EV1 bias in C iv

The trend of the FWHM of C iv with the ratio Peak(λ1400/C iv) illustrated by Wills et al. (1993a) suggests that both EV1 and black hole mass play a role in determining the C iv line profile. Because this effect is not present in Hβ, we expect that it contributes significantly to the disagreement between velocity widths measured from Hβ and C iv.

Fig. 2 demonstrates that the ratio Peak(λ1400/C iv) is correlated with the significant scatter between the FWHM of Hβ and the FWHM of C iv. We distinguish between RL and RQ points in the figure and find that they do not clearly populate separate relationships, though they do tend to occupy opposite ends of EV1.

Residuals in FWHM for C iv and Hβ versus Peak(λ1400/C iv) (top panel) and residuals in the fit (bottom panel). The Spearman rank correlation coefficient and associated probability that this distribution of points occurs by chance are listed in the upper left-hand corner. The significant correlation indicates that the disagreement between C iv and Hβ linewidths that we hope to reduce depends on Peak(λ1400/C iv). The fitted line is given in red with the shaded region indicating the 95 per cent confidence interval. RL objects are indicated by the solid circles and the open circles indicate RQ objects.
Figure 2.

Residuals in FWHM for C iv and Hβ versus Peak(λ1400/C iv) (top panel) and residuals in the fit (bottom panel). The Spearman rank correlation coefficient and associated probability that this distribution of points occurs by chance are listed in the upper left-hand corner. The significant correlation indicates that the disagreement between C iv and Hβ linewidths that we hope to reduce depends on Peak(λ1400/C iv). The fitted line is given in red with the shaded region indicating the 95 per cent confidence interval. RL objects are indicated by the solid circles and the open circles indicate RQ objects.

We performed a regression analysis to describe the dependence of the FWHM residuals on the ratio Peak(λ1400/C iv) and determined an expression for predicting the Hβ FWHM. Line fitting in this investigation is done with an ordinary least-squares Y on X [OLS(Y|X)] fit. The OLS(Y|X) method is to be used in instances where X is used to predict Y (Isobe et al. 1990), as is the case for our analysis. In the OLS(Y|X) fit, uncertainties are used only in the Y-direction, so uncertainties on the peak ratio do not enter into the fit. The assumption that the errors in the peak ratio are small certainly seems reasonable, given the values in the peak fluxes in Table 1; however, if the systematic errors dominate over the errors in the fitting procedure, these may be underestimated. Because the velocity width measurements have equal per cent uncertainties, the points are all weighted equally in the fit.

In order to determine the uncertainty in the slope and intercept used to predict the FWHM of Hβ, we employ the model-independent Monte Carlo simulation used in Peterson et al. (1998). This method simulates uncertainties associated with the measurement uncertainties and with the individual points in the sample. For our observed data set of N = 69 objects, we do the following. First, we generate NY values within the 1σ Gaussian uncertainties around the measured values to form a data set. Then, similar to the ‘bootstrapping’ technique, N sources are selected randomly from the synthetic data set, without regard to whether a point has been previously selected or not. Duplicate points that are sampled multiple times are then discarded from the sample, typically cutting the sample down by the Poisson probability of not selecting any given point, or ∼1/e ≈ 37 per cent. After duplicates are discarded, the data set is fitted following the procedure used on the actual data. This process is realized 105 times to build a distribution in the slope and intercept parameters. The standard deviations of these distributions are taken to be the uncertainties on the slope and intercept.

Equation (1) is the resulting method for estimating the FWHM of the Hβ line based on UV spectral measurements:
\begin{eqnarray} &&{{\rm log}\left[\frac {\rm FWHM_{H\beta, predicted}}{\rm km\,s^{-1}}\right]} \nonumber\\ &&{\qquad= {\rm log}\left[\frac{\rm FWHM_{C\,{\small {IV}}}}{\rm km\,s^{-1}}\right] -(0.366\pm 0.048)} \nonumber \\ &&{\qquad\quad-\,(0.574\pm 0.061)\,{\rm log}\left[{\rm Peak}\left(\frac{\lambda 1400}{\rm C\,{\small {IV}}}\right)\right].} \end{eqnarray}
(1)

This expression treats the RL and RQ sources together. We have investigated the relationships for RL and RQ objects separately and find that they are not significantly different within the 95 per cent confidence intervals, as is suggested by the distribution of RL and RQ points in Fig. 2. We note that, in the case of the RL sources, the correlation appears to be driven by two outliers in the peak ratio. A Monte Carlo bootstrapping simulation that would likely reveal any sample dependence of RL correlation is beyond the scope of this paper, but we do wish to draw the readers attention to this possible caveat.

The FWHM predicted for Hβ based on C iv and λ1400 shows less scatter with the true FWHM of Hβ than does C iv alone. Fig. 3 shows the relationship between the Hβ FWHM and C iv FWHM compared to Hβ and the predicted Hβ from equation (1). Independent of the assumed relationship between the FWHM of C iv and the FWHM of Hβ, the initial scatter between them is 0.20 dex. This is reduced to 0.15 dex and the points become fairly well centred around the one-to-one relationship by using equation (1). This scatter reduction is in the dispersion of the distribution of the log(FWHM) residuals only, and is independent of assuming a relationship between the C ivFWHM and Hβ FWHM. Our goal here is to be able to effectively predict the Hβ FWHM; thus, the reduction in scatter allows a more precise measurement.

The FWHM of Hβ versus C iv (left-hand panel) and versus the FWHM predicted for Hβ based on UV spectral information (right-hand panel). In the left-hand panel, we do not expect the linewidths to be equal and rather illustrate the scatter between Hβ and C iv measurements. In the right-hand panel, we have used equation (1) to predict the Hβ linewidth and expect the data to fall around the dashed one-to-one line. The scatter decreases from 0.20 to 0.15 dex after including a Peak(λ1400/C iv) term and the points are fairly evenly distributed around the one-to-one line. RL objects are indicated by the solid circles and the open circles indicate RQ objects.
Figure 3.

The FWHM of Hβ versus C iv (left-hand panel) and versus the FWHM predicted for Hβ based on UV spectral information (right-hand panel). In the left-hand panel, we do not expect the linewidths to be equal and rather illustrate the scatter between Hβ and C iv measurements. In the right-hand panel, we have used equation (1) to predict the Hβ linewidth and expect the data to fall around the dashed one-to-one line. The scatter decreases from 0.20 to 0.15 dex after including a Peak(λ1400/C iv) term and the points are fairly evenly distributed around the one-to-one line. RL objects are indicated by the solid circles and the open circles indicate RQ objects.

Improved black hole masses

In order to propagate the predicted Hβ FWHM into a black hole mass estimate, we derived a relationship for predicting the 5100 Å luminosity from the 1450 Å luminosity. Fig. 4 shows that λ Lλ(5100 Å) and λ Lλ(1450 Å) are very significantly correlated, indicating that the 1450 Å luminosity is a good proxy for the 5100 Å luminosity. When fitting the luminosities, we weighted each point equally. The fitted line, determined using the same OLS(Y|X) fitting procedure, shown in Fig. 4, is
\begin{eqnarray} {\rm log}\left[\frac{\lambda {\rm L}_{\lambda }(5100\, \rm {A\!\!\!\!\!^{^\circ}})_{\rm {predicted}}}{{\rm erg\,s}^{-1}}\right] &=&(0.901\pm 0.028)\,{\rm log}\left[\frac{\lambda {\rm L}_{\lambda }(1450\,{{A\!\!\!\!\!^{^\circ}}})}{{\rm erg\,s}^{-1}}\right] \nonumber \\ &&+\,(4.198\pm 1.265). \end{eqnarray}
(2)
5100 Å luminosity versus 1450 Å luminosity (top panel) and residuals in the fit (bottom panel). The dashed black line indicates where the luminosities are the same and the solid red line is the fitted line with the shaded region indicating the 95 per cent confidence interval. The Spearman rank correlation coefficient and associated probability of finding this distribution of points by chance are listed in the upper left-hand corner. RL objects are indicated by the solid circles and open circles indicate RQ objects.
Figure 4.

5100 Å luminosity versus 1450 Å luminosity (top panel) and residuals in the fit (bottom panel). The dashed black line indicates where the luminosities are the same and the solid red line is the fitted line with the shaded region indicating the 95 per cent confidence interval. The Spearman rank correlation coefficient and associated probability of finding this distribution of points by chance are listed in the upper left-hand corner. RL objects are indicated by the solid circles and open circles indicate RQ objects.

The uncertainties on the slope and intercept are calculated via the same Monte Carlo method, assuming 5 per cent error in the luminosities, consistent with Shang et al. (2007).

With the ability to predict the 5100 Å luminosity and Hβ linewidth from UV spectral parameters comes the possibility of better predicting the black hole mass using spectral properties in the C iv wavelength region. We calculated rehabilitated C iv masses from the predicted FWHM of Hβ using equation (1), the predicted 5100 Å continuum luminosity using equation (2), and the Hβ scaling relationship from Vestergaard & Peterson (2006). We found better agreement between Hβ-based black hole masses and those calculated from C iv and Peak(λ1400/C iv) than those calculated from C iv alone. Fig. 5 shows the before and after with Hβ versus C iv and Hβ versus predicted Hβ-based black hole masses. The improvement is significant, with a reduction in scatter from 0.43 to 0.33 dex. This method is independent of the choice in scaling relationship; it is not necessary to use the Vestergaard & Peterson (2006) scaling relationship; any relation using FWHM Hβ and 5100 Å continuum luminosity could be substituted.

Hβ-based black hole masses versus C iv-based black hole masses (left-hand panel) and the mass calculated from the predicted Hβ based on UV spectral information (right-hand panel). The one-to-one line is shown. The scatter, originally 0.43 dex in the left-hand panel, is reduced to 0.33 dex by including Peak(λ1400/C iv) and equations (1) and (2) when calculating the black hole mass from spectral information in the C iv region. RL objects are indicated by the solid circles and the open circles indicate RQ objects.
Figure 5.

Hβ-based black hole masses versus C iv-based black hole masses (left-hand panel) and the mass calculated from the predicted Hβ based on UV spectral information (right-hand panel). The one-to-one line is shown. The scatter, originally 0.43 dex in the left-hand panel, is reduced to 0.33 dex by including Peak(λ1400/C iv) and equations (1) and (2) when calculating the black hole mass from spectral information in the C iv region. RL objects are indicated by the solid circles and the open circles indicate RQ objects.

The reduction in scatter between Hβ- and C iv-based black hole masses can also be seen in the reduction in the width of the distribution of mass residuals. Fig. 6 shows ‘before’ and ‘after’ histograms for the FWHM-based black hole mass estimates. It is clear that the scatter is reduced by the width reduction in the distribution.

Before and after histograms of the residuals between masses derived from FWHM. The shaded histogram shows black hole mass residuals ‘before’ using the difference between C ivand Hβ-based masses. The thick histogram shows black hole mass residuals ‘after’ using the difference between predicted Hβ [using equations (1) and (2)] and Hβ-based masses. The primary effect of predicting the FWHM of Hβ and using it to calculate the black hole mass is a reduction in width of the distribution.
Figure 6.

Before and after histograms of the residuals between masses derived from FWHM. The shaded histogram shows black hole mass residuals ‘before’ using the difference between C ivand Hβ-based masses. The thick histogram shows black hole mass residuals ‘after’ using the difference between predicted Hβ [using equations (1) and (2)] and Hβ-based masses. The primary effect of predicting the FWHM of Hβ and using it to calculate the black hole mass is a reduction in width of the distribution.

Black hole masses have already been calculated for thousands of objects using the C iv prescription from Vestergaard & Peterson (2006), for example, in the catalogue of Shen et al. (2011). In these cases, it is more straightforward to correct the pre-calculated black hole mass than to propagate through the predicted optical measurements. We performed a regression analysis on the black hole mass residuals versus Peak(λ1400/C iv) (Fig. 7). We followed an identical fitting procedure here to that for the FWHM residuals, with all of the uncertainty propagated from the velocity line widths and thus all points weighted equally in the fit. Equation (3) gives the correction to pre-calculated black hole masses already derived from C iv measurements:
\begin{eqnarray} {\rm log }\!\left[\frac{M_{\rm BH}( {\rm {H}\beta }_{\rm {predicted}})}{\mathrm{M}_{\odot }}\right] &=& {\rm log }\left[\frac{M_{\rm BH}( {\rm C\,{\small {IV}}})}{\mathrm{M}_{\odot }}\right] -(0.734\pm 0.112) \nonumber \\ &&-\,(1.227\pm 0.136)\,{\rm log}\!\!\left[ {\rm Peak}\left(\frac{\lambda 1400}{ {\rm C\,{\small {IV}}}}\right)\!\right]\!\!. \nonumber\\ \end{eqnarray}
(3)
Residuals in MBH for C iv and Hβ versus the Peak(λ1400/C iv) (top panel) and residuals in the fit (bottom panel). The Spearman rank correlation coefficient and associated probability that this distribution of points occurs by chance are listed in the upper left-hand corner. The significant correlation indicates that there is a Peak(λ14020/C iv) dependence in the mass residuals similar to what was found for the FWHM. The fitted line is given in red with the shaded region indicating the 95 per cent confidence interval. RL objects are indicated by the solid circles and the open circles indicate RQ objects.
Figure 7.

Residuals in MBH for C iv and Hβ versus the Peak(λ1400/C iv) (top panel) and residuals in the fit (bottom panel). The Spearman rank correlation coefficient and associated probability that this distribution of points occurs by chance are listed in the upper left-hand corner. The significant correlation indicates that there is a Peak(λ14020/C iv) dependence in the mass residuals similar to what was found for the FWHM. The fitted line is given in red with the shaded region indicating the 95 per cent confidence interval. RL objects are indicated by the solid circles and the open circles indicate RQ objects.

This expression assumes the C iv single-epoch scaling relationship of Vestergaard & Peterson (2006) and the resulting predicted Hβ black hole masses are akin to using the Hβ scaling relationship from the same authors. The reduction in scatter achieved by using this correction is comparable to propagating the predicted optical measurements through the mass scaling relationship, although this method is less flexible because you cannot choose your mass scaling relationship.

A new mass scaling relationship for C iv based on an updated reverberation mapping sample and methodology has recently become available from Park et al. (2013). We do not re-derive equation (3) for the new scaling relationship, since the motivation for a ready-made mass correction was backward compatibility with catalogues like Shen et al. (2011). The effect of adopting this new mass scaling relationship in our sample is to increase the initial scatter between Hβ- and C iv-based masses from 0.43 to 0.45 dex. Points in the left-hand panel of Fig. 5 move towards the left-hand side, generally farther from the one-to-one line, and the scatter is increased. Thus, the reduction in scatter achieved by correcting Park et al. (2013) C iv-based masses with equations (1) and (2) is even more significant than for masses calculated from Vestergaard & Peterson (2006).

An alternative measure of linewidth

Line dispersion is often used for calculating black hole masses instead of FWHM (Peterson et al. 2004). Because of the contaminating emission in the C iv line, line dispersion is often preferred for estimating black hole masses in high-redshift objects. With detailed simulations, Denney et al. (2009) show that line dispersion measurements are much less susceptible to contamination from low-velocity, non-virialized gas. When a contaminating low-velocity component is strong in the C iv line, the peak of the emission line shoots up, although the base of the line remains largely unchanged. A measurement of FWHM in such a line will give a value that is artificially narrow as the ‘half-maximum’ is much higher than it otherwise would have been. In these cases, the width of the contaminating component is being probed instead of the virialized base that is desired for black hole mass estimates.

Given this, it is not surprising that the residuals in line dispersion between the C iv and Hβ emission lines are much less significantly correlated with Peak(λ1400/C iv) than for FWHM, although the correlation is still significant, as shown in Fig. 8.

Residuals in line dispersion for C iv and Hβ versus Peak(λ1400/C iv). The Spearman rank correlation coefficient and associated probability that this distribution of points occurs by chance are listed in the upper left-hand corner. The correlation is significant at about the 3σ level, much less than for FWHM. RL objects are indicated by the solid circles and the open circles indicate RQ objects.
Figure 8.

Residuals in line dispersion for C iv and Hβ versus Peak(λ1400/C iv). The Spearman rank correlation coefficient and associated probability that this distribution of points occurs by chance are listed in the upper left-hand corner. The correlation is significant at about the 3σ level, much less than for FWHM. RL objects are indicated by the solid circles and the open circles indicate RQ objects.

The scatter in the relationship between line dispersion residuals and Peak(λ1400/C iv) makes a correction less effective than for FWHM. Equation (4) gives the predicted line dispersion for Hβ based on the C iv line dispersion and Peak(λ1400/C iv) that was derived via the same OLS(Y|X) fitting procedure and Monte Carlo error simulation that are used throughout this work:
\begin{eqnarray} {\rm log}\left[\frac{\sigma _{l {\rm ,C\,{\small {IV}},predicted}}}{ {\rm km\,s}^{-1}}\right] &=& {\rm log}\left[\frac{ {\rm \sigma _{l,\rm {C {\small {IV}}}}}}{ {\rm km\,s}^{-1}}\right] -(0.241\pm 0.055) \nonumber \\ &&-\,(0.220\pm 0.068)\,{\rm log}\left[ {\rm Peak}\left(\frac{\lambda 1400}{ {\rm C\,{\small {IV}}}}\right)\right].\nonumber\\ \end{eqnarray}
(4)

The reduction in scatter between Hβ- and C iv-based black hole masses estimated using line dispersion is minimal, going from 0.32 to 0.29 dex.

Fig. 9 shows the distribution in mass residuals calculated from line dispersion for C iv–Hβ and predicted Hβ–Hβ. The distribution is initially relatively narrow, but offset from zero. The result of predicting the Hβ mass from C iv line dispersion is largely to remove that offset, the width of the distribution is not appreciably reduced. We have attributed this offset to the Peak(λ1400/C iv) effect, but we note that there are other possibilities that we discuss further in Section 4.

Before and after histograms of the residuals between masses derived from line dispersion. The shaded histogram shows black hole mass residuals ‘before’ using the difference between C iv and Hβ-based masses. The thick histogram shows black hole mass residuals ‘after’ using the difference between predicted Hβ [using equations (2) and (4)] and Hβ-based masses. Predicting Hβ line dispersion shifts the distribution to zero, but does not decrease the width appreciably.
Figure 9.

Before and after histograms of the residuals between masses derived from line dispersion. The shaded histogram shows black hole mass residuals ‘before’ using the difference between C iv and Hβ-based masses. The thick histogram shows black hole mass residuals ‘after’ using the difference between predicted Hβ [using equations (2) and (4)] and Hβ-based masses. Predicting Hβ line dispersion shifts the distribution to zero, but does not decrease the width appreciably.

Eigenvector 1 indicators

The correction we have derived is purely empirical, but the inclusion of Peak(λ1400/C iv) among the properties correlated in EV1 suggests an origin for the effect. EV1 was defined by Boroson & Green (1992) based on measurements of optical spectral properties; variation in EV1 is often described by a continuum in the ratio EW(Fe ii/[O iii]). Thus, in order to evaluate the source of the dependence of Hβ and C iv linewidth residuals on Peak(λ1400/C iv), we investigate whether the effect holds for EW(Fe ii/[O iii]).

Fig. 10 shows that the FWHM residuals depend strongly on EW(Fe ii/[O iii]), with a correlation that is comparable in significance to the one found for Peak(λ1400/C iv). This indicates that it is indeed EV1 in addition to the black hole mass that contributes to determining the velocity width of the C iv line profile.

Residuals in FWHM for C iv and Hβ versus EW(Fe ii/[O iii]). The Spearman rank correlation coefficient and associated probability that this distribution of points occurs by chance are listed in the upper left-hand corner. The correlation is comparable in significance to that found for Peak(λ1400/C iv), indicating that the correction derived here is an EV1 effect. RL objects are indicated by the solid circles and the open circles indicate RQ objects.
Figure 10.

Residuals in FWHM for C iv and Hβ versus EW(Fe ii/[O iii]). The Spearman rank correlation coefficient and associated probability that this distribution of points occurs by chance are listed in the upper left-hand corner. The correlation is comparable in significance to that found for Peak(λ1400/C iv), indicating that the correction derived here is an EV1 effect. RL objects are indicated by the solid circles and the open circles indicate RQ objects.

EV1 is a suite of spectral properties, so in addition to Peak(λ1400/C iv) and the shape of C iv there are many UV measurements that are strongly correlated with optical EV1 (e.g. Brotherton & Francis 1999). It is not necessary to restrict our analysis to Peak(λ1400/C iv) if another spectral property yields a better mass correction. Because of the practical applications of this work, we were particularly interested in EV1 indicators that are simple to measure and can be obtained with limited wavelength coverage. This rules out UV EV1 indicators like the blueshift of C iv; without sufficient wavelength coverage, obtaining a reliable rest frame for the object and thus establishing the blueshift may be difficult. We investigated three UV spectral ratios to compare their ability to predict the optical EV1 indicator: the ratios of peak flux, EW and flux in the line for λ1400/C iv. We found that, of these, Peak(λ1400/C iv) is most significantly correlated with EW(Fe ii/[O iii]) (Fig. 11) as well as the FWHM residuals.

The optical EV1 indicator against four UV EV1 indicators. The Spearman rank correlation coefficient (ρ) and associated probability (P) that the points will be thus distributed by chance are listed in the upper left-hand corner. The ratio of the λ1400 to C iv peaks (top left-hand panel) is the best proxy for the optical EV1 indicator. RL objects are indicated by the solid circles and the open circles indicate RQ objects.
Figure 11.

The optical EV1 indicator against four UV EV1 indicators. The Spearman rank correlation coefficient (ρ) and associated probability (P) that the points will be thus distributed by chance are listed in the upper left-hand corner. The ratio of the λ1400 to C iv peaks (top left-hand panel) is the best proxy for the optical EV1 indicator. RL objects are indicated by the solid circles and the open circles indicate RQ objects.

DISCUSSION

Data quality and sample selection

The rehabilitation of black hole mass estimates derived from the FWHM of C iv has significant implications for calculating black hole masses in large numbers of objects. Denney et al. (2013) shows that, until now, the most reliable C iv-based black hole mass estimates required a measurement of line dispersion. The line dispersion measurement is less sensitive to the presence of a core component in the C iv line, and with a shape correction the contamination can be accounted for to some degree. However, line dispersion measurements are incredibly sensitive to the information in the wings of the emission line which can be lost in low-S/N data. The low S/N of survey-quality data introduces issues for line dispersion measurements, namely that an accurate measurement cannot be obtained. Using FWHM-based black hole masses and applying the shape correction requires a measure of line dispersion, and thus high-quality data.

The introduction of a peak ratio UV EV1 correction to a C iv FWHM mass provides a robust way of measuring more accurate masses from the UV spectral region. FWHM measurements do not suffer as much from these S/N constraints, making them ideal for estimating the black hole mass in survey-quality data. A correction to estimate the strength of the core component in the C iv line based on a peak ratio is easy to measure and more robust to low S/N, enabling reliable black hole mass estimates for thousands of high-redshift objects in surveys like the Sloan Digital Sky Survey.

Denney et al. (2009) performed extensive simulations on the effects of characterizing linewidths in data with a variety of S/N ratios. They found that, in low-S/N spectra, the ability to characterize the linewidth is compromised. Furthermore, depending on the procedure used to make the measurement, this can result in either over- or under-estimated linewidths, although for FWHM an underestimate is most common. This discrepancy has the potential to create an offset between C iv- and Hβ-based black hole masses that is buried in the black hole mass scaling relations. If this effect is present, it has been wrapped into the correction for the EV1 bias. This should be noted, but is not necessarily the most likely outcome or an issue if it has occurred. According to Denney et al. (2009), the effect of allowing a contaminating narrow, non-virial component in the emission line is larger than S/N effects, and Denney (2012) has verified the presence of a shape bias in black hole estimates based on C iv. Finally, for any investigation using spectra similar to ours, the initial offset in the mass residuals from zero exists when applying the Vestergaard & Peterson (2006) scaling relations and the improvement still stands whether we attribute it to measurement issues or EV1. Brotherton et al. (in preparation) will perform a more quantitative determination of the amount of improvement that is due exclusively to EV1.

We also note that any C IV-based black hole mass scaling relationship created from a sample that does not have a representative EV1 average will result in biased black hole masses. This is equivalent to the ‘shape bias’ suggested by Denney (2012). Fig. 5 (left-hand panel) shows that the distribution of points in the plot of Hβ versus C iv derived masses using the relationships of Vestergaard & Peterson (2006) is not evenly spread around the one-to-one line as expected. While some of this effect may result from the combination of measurement and S/N bias (e.g. Denney et al. 2009), we also expect a bias since the reverberation sample does not have a representative distribution in EV1, and in particular is deficient in objects at the strong Fe ii/weak [O iii] end. We will quantitatively investigate this effect in an upcoming paper (Brotherton et al., in preparation).

In light of S/N concerns for C iv, we consider whether the success of our black hole correction might depend on the S/N of the spectrum to which it is applied. Fig. 12 is identical to Fig. 5 except that the sources have been colour coded into three S/N bins (6 < S/N < 21, 21 < S/N < 30, and 30 < S/N < 72), each with an equal number of objects. In general, it does not appear that the sources in any S/N bin are isolated in mass or distance from the one-to-one relationship. There is no trend in the scatter between the Hβ masses and the predicted Hβ masses in the S/N bins: the final scatter is 0.31, 0.38 and 0.31 dex for the high-, medium- and low-S/N bins, respectively. Denney et al. (2009) find that the peak of the emission line may be underestimated when fitting low S/N spectra, which would serve to counteract the effect of a contaminating component in the CIV line. However, given that all our data are fairly high S/N, above the S/N∼5 cut-off suggested by those authors, it may be that we are not well suited to address this issue.

Hβ-based black hole masses versus C iv-based black hole masses (left-hand panel) and the mass calculated from the predicted Hβ based on UV spectral information (right-hand panel) colour coded by S/N. The one-to-one line is shown. The red points indicate objects with the lowest S/N, yellow points have intermediate S/N and green points have the highest S/N.
Figure 12.

Hβ-based black hole masses versus C iv-based black hole masses (left-hand panel) and the mass calculated from the predicted Hβ based on UV spectral information (right-hand panel) colour coded by S/N. The one-to-one line is shown. The red points indicate objects with the lowest S/N, yellow points have intermediate S/N and green points have the highest S/N.

The broad-line region

The FWHM of Hβ, which is reliable for probing virialized gas and estimating black hole masses, depends on the orientation as indicated by the radio core dominance (Wills & Browne 1986). The FWHM of C iv shows no such dependence, although Vestergaard (2002) shows that the full width at one-quarter-maximum (FWQM) does depend on the orientation. This behaviour in the C iv line is likely the result of the two different components of the line having different orientation dependencies. The virialized component is orientation-dependent, as with Hβ, and is targeted by FWQM which probes the base of the line where this component dominates emission. The non-virial component is independent of the orientation and is targeted by FWHM which probes higher in the line where the linewidth is sensitive to the emission from non-virial gas. In this scenario, once the FWHM of C iv has been corrected for a non-virial contribution to emission, it should depend on the orientation. An investigation of this prediction is currently underway (Runnoe et al. 2013).

One model that is often invoked to explain the two-component structure of the C iv emission was proposed by Wills et al. (1993a) and has the BLR split into two structures, the very broad line region (VBLR) and the intermediate line region (ILR). Brotherton et al. (1994) compared VBLR and ILR spectra with the results of photoionization models and found that the VBLR is located nearer to the continuum source and is denser than the ILR. They predict that C iv should have a strong ILR contribution, whereas Hβ and the 1400 Å feature will not. The ILR emission is not consistent with emission from the traditional NLR as the physical parameters required to create the observed emission are different, with the ILR having higher densities (Brotherton et al. 1994) and larger velocity widths (Brotherton et al. 1994; Denney 2012). In this model scenario, the non-reverberating, low-velocity core component in the C iv line is attributed to the ILR and creates the peaky C iv line profiles. Wills et al. (1993a) posits that this emission may also originate in a biconical outflow, which is not mutually exclusive to a contribution from ILR emission. This type of multicomponent velocity model shows good agreement with observed C iv profiles. Bachev et al. (2004) observes a distinct VBLR component in objects with low-redshift, composite spectra with small EW(Fe ii/[O iii]), although they attribute the low-velocity emission to a traditional NLR region in their decomposition of the line. The ILR is found to agree with observed C iv line profiles in the literature (e.g. Wills et al. 1993a; Brotherton et al. 1994; Denney 2012).

The goal of this work is to progress in our ability to measure physical properties of quasars with the highest accuracy and precision possible. Other investigations have already taken steps in this direction, including Runnoe et al. (2012) and Assef et al. (2011) who provide prescriptions for removing an orientation and colour bias, respectively, from black hole mass calculations. These investigations suggest that future progress can be made by determining sources of scatter between black hole mass estimates and including those sources in our measurements of physical parameters.

CONCLUSIONS

Black hole masses estimated from the C iv emission line have larger scatter compared to Hβ-based masses caused by a non-virialized component, consistent with a contribution from the ILR in the C iv line that is weak or absent from Hβ. The strength of the non-virial component of the C iv line is known to scale with indicators of EV1, allowing it to be separated from the virial C iv emission. Using the quasi-simultaneous optical and UV spectra from the SED atlas of Shang et al. (2011), we investigated methods for using UV spectral information to more reliably predict Hβ-based linewidths and black hole masses. We employed the ratio of the peak flux of the Si iv+O iv] line at 1400 Å to the peak flux of C iv as an indicator of the optical EV1, as measured by theEW ratio of [O iii] to Fe ii, and showed that adding this UV EV1 indicator to a measure of C iv linewidth predicts the Hβ linewidth with increased accuracy.

We also investigated whether the EV1 dependence persists when the linewidth is calculated using the line dispersion rather than FWHM. It does, but the effect is much less significant. Predicting the Hβ-based linewidth and mass using line dispersion and UV spectral measurements provides only a minimal improvement to using a C iv-only prescription.

Including UV EV1 when calculating the black hole mass from UV spectra increases agreement between C iv- and Hβ-based black hole mass estimates, reducing the scatter between the two from 0.43 to 0.33 dex. Using this prescription, black hole masses can be more reliably calculated from the C iv line using FWHM which is robust to low-S/N data.

JCR would like to thank Kelly Denney for helpful discussions during the preparation of this work. ZS acknowledges support by the National Natural Science Foundation of China through Grant No. 10773006 and Tianjin Distinguished Professor Funds. We thank the anonymous referee for suggestions that improved this work.

REFERENCES

Assef
R. J.
, et al. 
ApJ
2011
, vol. 
742
 pg. 
93
 
Bachev
R.
Marziani
P.
Sulentic
J. W.
Zamanov
R.
Calvani
M.
Dultzin
Hacyan D.
ApJ
2004
, vol. 
617
 pg. 
171
 
Baskin
A.
Laor
A.
MNRAS
2005
, vol. 
356
 pg. 
1029
 
Bentz
M. C.
, et al. 
ApJ
2009
, vol. 
705
 pg. 
199
 
Boroson
T. A.
ApJ
2002
, vol. 
565
 pg. 
78
 
Boroson
T. A.
Green
R. F.
ApJ
1992
, vol. 
80
 pg. 
109
 
Brotherton
M. S.
Francis
P. J.
Ferland
G.
Baldwin
J.
ASP Conf. Ser. Vol. 162, The Intermediate Line Region and the Baldwin Effect
1999
San Francisco
Astron. Soc. Pac.
pg. 
395
 
Brotherton
M. S.
Wills
B. J.
Francis
P. J.
Steidel
C. C.
ApJ
1994
, vol. 
430
 pg. 
495
 
Denney
K. D.
ApJ
2012
, vol. 
759
 pg. 
44
 
Denney
K. D.
Peterson
B. M.
Dietrich
M.
Vestergaard
M.
Bentz
M. C.
ApJ
2009
, vol. 
692
 pg. 
246
 
Denney
K. D.
Pogge
R. W.
Assef
R. J.
Kochanek
C. S.
Peterson
B. M.
Vestergaard
M.
2013
 
arXiv:e-prints
DiPompeo
M. A.
Brotherton
M. S.
Cales
S. L.
Runnoe
J. C.
MNRAS
2012
, vol. 
427
 pg. 
1135
 
Ho
L. C.
Goldoni
P.
Dong
X.-B.
Greene
J. E.
Ponti
G.
ApJ
2012
, vol. 
754
 pg. 
11
 
Isobe
T.
Feigelson
E. D.
Akritas
M. G.
Babu
G. J.
ApJ
1990
, vol. 
364
 pg. 
104
 
Kaspi
S.
Smith
P. S.
Netzer
H.
Maoz
D.
Jannuzi
B. T.
Giveon
U.
ApJ
2000
, vol. 
533
 pg. 
631
 
Kriss
G.
Crabtree
D. R.
Hanisch
R. J.
Barnes
J.
ASP Conf. Ser. Vol. 61, Astronomical Data Analysis Software and Systems III
1994
San Francisco
Astron. Soc. Pac.
pg. 
437
 
Laor
A.
Bahcall
J. N.
Jannuzi
B. T.
Schneider
D. P.
Green
R. F.
Hartig
G. F.
ApJ
1994a
, vol. 
420
 pg. 
110
 
Laor
A.
Fiore
F.
Elvis
M.
Wilkes
B. J.
McDowell
J. C.
ApJ
1994b
, vol. 
435
 pg. 
611
 
Laor
A.
Fiore
F.
Elvis
M.
Wilkes
B. J.
McDowell
J. C.
ApJ
1997
, vol. 
477
 pg. 
93
 
Park
D.
Woo
J.-H.
Denney
K.
Shin
J.
ApJ
2013
, vol. 
770
 pg. 
87
 
Peterson
B. M.
Wanders
I.
Horne
K.
Collier
S.
Alexander
T.
Kaspi
S.
Maoz
D.
PASP
1998
, vol. 
110
 pg. 
660
 
Peterson
B. M.
, et al. 
ApJ
2004
, vol. 
613
 pg. 
682
 
Peterson
B. M.
, et al. 
ApJ
2005
, vol. 
632
 pg. 
799
 
Richards
G. T.
Vanden Berk
D. E.
Reichard
T. A.
Hall
P. B.
Schneider
D. P.
SubbaRao
M.
Thakar
A. R.
York
D. G.
AJ
2002
, vol. 
124
 pg. 
1
 
Runnoe
J. C.
Brotherton
M. S.
Shang
Z.
MNRAS
2012
, vol. 
422
 pg. 
478
 
Runnoe
J. C.
, et al. 
MNRAS
2013
 
submitted
Shang
Z.
Wills
B. J.
Robinson
E. L.
Wills
D.
Laor
A.
Xie
B.
Yuan
J.
ApJ
2003
, vol. 
586
 pg. 
52
 
Shang
Z.
Wills
B. J.
Wills
D.
Brotherton
M. S.
ApJ
2007
, vol. 
134
 pg. 
294
 
Shang
Z.
, et al. 
ApJS
2011
, vol. 
196
 pg. 
2
 
Shen
Y.
Bull. Astron. Soc. India
2013
, vol. 
41
 pg. 
61
 
Shen
Y.
Liu
X.
ApJ
2012
, vol. 
753
 pg. 
125
 
Shen
Y.
, et al. 
ApJS
2011
, vol. 
194
 pg. 
45
 
Sulentic
J. W.
Bachev
R.
Marziani
P.
Negrete
C. A.
Dultzin
D.
ApJ
2007
, vol. 
666
 pg. 
757
 
Tang
B.
Shang
Z.
Gu
Q.
Brotherton
M. S.
Runnoe
J. C.
ApJS
2012
, vol. 
201
 pg. 
38
 
Trakhtenbrot
B.
Netzer
H.
MNRAS
2012
, vol. 
427
 pg. 
3081
 
Vestergaard
M.
ApJ
2002
, vol. 
571
 pg. 
733
 
Vestergaard
M.
Peterson
B. M.
ApJ
2006
, vol. 
641
 pg. 
689
 
Wills
B. J.
Browne
I. W. A.
ApJ
1986
, vol. 
302
 pg. 
56
 
Wills
B. J.
Brotherton
M. S.
Fang
D.
Steidel
C. C.
Sargent
W. L. W.
ApJ
1993a
, vol. 
415
 pg. 
563
 
Wills
B. J.
Netzer
H.
Brotherton
M. S.
Han
M.
Wills
D.
Baldwin
J. A.
Ferland
G. J.
Browne
I. W. A.
ApJ
1993b
, vol. 
410
 pg. 
534
 
Yuan
M. J.
Wills
B. J.
ApJ
2003
, vol. 
593
 pg. 
L11