skip to main content
research-article

Music and natural sounds in an auditory steady-state response based braincomputer interface to increase user acceptance

Published: 01 May 2017 Publication History
  • Get Citation Alerts
  • Abstract

    Patients with total locked-in syndrome are conscious; however, they cannot express themselves because most of their voluntary muscles are paralyzed, and many of these patients have lost their eyesight. To improve the quality of life of these patients, there is an increasing need for communication-supporting technologies that leverage the remaining senses of the patient along with physiological signals. The auditory steady-state response (ASSR) is an electro-physiologic response to auditory stimulation that is amplitude-modulated by a specific frequency. By leveraging the phenomenon whereby ASSR is modulated by mind concentration, a braincomputer interface paradigm was proposed to classify the selective attention of the patient. In this paper, we propose an auditory stimulation method to minimize auditory stress by replacing the monotone carrier with familiar music and natural sounds for an ergonomic system. Piano and violin instrumentals were employed in the music sessions; the sounds of water streaming and cicadas singing were used in the natural sound sessions. Six healthy subjects participated in the experiment. Electroencephalograms were recorded using four electrodes (Cz, Oz, T7 and T8). Seven sessions were performed using different stimuli. The spectral power at 38 and 42Hz and their ratio for each electrode were extracted as features. Linear discriminant analysis was utilized to classify the selections for each subject. In offline analysis, the average classification accuracies with a modulation index of 1.0 were 89.67% and 87.67% using music and natural sounds, respectively. In online experiments, the average classification accuracies were 88.3% and 80.0% using music and natural sounds, respectively. Using the proposed method, we obtained significantly higher user-acceptance scores, while maintaining a high average classification accuracy.

    References

    [1]
    B. Allison, T. Luth, D. Valbuena, A. Teymourian, I. Volosyak, A. Graser, BCI demographics: how many (and what kinds of) people can use an SSVEP BCI?, IEEE Trans. Neural Syst. Rehabil. Eng., 18 (2010) 107-116.
    [2]
    H.J. Baek, H.S. Kim, J. Heo, Y.G. Lim, K.S. Park, Braincomputer interfaces using capacitive measurement of visual or auditory steady-state responses, J. Neural Eng., 10 (2013) 024001.
    [3]
    G. Bauer, F. Gerstenbrand, E. Rumpl, Varieties of the locked-in syndrome, J. Neurol., 221 (1979) 77-91.
    [4]
    D.L. Beck, D. Speidel, M. Petrak, Auditory steady-state response (ASSR): a beginner's guide, Hear. Rev., 14 (2007) 34.
    [5]
    A. Calvo, A. Chi, E. Castellina, F. Corno, L. Farinetti, P. Ghiglione, V. Pasian, A. Vignola, Eye tracking impact on quality-of-life of ALS patients, in: Proceedings of the International Conference on Computers for Handicapped Persons, Springer, 2008, pp. 7077.
    [6]
    J.L. Collinger, B. Wodlinger, J.E. Downey, W. Wang, E.C. Tyler-Kabara, D.J. Weber, A.J. Mcmorland, M. Velliste, M.L. Boninger, A.B. Schwartz, High-performance neuroprosthetic control by an individual with tetraplegia, Lancet (2012).
    [7]
    M. De Vos, K. Gandras, S. Debener, Towards a truly mobile auditory braincomputer interface: exploring the P300 to take away, Int. J. Psychophysiol., 91 (2014) 46-53.
    [8]
    L.A. Farwell, E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials, Electroencephalogr. Clin. Neurophysiol., 70 (1988) 510-523.
    [9]
    J. Hhne, K. Krenzlin, S. Dhne, M. Tangermann, Natural stimuli improve auditory BCIs with respect to ergonomics and performance, J. Neural Eng., 9 (2012) 045003.
    [10]
    N. Hill, B. Schlkopf, An online braincomputer interface based on shifting attention to concurrent streams of auditory stimuli, J. Neural Eng., 9 (2012) 026011.
    [11]
    N.J. Hill, A. Moinuddin, A.-K. Huser, S. Kienzle, G. Schalk, Communication and control by listening: toward optimal design of a two-class auditory streaming brain-computer interface, Front. Neurosci., 6 (2012).
    [12]
    H.-J. Hwang, J.-H. Lim, Y.-J. Jung, H. Choi, S.W. Lee, C.-H. Im, Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard, J. Neurosci. Methods, 208 (2012) 59-65.
    [13]
    S. Ikegami, K. Takano, N. Saeki, K. Kansaku, Operation of a P300-based braincomputer interface by individuals with cervical spinal cord injury, Clin. Neurophysiol., 122 (2011) 991-996.
    [14]
    A. Kbler, A. Furdea, S. Halder, E.M. Hammer, F. Nijboer, B. Kotchoubey, A braincomputer interface controlled auditory eventrelated potential (P300) spelling system for lockedin patients, Ann. N. Y. Acad. Sci., 1157 (2009) 90-100.
    [15]
    A. Kbler, N. Neumann, J. Kaiser, B. Kotchoubey, T. Hinterberger, N.P. Birbaumer, Brain-computer communication: self-regulation of slow cortical potentials for verbal communication, Arch. Phys. Med. Rehabil., 82 (2001) 1533-1539.
    [16]
    T. Kaufmann, S. Schulz, C. Grnzinger, A. Kbler, Flashing characters with famous faces improves ERP-based braincomputer interface performance, J. Neural Eng., 8 (2011) 056016.
    [17]
    D.-W. Kim, H.-J. Hwang, J.-H. Lim, Y.-H. Lee, K.-Y. Jung, C.-H. Im, Classification of selective attention to auditory stimuli: toward vision-free braincomputer interfacing, J. Neurosci. Methods, 197 (2011) 180-185.
    [18]
    E.C. Lalor, S.P. Kelly, C. Finucane, R. Burke, R. Smith, R.B. Reilly, G. Mcdarby, Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment, EURASIP J. Appl. Signal Process., 2005 (2005) 3156-3164.
    [19]
    J.S. Lee, C.M. Han, J.H. Kim, K.S. Park, Reverse-curve-arch-shaped dry EEG electrode for increased skinelectrode contact area on hairy scalps, Electron. Lett., 51 (2015) 1643-1645.
    [20]
    F.-C. Lin, J.K. Zao, K.-C. Tu, Y. Wang, Y.-P. Huang, C.-W. Chuang, H.-Y. Kuo, Y.-Y. Chien, C.-C. Chou, T.-P. Jung, SNR analysis of high-frequency steady-state visual evoked potentials from the foveal and extrafoveal regions of human retina, in: Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2012, pp. 18101814.
    [21]
    M. Lopez-Gordo, E. Fernandez, S. Romero, F. Pelayo, A. Prieto, An auditory braincomputer interface evoked by natural speech, J. Neural Eng., 9 (2012) 036013.
    [22]
    M.-A. Lopez, H. Pomares, F. Pelayo, J. Urquiza, J. Perez, Evidences of cognitive effects over auditory steady-state responses by means of artificial neural networks and its use in braincomputer interfaces, Neurocomputing, 72 (2009) 3617-3623.
    [23]
    Z.R. Lugo, J. Rodriguez, A. Lechner, R. Ortner, I.S. Gantner, S. Laureys, Q. Noirhomme, C. Guger, A vibrotactile p300-based braincomputer interface for consciousness detection and communication, Clin. EEGNeurosci. (2014).
    [24]
    D. Lul, Q. Noirhomme, S.C. Kleih, C. Chatelle, S. Halder, A. Demertzi, M.-A. Bruno, O. Gosseries, A. Vanhaudenhuyse, C. Schnakers, Probing command following in patients with disorders of consciousness using a braincomputer interface, Clin. Neurophysiol., 124 (2013) 101-106.
    [25]
    T. Nakamura, H. Namba, T. Matsumoto, Classification of auditory steady-state responses to speech data, in: Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER),IEEE, 2013, pp. 10251028.
    [26]
    H. Namba, T. Nakamura, T. Matsumoto, Classification of Auditory Steady-State Responses Incorporating Alpha Waves, BCI meeting, 2013.
    [27]
    F. Nijboer, E. Sellers, J. Mellinger, M. Jordan, T. Matuz, A. Furdea, S. Halder, U. Mochty, D. Krusienski, T. Vaughan, A P300-based braincomputer interface for people with amyotrophic lateral sclerosis, Clin. Neurophysiol., 119 (2008) 1909-1916.
    [28]
    G. Pfurtscheller, F.L. Da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles, Clin. Neurophysiol., 110 (1999) 1842-1857.
    [29]
    T.W. Picton, M.S. John, A. Dimitrijevic, D. Purcell, Human auditory steady-state responses: respuestas auditivas de estado estable en humanos, Int. J. Audiol., 42 (2003) 177-219.
    [30]
    C. Pokorny, D.S. Klobassa, G. Pichler, H. Erlbeck, R.G. Real, A. Kbler, D. Lesenfants, D. Habbal, Q. Noirhomme, M. Risetti, The auditory P300-based single-switch braincomputer interface: paradigm transition from healthy subjects to minimally conscious patients, Artif. Intell. Med., 59 (2013) 81-90.
    [31]
    G. Rance, The Auditory Steady-State Response: Generation, Recording, and Clinical Application, Plural Publishing, 2008.
    [32]
    M. Schreuder, B. Blankertz, M. Tangermann, A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue, PLoS One, 5 (2010) e9813.
    [33]
    M. Schreuder, A. Riccio, M. Risetti, S. Dhne, A. Ramsay, J. Williamson, D. Mattia, M. Tangermann, User-centered design in braincomputer interfacesA case study, Artif. Intell. Med., 59 (2013) 71-80.
    [34]
    E.W. Sellers, E. Donchin, A P300-based braincomputer interface: initial tests by ALS patients, Clin. Neurophysiol., 117 (2006) 538-548.
    [35]
    N. Simon, I. Kthner, C.A. Ruf, E. Pasqualotto, A. Kbler, S. Halder, An auditory multiclass brain-computer interface with natural stimuli: usability evaluation with healthy participants and a motor impaired end user, Front. Hum. Neurosci., 8 (2015) 1039.
    [36]
    E. Smith, M. Delargy, Locked-in syndrome, BMJ:Br. Med. J., 330 (2005) 406.
    [37]
    C. Vidaurre, C. Sannelli, K.-R. Mller, B. Blankertz, Co-adaptive calibration to improve BCI efficiency, J. Neural Eng., 8 (2011) 025009.
    [38]
    J.R. Wolpaw, N. Birbaumer, W.J. Heetderks, D.J. Mcfarland, P.H. Peckham, G. Schalk, E. Donchin, L.A. Quatrano, C.J. Robinson, T.M. Vaughan, Brain-computer interface technology: a review of the first international meeting, IEEETrans. Rehabil. Eng., 8 (2000) 164-173.
    [39]
    J. Xiao, Q. Xie, Y. He, T. Yu, S. Lu, N. Huang, R. Yu, Y. Li, An auditory BCI system for assisting CRS-R behavioral assessment in patients with disorders of consciousness, Sci. Rep., 6 (2016) 32917.

    Cited By

    View all
    • (2024)The effects of synchronous and asynchronous steady-state auditory-visual motion on EEG characteristics in healthy young adultsExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.122640241:COnline publication date: 1-May-2024
    • (2021)Pattern analysis based acoustic signal processing: a survey of the state-of-artInternational Journal of Speech Technology10.1007/s10772-020-09681-324:4(913-955)Online publication date: 1-Dec-2021
    • (2020)Towards an Accessible Use of a Brain-Computer Interfaces-Based Home Care System through a SmartphoneComputational Intelligence and Neuroscience10.1155/2020/18432692020Online publication date: 1-Jan-2020
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Computers in Biology and Medicine
    Computers in Biology and Medicine  Volume 84, Issue C
    May 2017
    262 pages

    Publisher

    Pergamon Press, Inc.

    United States

    Publication History

    Published: 01 May 2017

    Author Tags

    1. Auditory steady-state response (ASSR)
    2. Auditory stimulation
    3. Braincomputer interface (BCI)
    4. Ergonomics
    5. Music
    6. Natural sounds

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)The effects of synchronous and asynchronous steady-state auditory-visual motion on EEG characteristics in healthy young adultsExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.122640241:COnline publication date: 1-May-2024
    • (2021)Pattern analysis based acoustic signal processing: a survey of the state-of-artInternational Journal of Speech Technology10.1007/s10772-020-09681-324:4(913-955)Online publication date: 1-Dec-2021
    • (2020)Towards an Accessible Use of a Brain-Computer Interfaces-Based Home Care System through a SmartphoneComputational Intelligence and Neuroscience10.1155/2020/18432692020Online publication date: 1-Jan-2020
    • (2019)Enhancing the Usability of Brain-Computer Interface SystemsComputational Intelligence and Neuroscience10.1155/2019/54271542019Online publication date: 16-Jun-2019
    • (2019)Survey on Brain-Computer InterfaceACM Computing Surveys10.1145/329771352:1(1-32)Online publication date: 13-Feb-2019

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media