A mid-infrared radiometric (MIR) method for precise in situ temperature measurements when studying pyroelectric and electrocaloric properties of bulk and film materials is presented. The method uses new MIR-temperature sensors based on narrowband high-speed and high-sensitive uncooled immersion lens A3B5 photodiodes with a precalibration procedure. They are completely insensitive to the background illumination with λ ≤ 1 µm and provide contactless temperature measurements directly in the area of laser heating action. An accuracy of 50 mK at the temperature around 20 °C, rapidly improving up to 1 mK at 200 °C, is achieved at the operation speed of 1 ms. The reliable and reproducible conditions of measurements of pyroelectric and electrocaloric properties of various samples are formulated, and the novel experimental setup is described in detail. The experimental verification of the method is performed by the measurements of pyroelectric properties of single crystals, bulk ceramics, and AlN film. The results of joint measurements of the pyroelectric and electrocaloric properties of the ferroelectric relaxor ceramics are also presented.

1.
Y.
Liu
,
J. F.
Scott
, and
B.
Dkhil
, “
Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives
,”
Appl. Phys. Rev.
3
,
031102
(
2016
).
2.
S.
Jachalke
,
E.
Mehner
,
H.
Stöcker
,
J.
Hanzig
,
M.
Sonntag
,
T.
Weigel
,
T.
Leisegang
, and
D. C.
Meyer
, “
How to measure the pyroelectric coefficient?
,”
Appl. Phys. Rev.
4
,
021303
(
2017
).
3.
S.
Pandya
,
J.
Wilbur
,
J.
Kim
,
R.
Gao
,
A.
Dasgupta
,
C.
Dames
,
L. W.
Martin
 et al, “
Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films
,”
Nat. Mater.
17
,
432
438
(
2018
).
4.
S. B.
Lang
, “
Pyroelectricity: From ancient curiosity to modern imaging tool
,”
Phys. Today
58
(
8
),
31
(
2005
).
5.
Z.
Kutnjak
,
J.
Petzelt
, and
R.
Blinc
, “
The giant electromechanical response in ferroelectric relaxors as a critical phenomenon
,”
Nature
441
,
956
959
(
2006
).
6.
Z. K. B.
Rožič
and
R.
Pirc
, “
Electrocaloric effect: Theory, measurements, and applications
,” in
Wiley Encyclopedia of Electrical and Electronics Engineering
(
John Wiley & Sons
,
2015
).
7.
T.
Zhang
,
X.-S.
Qiana
,
H.
Gu
,
Y.
Hou
, and
Q. M.
Zhang
, “
An electrocaloric refrigerator with direct solid to solid regeneration
,”
Appl. Phys. Lett.
110
,
243503
(
2017
).
8.
X.
Moya
,
S.
Kar-Narayan
, and
N. D.
Mathur
, “
Caloric materials near ferroic phase transition
,”
Nat. Mater.
13
,
439
450
(
2014
).
9.
Electrocaloric Materials: New Generation of Cooler
, edited by
T.
Correia
and
Q.
Zhang
(
Springer
,
2013
), p.
253
.
10.
S.
Kar-Narayan
,
S.
Crossley
,
X.
Moya
,
V.
Kovacova
,
J.
Abergel
,
A.
Bontempi
,
N.
Baier
,
E.
Defay
, and
N. D.
Mathur
, “
Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging
,”
Appl. Phys. Lett.
102
,
032903
(
2013
).
11.
S.
Kar-Narayan
and
N. D.
Mathur
, “
Direct and indirect electrocaloric measurements using multilayer capacitors
,”
J. Phys. D: Appl. Phys.
43
,
32002
(
2010
).
12.
M.
Sanlialp
,
V. V.
Shvartsman
,
R.
Faye
,
M. O.
Karabasov
,
C.
Molin
,
S.
Gebhardt
,
E.
Defay
, and
D. C.
Lupascu
, “
Quasi-adiabatic calorimeter for direct electrocaloric measurements
,”
Rev. Sci. Instrum.
89
,
034903
(
2018
).
13.
M.
Sanlialp
,
V. V.
Shvartsman
,
M.
Acosta
,
B.
Dkhil
, and
D. C.
Lupascu
, “
Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3-0.35(Ba0.7Ca0.3)TiO3 ceramics obtained by direct measurements
,”
Appl. Phys. Lett.
106
,
062901
(
2015
).
14.
G.
Suchaneck
and
G.
Gerlach
, “
Electrocaloric cooling—A new application of relaxor ferroelectrics
,”
Acta Phys. Pol.
133
(
4
),
1003
(
2018
).
15.
U.
Plaznik
,
A.
Kitanovski
,
B.
Rožič
,
B.
Malič
,
H.
Uršič
,
S.
Drnovšek
,
J.
Cilenšek
,
M.
Vrabelj
,
A.
Poredoš
, and
Z.
Kutnjak
, “
Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device
,”
Appl. Phys. Lett.
106
,
043903
(
2015
).
16.
E. P.
Smirnova
,
G. Yu.
Sotnikova
,
N. V.
Zaitseva
,
A. A.
Kapralov
, and
G. A.
Gavrilov
, “
The electrocaloric effect in BaTiO3-SrTiO3 solid solution
,”
Tech. Phys. Lett.
44
(
1
),
60
62
(
2018
).
17.
Y. H.
Huang
,
J. J.
Wang
,
T. N.
Yang
,
Y. J.
Wu
,
X. M.
Chen
, and
L. Q.
Chen
, “
A thermodynamic potential, energy storage performances, and electrocaloric effects of Ba1-xSrxTiO3 single crystals
,”
Appl. Phys. Lett.
112
,
102901
(
2018
).
18.
S.
Lisenkov
and
I.
Ponomareva
, “
Tuning the electrocaloric effect by varying Sr concentration in ferroelectric Ba1-xSrxTiO3
,”
Phys. Rev. Mater.
2
,
055402
(
2018
).
19.
A.
Eydam
,
G.
Suchaneck
, and
G.
Gerlach
, “
Characterisation of the polarisation state of embedded piezoelectric transducers by thermal waves and thermal pulses
,”
J. Sens. Sens. Syst.
5
,
165
170
(
2016
).
20.
I.
Lubomirsky
and
O.
Stafsudd
, “
Invited review article: Practical guide for pyroelectric measurements
,”
Rev. Sci. Instrum.
83
,
051101
(
2012
).
21.
J.
Lu
,
J.
Lv
,
X.
Liang
,
M.
Xu
, and
S.
Shen
, “
Improved approach to measure the direct flexoelectric coefficient of bulk polyvinylidene fluoride
,”
J. Appl. Phys.
119
,
094104
(
2016
).
22.
W.-M.
Lin
,
R.
Koehler
,
G.
Suchaneck
, and
G.
Gerlach
, “
Thermal analysis of pyroelectric sensors in scanning thermal microscopy
,”
Jpn. J. Appl. Phys., Part 1
41
,
7239
7272
(
2002
).
23.
S.
Pandya
,
J. D.
Wilbur
,
B.
Bhatia
,
A. R.
Damodaran
,
C.
Monachon
,
A.
Dasgupta
,
W. P.
King
,
C.
Dames
, and
L. W.
Martin
, “
Direct measurement of pyroelectric and electrocaloric effects in thin films
,”
Phys. Rev. Appl.
7
,
034025
(
2017
).
24.
S. B.
Lang
and
D. K.
Das-Cupta
, “
A technique for determining the polarization distribution in thin polymer electrets using periodic heating
,”
Ferroelectrics
39
,
1249
(
1981
).
25.
A.
Possolo
and
H. K.
Iyer
, “
Invited article: Concepts and tools for the evaluation of measurement uncertainty
,”
Rev. Sci. Instrum.
88
,
011301
(
2017
).
26.
L. W.
Martin
, “
Advances in understanding of pyroelectric and electrocaloric effects in thin-film materials
,” in
Abstracts 2019 Joint Conference on the IEEE ISAF, EMF, ICE, IWPM and PFM, Lausanne, Switzerland, July 14–19, 2019
(
IEEE
,
2019
), p.
606
.
27.
B.
Rozic
,
Z.
Kutnjak
,
H.
Ursic
,
B.
Malic
,
J.
Holc
,
J.
Koruza
,
A.
Kupec
, and
M.
Kosec
, “
Electrocaloric thermometry: An experimental method for the direct electrocaloric measurements
,” in
48th International Conference on Microelectronics, Devices and Materials
,
2012
.
28.
M. K.
Rokosz
, “
Metrology of the electrocaloric effect based on an infrared imaging technique
,” Ph.D. thesis,
Imperial College London
,
2017
, https://spiral.imperial.ac.uk/handle/10044/1/47999.
29.
A.
Rogalski
and
K.
Chrzanowski
, “
Infrared devices and techniques (revision)
,”
Metrol. Meas. Syst.
21
(
4
),
565
618
(
2014
).
30.
K.
Chrzanowski
, “
Experimental verification of theory of influence from measurement conditions and system parameters on temperature measurement accuracy with IR systems
,”
Appl. Opt.
35
,
3540
3547
(
1996
).
31.
B. H.
Budzier
and
G.
Gerlash
, “
Calibration of infrared cameras with microbolometers
,” in
AMA Conferences 2015—SENSOR 2015 and IRS⁲ 2015
(
AMA
,
2015
), pp.
889
894
.
32.
G. S.
Lin
,
X. M.
Xiong
,
J. X.
Zhang
, and
Q.
Wei
, “
Latent heat study of phase transition in Ba0.73Sr0.27TiO3 induced by electric field
,”
J. Therm. Anal. Calorim.
81
(
1
),
41
44
(
2005
).
33.
X.-S.
Qian
,
H.-J.
Ye
,
Y.-T.
Zhang
,
H.
Gu
,
X.
Li
,
C. A.
Randall
, and
Q. M.
Zhang
, “
Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics
,”
Adv. Funct. Mater.
24
,
1300
(
2014
).
34.
B.
Asbani
,
J.-L.
Dellis
,
Y.
Gagou
,
H.
Kaddoussi
,
A.
Lahmar
,
M.
Amjoud
,
D.
Mezzane
,
Z.
Kutnjak
, and
M.
El Marssi
, “
Electrocaloric effect in Ba0.2Ca0.8Ti0.95Ge0.05O3 determined by a new pyroelectric method
,”
Europhys. Lett.
111
(
5
),
57008
(
2015
).
35.
R.
Faye
,
H.
Strozyk
,
B.
Dkhil
, and
E.
Defay
, “
Large heat flux in electrocaloric multilayer capacitors
,”
J. Phys. D: Appl. Phys.
50
,
464002
(
2017
), special issue on caloric materials.
36.
M.
von Kraubeta
and
E.-G.
Woschni
,
Meβ’ Informations’ Systeme
(
VEB Verlag Technic
,
Berlin
,
1972
).
37.
S. E.
Aleksandrov
,
G. A.
Gavrilov
,
A. A.
Kapralov
,
K. L.
Muratikov
, and
G. Yu.
Sotnikova
, “
Determining heat-transfer coefficients of solid objects by laser photothermal IR radiometry
,”
Tech. Phys. Lett.
43
(
7
),
684
686
(
2017
).
38.
Yu. M.
Poplavko
,
Physics of Dielectrics
(
Vyshchaya Shkola
,
Kiev
,
1980
), p.
400
(in Russian).
39.
N.
Dyakonova
,
S. A.
Karandashev
,
M. E.
Levinshtein
,
B. A.
Matveev
, and
M. A.
Remennyi
, “
Low frequency noise in reverse biased P-InAsSbP/n-InAs infrared photodiodes
,”
Semicond. Sci. Technol.
34
,
015013
(
2019
).
40.
V.
Fioravanti
,
L.
Brandhoff
,
S.
Van den Driesche
,
H.
Breiteneder
,
M.
Kitzwögerer
,
C.
Hafner
, and
M. J.
Vellekoop
, “
An infrared absorbance sensor for the detection of melanoma in skin biopsies
,”
Sensors
16
(
10
),
1659
(
2016
).
41.
See www.ioffeled.com for MID-IR photodiodes specifications.
42.
G. Yu.
Sotnikova
,
S. E.
Aleksandrov
, and
G. A.
Gavrilov
, “
A3B5 photodiode sensors for low-temperature pyrometry
,”
Proc. SPIE
8073
,
80731A
(
2011
).
43.
S. E.
Aleksandrov
,
G. A.
Gavrilov
,
G. Yu.
Sotnikova
, and
A. L.
Ter-Martirosyan
, “
Optical-fiber-tip temperature control system for fiber-coupled laser modules in medical equipment
,”
Semiconductors
48
(
1
),
129
134
(
2014
).
44.
See www.heraeus.com for HERAEUS.
45.
See www.korth.de for Korth Kristalle GmBH.
46.
S. E.
Aleksandrov
,
G. A.
Gavrilov
,
A. A.
Kapralov
,
K. L.
Muratikov
, and
G. Yu.
Sotnikova
, “
Photothermal infrared radiometry in experimental studies of the pyroelectric properties of bulk materials
,”
Tech. Phys. Lett.
43
(
12
),
1084
1087
(
2017
).
47.
K.
von Horst
,
Taschenbuch der Physik
(
Leipzig
,
1980
), ISBN: 9783446424579.
48.
G. A.
Gavrilov
,
A. A.
Kapralov
,
K. L.
Muratikov
,
E. A.
Panyutin
,
A. V.
Sotnikov
,
G. Yu.
Sotnikova
, and
Sh. Sh.
Sharofidinov
, “
Studying the pyroelectric effect in AlN epilayers
,”
Tech. Phys. Lett.
44
(
8
),
709
712
(
2018
).
49.
See www.matprop.ru for New Semiconductor Materials. Characteristics and Properties.
50.
O. N.
Sergeeva
,
A. A.
Bogomolov
,
A. V.
Solnyshkin
,
N. V.
Komarov
,
S. A.
Kukushkin
 et al, “
Dielectric, pyroelectric, and piezoelectric response of thin epitaxial AlN films grown on SiC/S substrate
,”
Ferroelectrics
477
(
1
),
121
130
(
2015
).
51.
Yu. V.
Shaldin
and
S.
Matyjasik
, “
Pyroelectric properties of AlN wide-gap semiconductor in the temperature range of 4.2–300 K
,”
Semicondutors
45
(
9
),
1117
1123
(
2011
).
52.
V.
Fuflyigin
,
E.
Salley
,
A.
Osinsky
, and
P.
Norris
, “
Pyroelectric properties of AlN
,”
Appl. Phys. Lett.
77
(
19
),
3075
3077
(
2000
).
53.
M. E.
Lines
and
A. M.
Glass
,
Principles and Application of Ferroelectric and Related Materials
(
Clarendon
,
Oxford
,
1977
).
54.
K. S.
Aleksandrov
,
B. P.
Sorokin
, and
S. I.
Burkov
,
Effective Piezoelectric Crystals for Acoustic Electronics, Piezotechniques and Sensors
(
Sib. Otdel. RAN
,
Novosibirsk
,
2008
), Vol. 2 (in Russian).
55.
E. P.
Smirnova
,
G. Yu.
Sotnikova
,
N. V.
Zaitseva
,
A. A.
Kapralov
,
G. A.
Gavrilov
, and
A. V.
Sotnikov
, “
Electrocaloric effect in a lead magnoniobate-scandoniobate relaxor
,”
Phys. Solid State
60
,
2006
2011
(
2018
).
56.
H.
Uršič
,
M.
Vrabelj
,
L.
Fulanovič
,
A.
Bradeško
,
S.
Drnovšek
, and
B.
Malič
, “
Specific heat capacity and thermal conductivity of the electrocaloric (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 ceramics between room temperature and 300 °C
,”
J. Microelectron., Electron. Compon. Mater.
45
(
4
),
260
265
(
2015
).
You do not currently have access to this content.