Fragment size of lateral Hoffa fractures determines screw fixation trajectory: a human cadaveric cohort study

Authors

  • Christian Peez AO Research Institute Davos, Davos, Switzerland; Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany https://orcid.org/0000-0001-8055-289X
  • Ivan Zderic AO Research Institute Davos, Davos, Switzerland https://orcid.org/0000-0003-0484-887X
  • Adrian Deichsel Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
  • Moritz Lodde Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
  • R Geoff Richards AO Research Institute Davos, Davos, Switzerland
  • Boyko Gueorguiev AO Research Institute Davos, Davos, Switzerland
  • Christoph Kittl Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
  • Michael J Raschke Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
  • Elmar Herbst Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany

DOI:

https://doi.org/10.2340/17453674.2024.40841

Keywords:

fragment size-dependent screw trajectories, Hoffa fracture, individualized surgical strategies, Letenneur classification

Abstract

Background and purpose: Recommendations regarding fragment-size-dependent screw fixation trajectory for coronal plane fractures of the posterior femoral condyles (Hoffa fractures) are lacking. The aim of this study was to compare the biomechanical properties of anteroposterior (AP) and crossed posteroanterior (PA) screw fixations across differently sized Hoffa fractures on human cadaveric femora.
Patients and methods: 4 different sizes of lateral Hoffa fractures (n = 12 x 4) were created in 48 distal human femora according to the Letenneur classification: (i) type I, (ii) type IIa, (ii) type IIb, and (iv) type IIc. Based on bone mineral density (BMD), specimens were assigned to the 4 fracture clusters and each cluster was further assigned to fixation with either AP (n = 6) or crossed PA screws (n = 6) to ensure homogeneity of BMD values and comparability between the different test conditions. All specimens were biomechanically tested under progressively increasing cyclic loading until failure, capturing the interfragmentary movements via motion tracking.
Results: For Letenneur type I fractures, kilocycles to failure (mean difference [∆] 2.1, 95% confidence interval [CI] –1.3 to 5.5), failure load (∆ 105 N, CI –83 to 293), axial displacement (∆ 0.3 mm, CI –0.8 to 1.3), and fragment rotation (∆ 0.5°, CI –3.2 to 2.1) over 5.0 kilocycles did not differ significantly between the 2 screw trajectories. For each separate subtype of Letenneur type II fractures, fixation with crossed PA screws resulted in significantly higher kilocycles to failure (∆ 6.7, CI 3.3–10.1 to ∆ 8.9, CI 5.5–12.3) and failure load (∆ 275 N, CI 87–463 to ∆ 438, CI 250–626), as well as, less axial displacement from 3.0 kilocycles onwards (∆ 0.4°, CI 0.03–0.7 to ∆ 0.5°, CI 0.01–0.9) compared with AP screw fixation.
Conclusion: Irrespective of the size of Letenneur type II fractures, crossed PA screw fixation provided greater biomechanical stability than AP-configured screws, whereas both screw fixation techniques demonstrated comparable biomechanical competence for Letenneur type I fractures. Fragment-size-dependent treatment strategies might be helpful to determine not only the screw configuration but also the surgical approach.

Downloads

Download data is not yet available.

References

Nork S E, Segina D N, Aflatoon K, Barei D P, Henley M B, Holt S, et al. The association between supracondylar-intercondylar distal femoral fractures and coronal plane fractures. J Bone Joint Surg Am 2005; 87: 564-69. doi: 10.2106/JBJS.D.01751. DOI: https://doi.org/10.2106/JBJS.D.01751

Gavaskar A S, Tummala N C, Krishnamurthy M. Operative management of Hoffa fractures: a prospective review of 18 patients. Injury 2011; 42: 1495-8. doi: 10.1016/j.injury.2011.09.005. DOI: https://doi.org/10.1016/j.injury.2011.09.005

Lu B, Zhao S, Luo Z, Lin Z, Zhu Y. Compression screws and buttress plate versus compression screws only for Hoffa fracture in Chinese patients: a comparative study. J Int Med Res 2019; 47: 142-51. doi: 10.1177/0300060518798224. DOI: https://doi.org/10.1177/0300060518798224

Trikha V, Das S, Gaba S, Agrawal P. Analysis of functional outcome of Hoffa fractures: a retrospective review of 32 patients. J Orthop Surg (Hong Kong) 2017; 25: 2309499017718928. doi: 10.1177/2309499017718928. DOI: https://doi.org/10.1177/2309499017718928

Onay T, Gulabi D, Colak I, Bulut G, Gumustas S A, Cecen G S. Surgically treated Hoffa Fractures with poor long-term functional results. Injury 2018; 49: 398-403. DOI: https://doi.org/10.1016/j.injury.2017.11.026

Giannoudis PV, Tzioupis C, Papathanassopoulos A, Obakponovwe O, Roberts C. Articular step-off and risk of post-traumatic osteoarthritis: evidence today. Injury 2010; 41: 986-95. doi: 10.1016/j.injury.2017.11.026. DOI: https://doi.org/10.1016/j.injury.2010.08.003

Orapiriyakul W, Apivatthakakul T, Buranaphatthana T. How to determine the surgical approach in Hoffa fractures? Injury 2018; 49: 2302-11. doi: 10.1016/j.injury.2018.11.034. DOI: https://doi.org/10.1016/j.injury.2018.11.034

Arastu M H, Kokke M C, Duffy P J, Korley R E, Buckley R E. Coronal plane partial articular fractures of the distal femoral condyle: current concepts in management. Bone Joint J 2013; 95-B: 1165-71. doi: 10.1302/0301-620X.95B9.30656. DOI: https://doi.org/10.1302/0301-620X.95B9.30656

Patel P B, Tejwani N C. The Hoffa fracture: coronal fracture of the femoral condyle a review of literature. J Orthop 2018; 15: 726-31. doi: 10.1016/j.jor.2018.05.027. DOI: https://doi.org/10.1016/j.jor.2018.05.027

Zhou Y, Pan Y, Wang Q, Hou Z, Chen W. Hoffa fracture of the femoral condyle: injury mechanism, classification, diagnosis, and treatment. Medicine (Baltimore) 2019; 98: e14633. doi: 10.1097/MD.0000000000014633. DOI: https://doi.org/10.1097/MD.0000000000014633

Jarit G J, Kummer F J, Gibber M J, Egol K A. A mechanical evaluation of two fixation methods using cancellous screws for coronal fractures of the lateral condyle of the distal femur (OTA type 33B). J Orthop Trauma 2006; 20: 273-6. doi: 10.1097/00005131-200604000-00007. DOI: https://doi.org/10.1097/00005131-200604000-00007

Yao S H, Su W R, Hsu K L, Chen Y, Hong C K, Kuan F C. A biomechanical comparison of two screw fixation methods in a Letenneur type I Hoffa fracture. BMC Musculoskelet Disord 2020; 21: 497. doi: 10.1186/s12891-020-03527-4. DOI: https://doi.org/10.1186/s12891-020-03527-4

Xu Y, Li H, Yang H H. A new fixation method for Hoffa fracture. Eur J Trauma Emerg Surg 2013; 39: 87-91. doi: 10.1007/s00068-012-0238-2. DOI: https://doi.org/10.1007/s00068-012-0238-2

Sun H, He Q F, Huang Y G, Pan J F, Luo C F, Chai Y M. Plate fixation for Letenneur type I Hoffa fracture: a biomechanical study. Injury 2017; 48: 1492-8. doi: 10.1016/j.injury.2017.03.044. DOI: https://doi.org/10.1016/j.injury.2017.03.044

Xie X, Zhan Y, Dong M, He Q, Lucas J F, Zhang Y, et al. Two and three-dimensional CT mapping of Hoffa fractures. J Bone Joint Surg Am 2017; 99: 1866-74. doi: 10.2106/JBJS.17.00473. DOI: https://doi.org/10.2106/JBJS.17.00473

Letenneur J, Labour P E, Rogez J M, Lignon J, Bainvel J V. [Hoffa’s fractures. Report of 20 cases]. Ann Chir 1978; 32: 213-19.

Hernandez C J, Keaveny T M. A biomechanical perspective on bone quality. Bone 2006; 39: 1173-81. doi: 10.1016/j.bone.2006.06.001. DOI: https://doi.org/10.1016/j.bone.2006.06.001

Schroeder S, Jaeger S, Schwer J, Seitz A M, Hamann I, Werner M, et al. Accuracy measurement of different marker based motion analysis systems for biomechanical applications: a round robin study. Plos One 2022; 17: e0271349. doi: 10.1371/journal.pone.0271349. DOI: https://doi.org/10.1371/journal.pone.0271349

Parkkinen M, Madanat R, Mustonen A, Koskinen S, Paavola M, Lindahl J. Factors predicting the development of early osteoarthritis following lateral tibial plateau fractures: mid-term clinical and radiographic outcomes of 73 operatively treated patients. Scand J Surg 2014; 103: 256-62. doi: 10.1177/1457496914520854. DOI: https://doi.org/10.1177/1457496914520854

Rosteius T, Rausch V, Pätzholz S, Lotzien S, Königshausen M, Schildhauer T A, et al. Factors influencing the outcome after surgical reconstruction of OTA type B and C tibial plateau fractures: how crucial is the restoration of articular congruity? Arch Orthop Trauma Surg 2023; 143: 1973-80. doi: 10.1007/s00402-022-04405-5. DOI: https://doi.org/10.1007/s00402-022-04405-5

Faul F, Erdfelder E, Lang A G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39: 175-91. doi: 10.3758/bf03193146. DOI: https://doi.org/10.3758/BF03193146

Freitas A, Aquino R J, de Brito F F, Bonfim V M, Junior J V T, Daher W R. Analysis of mechanical variables in Hoffa fracture: a comparison of four methods by finite elements. J Clin Orthop Trauma 2021; 14: 101-5. doi: 10.1016/j.jcot.2020.07.032. DOI: https://doi.org/10.1016/j.jcot.2020.07.032

Orapiriyakul W, Apivatthakakul T, Phornphutkul C. Relationships between Hoffa fragment size and surgical approach selection: a cadaveric study. Arch Orthop Trauma Surg 2018; 138: 1679-89. DOI: https://doi.org/10.1007/s00402-018-3022-x

Xu Y, Li H, Yang H H, Pan Z J. A comparison of the clinical effect of two fixation methods on Hoffa fractures. Springerplus 2016; 5: 1164. doi: 10.1007/s00402-018-3022-x. DOI: https://doi.org/10.1186/s40064-016-2861-6

Peez C, Deichsel A, Briese T, Gueorguiev B, Richards R G, Zderic I, et al. Exposure of Hoffa fractures is improved by posterolateral and posteromedial extensile approaches: a qualitative and quantitative anatomical study. J Bone Joint Surg Am 2024; 10.2106/jbjs.23.01151. doi: 10.2106/JBJS.23.01151. DOI: https://doi.org/10.2106/JBJS.23.01151

Pires R E, Bidolegui F, Pereira S, Giordano V, Giordano M, Schroter S. Medial Hoffa fracture: description of a novel classification system and rationale for treatment based on fragment-specific fixation strategy. Z Orthop Unfall 2022; 160: 269-77. doi: 10.1055/a-1289-1102. DOI: https://doi.org/10.1055/a-1289-1102

Pires R E, Giordano V, Fogagnolo F, Yoon R S, Liporace F A, Kfuri M. Algorithmic treatment of Busch-Hoffa distal femur fractures: a technical note based on a modified Letenneur classification. Injury 2018; 49: 1623-9. doi: 10.1016/j.injury.2018.06.008. DOI: https://doi.org/10.1016/j.injury.2018.06.008

White E A, Matcuk G R, Schein A, Skalski M, Marecek G S, Forrester D M, et al. Coronal plane fracture of the femoral condyles: anatomy, injury patterns, and approach to management of the Hoffa fragment. Skeletal Radiol 2015; 44: 37-43. doi: 10.1007/s00256-014-2015-2. DOI: https://doi.org/10.1007/s00256-014-2015-2

Shelburne K B, Torry M R, Pandy M G. Muscle, ligament, and joint-contact forces at the knee during walking. Med Sci Sports Exerc 2005; 37: 1948-56. doi: 10.1249/01.mss.0000180404.86078.ff. DOI: https://doi.org/10.1249/01.mss.0000180404.86078.ff

Published

2024-06-14

How to Cite

Peez, C., Zderic, I., Deichsel, A., Lodde, M., Richards, R. G., Gueorguiev, B., Kittl, C., Raschke, M. J., & Herbst, E. (2024). Fragment size of lateral Hoffa fractures determines screw fixation trajectory: a human cadaveric cohort study. Acta Orthopaedica, 95, 290–297. https://doi.org/10.2340/17453674.2024.40841

Issue

Section

Articles

Categories