The Sweet–Parker layer in a system that exceeds a critical value of the Lundquist number (S) is unstable to the plasmoid instability. In this paper, a numerical scaling study has been done with an island coalescing system driven by a low level of random noise. In the early stage, a primary Sweet–Parker layer forms between the two coalescing islands. The primary Sweet–Parker layer breaks into multiple plasmoids and even thinner current sheets through multiple levels of cascading if the Lundquist number is greater than a critical value Sc4×104. As a result of the plasmoid instability, the system realizes a fast nonlinear reconnection rate that is nearly independent of S, and is only weakly dependent on the level of noise. The number of plasmoids in the linear regime is found to scales as S3/8, as predicted by an earlier asymptotic analysis [N. F. Loureiro et al, Phys. Plasmas14, 100703 (2007)]. In the nonlinear regime, the number of plasmoids follows a steeper scaling, and is proportional to S. The thickness and length of current sheets are found to scale as S1, and the local current densities of current sheets scale as S1. Heuristic arguments are given in support of theses scaling relations.

1.
A.
Bhattacharjee
,
Y. -M.
Huang
,
H.
Yang
, and
B.
Rogers
,
Phys. Plasmas
16
,
112102
(
2009
).
2.
W.
Daughton
,
V.
Roytershteyn
,
B. J.
Albright
,
H.
Karimabadi
,
L.
Yin
, and
K. J.
Bowers
,
Phys. Rev. Lett.
103
,
065004
(
2009
).
3.
P. A.
Sweet
,
Nuovo Cimento, Suppl.
8
,
188
(
1958
).
4.
E. N.
Parker
,
Astrophys. J., Suppl.
8
,
177
(
1963
).
5.
H. E.
Petschek
, in
AAS/NASA Symposium on the Physics of Solar Flares
, edited by
W. N.
Hess
(
NASA
,
Washington, DC
,
1964
), p.
425
.
6.
D.
Biskamp
,
Magnetic Reconnection in Plasmas
(
Cambridge University Press
,
Cambridge, England
,
2000
).
7.
S. V.
Bulanov
,
J.
Sakai
, and
S. I.
Syrovatskii
,
Sov. J. Plasma Phys.
5
,
157
(
1979
).
8.
L. C.
Lee
and
Z. F.
Fu
,
J. Geophys. Res.
91
,
6807
, doi:10.1029/JA091iA06p06807 (
1986
).
9.
D.
Biskamp
,
Phys. Fluids
29
,
1520
(
1986
).
10.
M.
Yan
,
H. C.
Lee
, and
E. R.
Priest
,
J. Geophys. Res.
97
,
8277
, doi:10.1029/92JA00170 (
1992
).
11.
K.
Shibata
and
S.
Tanuma
,
Earth, Planets Space
53
,
473
(
2001
).
12.
13.
N. F.
Loureiro
,
A. A.
Schekochihin
, and
S. C.
Cowley
,
Phys. Plasmas
14
,
100703
(
2007
).
14.
D. W.
Longcope
and
H. R.
Strauss
,
Phys. Fluids B
5
,
2858
(
1993
).
15.
D. A.
Uzdensky
and
R. M.
Kulsrud
,
Phys. Plasmas
7
,
4018
(
2000
).
16.
K.
Alvelius
,
Phys. Fluids
11
,
1880
(
1999
).
17.
P. N.
Guzdar
,
J. F.
Drake
,
D.
McCarthy
,
A. B.
Hassam
, and
C. S.
Liu
,
Phys. Fluids B
5
,
3712
(
1993
).
18.
R.
Samtaney
,
N. F.
Loureiro
,
D. A.
Uzdensky
,
A. A.
Schekochihin
, and
S. C.
Cowley
,
Phys. Rev. Lett.
103
,
105004
(
2009
).
19.
N. F.
Loureiro
,
D. A.
Uzdensky
,
A. A.
Schekochihin
,
S. C.
Cowley
, and
T. A.
Yousef
,
Mon. Not. R. Astron. Soc.
399
,
L146
(
2009
).
20.
P. A.
Cassak
,
M. A.
Shay
, and
J. F.
Drake
,
Phys. Plasmas
16
,
120702
(
2009
).
21.
A. Y.
Aydemir
,
Phys. Fluids B
4
,
3469
(
1992
).
22.
Z. W.
Ma
and
A.
Bhattacharjee
,
Geophys. Res. Lett.
23
,
1673
, doi:10.1029/96GL01600 (
1996
).
23.
J. C.
Dorelli
and
J.
Birn
,
J. Geophys. Res.
108
,
1133
, doi:10.1029/2001JA009180 (
2003
).
24.
A.
Bhattacharjee
,
Annu. Rev. Astron. Astrophys.
42
,
365
(
2004
).
25.
P. A.
Cassak
,
M. A.
Shay
, and
J. F.
Drake
,
Phys. Rev. Lett.
95
,
235002
(
2005
).
26.
P. A.
Cassak
,
J. F.
Drake
, and
M. A.
Shay
,
Phys. Plasmas
14
,
054502
(
2007
).
You do not currently have access to this content.