One of the advantages of kinetic inductance detectors is their intrinsic frequency domain multiplexing capability. However, fabrication imperfections usually give rise to resonance frequency deviations, which create frequency collision and limit the array yield. Here, we study the resonance frequency deviation of a 4-in. kilo-pixel lumped-element kinetic inductance detector (LEKID) array using optical mapping. Using the measured resonator dimensions and film thickness, the fractional deviation can be explained within ±25×103, whereas the residual deviation is due to variation of electric film properties. Using the capacitor trimming technique, the fractional deviation is decreased by a factor of 14. The yield of the trimming process is found to be 97%. The mapping yield, measured under a 110 K background, is improved from 69% to 76%, which can be further improved to 81% after updating our readout system. With the improvement in yield, the capacitor trimming technique may benefit future large-format LEKID arrays.

1.
P. K.
Day
,
H. G.
LeDuc
,
B. A.
Mazin
,
A.
Vayonakis
, and
J.
Zmuidzinas
,
Nat.
425
,
817
(
2003
).
2.
S.
Doyle
,
P.
Mauskopf
,
J.
Naylon
,
A.
Porch
, and
C.
Duncombe
,
J. Low Temp. Phys.
151
,
530
(
2008
).
3.
R.
Adam
,
A.
Adane
,
P.
Ade
,
P.
André
,
A.
Andrianasolo
,
H.
Aussel
,
A.
Beelen
,
A.
Benoit
,
A.
Bideaud
,
N.
Billot
 et al,
Astron. Astrophys.
609
,
A115
(
2018
).
4.
A.
Wandui
,
J. J.
Bock
,
C.
Frez
,
M.
Hollister
,
L.
Minutolo
,
H.
Nguyen
,
B.
Steinbach
,
A.
Turner
,
J.
Zmuidzinas
, and
R.
O'Brient
,
J. Appl. Phys.
128
,
044508
(
2020
).
5.
J.
Austermann
,
J.
Beall
,
S.
Bryan
,
B.
Dober
,
J.
Gao
,
G.
Hilton
,
J.
Hubmayr
,
P.
Mauskopf
,
C.
McKenney
,
S.
Simon
 et al,
J. Low Temp. Phys.
193
,
120
(
2018
).
6.
J.
Wheeler
,
S.
Hailey-Dunsheath
,
E.
Shirokoff
,
P.
Barry
,
C.
Bradford
,
S.
Chapman
,
G.
Che
,
S.
Doyle
,
J.
Glenn
,
S.
Gordon
 et al,
J. Low Temp. Phys.
193
,
408
(
2018
).
7.
A. B.
Walter
,
N.
Fruitwala
,
S.
Steiger
,
J. I.
Bailey
 III
,
N.
Zobrist
,
N.
Swimmer
,
I.
Lipartito
,
J. P.
Smith
,
S. R.
Meeker
,
C.
Bockstiegel
 et al,
Publ. Astron. Soc. Pacific
132
,
125005
(
2020
).
8.
B. A.
Mazin
, “
Superconducting materials for microwave kinetic inductance detectors
,” arXiv:2004.14576 (
2020
).
9.
X.
Liu
,
W.
Guo
,
Y.
Wang
,
M.
Dai
,
L.
Wei
,
B.
Dober
,
C.
McKenney
,
G.
Hilton
,
J.
Hubmayr
,
J.
Austermann
 et al,
Appl. Phys. Lett.
111
,
252601
(
2017
).
10.
S.
Shu
,
M.
Calvo
,
J.
Goupy
,
S.
Leclercq
,
A.
Catalano
,
A.
Bideaud
,
A.
Monfardini
, and
E. F.
Driessen
,
Appl. Phys. Lett.
113
,
082603
(
2018
).
11.
M.
Calvo
,
A.
Benoît
,
A.
Catalano
,
J.
Goupy
,
A.
Monfardini
,
N.
Ponthieu
,
E.
Barria
,
G.
Bres
,
M.
Grollier
,
G.
Garde
,
J. P.
Leggeri
,
G.
Pont
,
S.
Triqueneaux
,
R.
Adam
,
O.
Bourrion
,
J. F.
Macías-Pérez
,
M.
Rebolo
,
J. P.
Scordilis
,
D.
Tourres
,
A.
Adane
,
G.
Coiffard
,
S.
Leclercq
,
F. X.
Désert
,
S.
Doyle
,
P.
Mauskopf
,
C.
Tucker
,
P.
Ade
,
P.
André
,
A.
Beelen
,
B.
Belier
,
A.
Bideaud
,
N.
Billot
,
B.
Comis
,
A.
D'Addabbo
,
C.
Kramer
,
J.
Martino
,
F.
Mayet
,
F.
Pajot
,
E.
Pascale
,
L.
Perotto
,
V.
Revéret
,
A.
Ritacco
,
L.
Rodriguez
,
G.
Savini
,
K.
Schuster
,
A.
Sievers
, and
R.
Zylka
,
J. Low Temp. Phys.
184
,
816
(
2016
).
12.
S.
Shu
,
M.
Calvo
,
S.
Leclercq
,
J.
Goupy
,
A.
Monfardini
, and
E.
Driessen
,
J. Low Temp. Phys.
193
,
141
(
2018
).
13.
O.
Bourrion
,
A.
Benoit
,
J.
Bouly
,
J.
Bouvier
,
G.
Bosson
,
M.
Calvo
,
A.
Catalano
,
J.
Goupy
,
C.
Li
,
J.
Macías-Pérez
 et al,
J. Instrum.
11
,
P11001
(
2016
).
14.
D. C.
Mattis
and
J.
Bardeen
,
Phys. Rev.
111
,
412
(
1958
).
15.
K.
Karatsu
,
A.
Endo
,
J.
Bueno
,
P.
de Visser
,
R.
Barends
,
D.
Thoen
,
V.
Murugesan
,
N.
Tomita
, and
J.
Baselmans
,
Appl. Phys. Lett.
114
,
032601
(
2019
).
16.
L.
Perotto
,
N.
Ponthieu
,
J.
Macías-Pérez
,
R.
Adam
,
P.
Ade
,
P.
André
,
A.
Andrianasolo
,
H.
Aussel
,
A.
Beelen
,
A.
Benoît
 et al,
Astron. Astrophys.
637
,
A71
(
2020
).

Supplementary Material

You do not currently have access to this content.