Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupled changes between ruminating thoughts and resting-state brain networks during the transition into adulthood

Abstract

Perseverative negative thoughts, known as rumination, might arise from emotional challenges and preclude mental health when transitioning into adulthood. Due to its multifaceted nature, rumination can take several ruminative response styles, that diverge in manifestations, severity, and mental health outcomes. Still, prospective ruminative phenotypes remain elusive insofar. Longitudinal study designs are ideal for stratifying ruminative response styles, especially with resting-state functional MRI whose setup naturally elicits people’s ruminative traits. Here, we considered self-rated questionnaires on rumination and psychopathology, along with resting-state functional MRI data in 595 individuals assessed at age 18 and 22 from the IMAGEN cohort. We conducted independent component analysis to characterize eight single static resting-state functional networks in each subject and session and furthermore conducted a dynamic analysis, tackling the time variations of functional networks during the entire scanning time. We then investigated their longitudinal mediation role between changes in three ruminative response styles (reflective pondering, brooding, and depressive rumination) and changes in internalizing and co-morbid externalizing symptoms. Four static and two dynamic networks longitudinally differentiated these ruminative styles and showed complemental sensitivity to internalizing and co-morbid externalizing symptoms. Among these networks, the right frontoparietal network covaried with all ruminative styles but did not play any mediation role towards psychopathology. The default mode, the salience, and the limbic networks prospectively stratified these ruminative styles, suggesting that maladaptive ruminative styles are associated with altered corticolimbic function. For static measures, only the salience network played a longitudinal causal role between brooding rumination and internalizing symptoms. Dynamic measures highlighted the default-mode mediation role between the other ruminative styles and co-morbid externalizing symptoms. In conclusion, we identified the ruminative styles’ psychometric and neural outcome specificities, supporting their translation into applied research on young adult mental healthcare.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main longitudinal mediation findings.
Fig. 2: Ruminative response styles related to the functional imbalance between rostral and orbital prefrontal cortexes: insights from static and dynamic FC networks.

Similar content being viewed by others

Data availability

Raw neuroimaging and psychometric data are publicly available on the IMAGEN website (https://imagen-project.org). Analytic codes and fully processed data are available upon request to the corresponding author.

References

  1. Oerlemans AM, Wardenaar KJ, Raven D, Hartman CA, Ormel J. The association of developmental trajectories of adolescent mental health with early-adult functioning. PLoS One. 2020;15:e0233648.

    Article  CAS  PubMed  Google Scholar 

  2. Nolen-Hoeksema S, Morrow J. A prospective study of depression and posttraumatic stress symptoms after a natural disaster: the 1989 Loma Prieta Earthquake. J Pers Soc Psychol. 1991;61:115–21.

    Article  CAS  PubMed  Google Scholar 

  3. Nolen-Hoeksema S, Girgus JS, Seligman ME. Predictors and consequences of childhood depressive symptoms: a 5-year longitudinal study. J Abnorm Psychol. 1992;101:405–22.

    Article  CAS  PubMed  Google Scholar 

  4. Nolen-Hoeksema S. The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. J Abnorm Psychol. 2000;109:504–11.

    Article  CAS  PubMed  Google Scholar 

  5. Songco A, Booth C, Spiegler O, Parsons S, Fox E. Anxiety and depressive symptom trajectories in adolescence and the co-occurring development of cognitive biases: evidence from the CogBIAS longitudinal study. J Abnorm Child Psychol. 2020;48:1617–33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Willoughby T, Fortner A. At-risk depressive symptoms and alcohol use trajectories in adolescence: a person-centred analysis of co-occurrence. J Youth Adolesc. 2015;44:793–805.

    Article  PubMed  Google Scholar 

  7. Agerup T, Lydersen S, Wallander J, Sund AM. Associations between parental attachment and course of depression between adolescence and young adulthood. Child Psychiatry Hum Dev. 2015;46:632–42.

    Article  PubMed  Google Scholar 

  8. Schubert KO, Clark SR, Van LK, Collinson JL, Baune BT. Depressive symptom trajectories in late adolescence and early adulthood: a systematic review. Aust N. Z J Psychiatry. 2017;51:477–99.

    Article  PubMed  Google Scholar 

  9. Camacho A, Ortega-Ruiz R, Romera EM. Longitudinal associations between cybervictimization, anger rumination, and cyberaggression. Aggress Behav. 2021;47:332–42.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Watkins ER, Roberts H. Reflecting on rumination: consequences, causes, mechanisms and treatment of rumination. Behav Res Ther. 2020;127:103573.

    Article  PubMed  Google Scholar 

  11. Treynor W, Gonzalez R, Nolen-Hoeksema S. Rumination reconsidered: a psychometric analysis. Cogn Ther Res. 2003;27:247–59.

    Article  Google Scholar 

  12. Hankin BL. Rumination and depression in adolescence: investigating symptom specificity in a multiwave prospective study. J Clin Child Adolesc Psychol. 2008;37:701–13.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rhebergen D, Lamers F, Spijker J, de Graaf R, Beekman AT, Penninx BW. Course trajectories of unipolar depressive disorders identified by latent class growth analysis. Psychol Med. 2012;42:1383–96.

    Article  CAS  PubMed  Google Scholar 

  14. Stewart TM, Hunter SC, Rhodes SM. Reflective pondering is associated with executive control for emotional information: an adolescent prospective study. J Behav Ther Exp Psychiatry. 2019;65:101486.

    Article  PubMed  Google Scholar 

  15. Adrian M, McCarty C, King K, McCauley E, Stoep AV. The internalizing pathway to adolescent substance use disorders: mediation by ruminative reflection and ruminative brooding. J Adolesc. 2014;37:983–91.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pedersen H, Gronnaess I, Bendixen M, Hagen R, Kennair LEO. Metacognitions and brooding predict depressive symptoms in a community adolescent sample. BMC Psychiatry. 2022;22:157.

    Article  PubMed  Google Scholar 

  17. Jose PE, Weir KF. How is anxiety involved in the longitudinal relationship between brooding rumination and depressive symptoms in adolescents? J Youth Adolesc. 2013;42:1210–22.

    Article  PubMed  Google Scholar 

  18. Rnic K, Jopling E, Tracy A, LeMoult J. Emotion regulation and diurnal cortisol: a longitudinal study of early adolescents. Biol Psychol. 2022;167:108212.

    Article  PubMed  Google Scholar 

  19. Nolen-Hoeksema S, Wisco BE, Lyubomirsky S. Rethinking Rumination. Perspect Psychol Sci. 2008;3:400–24.

    Article  PubMed  Google Scholar 

  20. Deguchi A, Masuya J, Naruse M, Morishita C, Higashiyama M, Tanabe H, et al. Rumination mediates the effects of childhood maltreatment and trait anxiety on depression in non-clinical adult volunteers. Neuropsychiatr Dis Treat. 2021;17:3439–45.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alloy LB, Black SK, Young ME, Goldstein KE, Shapero BG, Stange JP, et al. Cognitive vulnerabilities and depression versus other psychopathology symptoms and diagnoses in early adolescence. J Clin Child Adolesc Psychol. 2012;41:539–60.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gomez-Baya D, Mendoza R, Gaspar T, Gomes P. Responses to positive affect, life satisfaction and self-esteem: a cross-lagged panel analysis during middle adolescence. Scand J Psychol. 2018;59:462–72.

    Article  PubMed  Google Scholar 

  23. Makovac E, Fagioli S, Rae CL, Critchley HD, Ottaviani C. Can’t get it off my brain: meta-analysis of neuroimaging studies on perseverative cognition. Psychiatry Res. Neuroimaging. 2020;295:111020.

    Article  PubMed  Google Scholar 

  24. Stevens MC. The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation. Neurosci Biobehav Rev. 2016;70:13–32.

    Article  PubMed  Google Scholar 

  25. Smitha KA, Akhil Raja K, Arun KM, Rajesh PG, Thomas B, Kapilamoorthy TR, et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J. 2017;30:305–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jalilianhasanpour R, Ryan D, Agarwal S, Beheshtian E, Gujar SK, Pillai JJ, et al. Dynamic brain connectivity in resting state functional MR imaging. Neuroimaging Clin N Am. 2021;31:81–92.

    Article  PubMed  Google Scholar 

  27. Chahal R, Gotlib IH, Guyer AE. Research review: brain network connectivity and the heterogeneity of depression in adolescence—a precision mental health perspective. J Child Psychol Psychiatry. 2020;61:1282–98.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ottaviani C, Thayer JF, Verkuil B, Lonigro A, Medea B, Couyoumdjian A, et al. Physiological concomitants of perseverative cognition: a systematic review and meta-analysis. Psychol Bull. 2016;142:231–59.

    Article  PubMed  Google Scholar 

  29. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, et al. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp. 1998;6:160–88.

    Article  CAS  PubMed  Google Scholar 

  30. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage. 2013;80:360–78.

    Article  PubMed  Google Scholar 

  31. Liegeois R, Laumann TO, Snyder AZ, Zhou J, Yeo BTT. Interpreting temporal fluctuations in resting-state functional connectivity MRI. Neuroimage. 2017;163:437–55.

    Article  PubMed  Google Scholar 

  32. Chahal R, Miller JG, Yuan JP, Buthmann JL, Gotlib IH. An exploration of dimensions of early adversity and the development of functional brain network connectivity during adolescence: implications for trajectories of internalizing symptoms. Dev Psychopathol. 2022;34:557–71.

    Article  PubMed  Google Scholar 

  33. Thijssen S, Collins PF, Weiss H, Luciana M. The longitudinal association between externalizing behavior and frontoamygdalar resting-state functional connectivity in late adolescence and young adulthood. J Child Psychol Psychiatry. 2021;62:857–67.

    Article  PubMed  Google Scholar 

  34. Taschereau-Dumouchel V, Michel M, Lau H, Hofmann SG, LeDoux JE. Putting the “mental” back in “mental disorders”: a perspective from research on fear and anxiety. Mol Psychiatry. 2022;27:1322–30.

    Article  PubMed  Google Scholar 

  35. Hilt LM, Pollak SD. Getting out of rumination: comparison of three brief interventions in a sample of youth. J Abnorm Child Psychol. 2012;40:1157–65.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jacobs RH, Watkins ER, Peters AT, Feldhaus CG, Barba A, Carbray J, et al. Targeting ruminative thinking in adolescents at risk for depressive relapse: rumination-focused cognitive behavior therapy in a pilot randomized controlled trial with resting state fMRI. PLoS One. 2016;11:e0163952.

    Article  PubMed  Google Scholar 

  37. Roberts H, Jacobs RH, Bessette KL, Crowell SE, Westlund-Schreiner M, Thomas L, et al. Mechanisms of rumination change in adolescent depression (RuMeChange): study protocol for a randomised controlled trial of rumination-focused cognitive behavioural therapy to reduce ruminative habit and risk of depressive relapse in high-ruminating adolescents. BMC Psychiatry. 2021;21:206.

    Article  PubMed  Google Scholar 

  38. Mascarell Maricic L, Walter H, Rosenthal A, Ripke S, Quinlan EB, Banaschewski T, et al. The IMAGEN study: a decade of imaging genetics in adolescents. Mol Psychiatry. 2020;25:2648–71.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ng B, Poline JB, Thirion B, Greicius M, Consortium I. Bootstrapped permutation test for multiresponse inference on brain behavior associations. Inf Process Med Imaging. 2015;24:113–24.

    PubMed  Google Scholar 

  40. Goodman R, Ford T, Richards H, Gatward R, Meltzer H. The development and well-being assessment: description and initial validation of an integrated assessment of child and adolescent psychopathology. J Child Psychol Psychiatry. 2000;41:645–55.

    Article  CAS  PubMed  Google Scholar 

  41. Goodman R. The strengths and difficulties questionnaire: a research note. J Child Psychol Psychiatry. 1997;38:581–6.

    Article  CAS  PubMed  Google Scholar 

  42. Essau CA, Olaya B, Anastassiou-Hadjicharalambous X, Pauli G, Gilvarry C, Bray D, et al. Psychometric properties of the strength and difficulties questionnaire from five European countries. Int J Methods Psychiatr Res. 2012;21:232–45.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29:162–73.

    Article  CAS  PubMed  Google Scholar 

  44. Cox RW. AFNI: what a long strange trip it’s been. Neuroimage. 2012;62:743–7.

    Article  PubMed  Google Scholar 

  45. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62:782–90.

    Article  PubMed  Google Scholar 

  46. Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD. Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp. 2011;32:2075–95.

    Article  PubMed  Google Scholar 

  47. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Article  PubMed  Google Scholar 

  48. The MathWorks I. MATLAB. 9.11.0.1873467 (R2021b) Update 3 edn2021.

  49. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986;51:1173–82.

    Article  CAS  PubMed  Google Scholar 

  50. Huffziger S, Reinhard I, Kuehner C. A longitudinal study of rumination and distraction in formerly depressed inpatients and community controls. J Abnorm Psychol. 2009;118:746–56.

    Article  PubMed  Google Scholar 

  51. Goodman R, Meltzer H, Bailey V. The strengths and difficulties questionnaire: a pilot study on the validity of the self-report version. Int Rev Psychiatry. 2003;15:173–7.

    Article  CAS  PubMed  Google Scholar 

  52. Cohen AO, Breiner K, Steinberg L, Bonnie RJ, Scott ES, Taylor-Thompson KA, et al. When is an adolescent an adult? assessing cognitive control in emotional and nonemotional contexts. Psychol Sci. 2016;27:549–62.

    Article  PubMed  Google Scholar 

  53. Schweizer S, Gotlib IH, Blakemore SJ. The role of affective control in emotion regulation during adolescence. Emotion. 2020;20:80–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Whitmer A, Gotlib IH. Brooding and reflection reconsidered: a factor analytic examination of rumination in currently depressed, formerly depressed, and never depressed individuals. Cogn Ther Res. 2011;35:99–107.

    Article  Google Scholar 

  55. Simsek OF. Self-absorption paradox is not a paradox: illuminating the dark side of self-reflection. Int J Psychol. 2013;48:1109–21.

    Article  PubMed  Google Scholar 

  56. Dawson GC, Adrian M, Chu P, McCauley E, Vander Stoep A. Associations between Sex, rumination, and depressive symptoms in late adolescence: a four-year longitudinal investigation. J Clin Child Adolesc Psychol. 2022;52:1–11.

  57. Dwyer DB, Harrison BJ, Yucel M, Whittle S, Zalesky A, Pantelis C, et al. Large-scale brain network dynamics supporting adolescent cognitive control. J Neurosci. 2014;34:14096–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res. 2009;201:239–43.

    Article  PubMed  PubMed Central  Google Scholar 

  59. D’Argembeau A, Collette F, Van der Linden M, Laureys S, Del Fiore G, Degueldre C, et al. Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage. 2005;25:616–24.

    Article  PubMed  Google Scholar 

  60. Constantinidis C, Luna B. Neural substrates of inhibitory control maturation in adolescence. Trends Neurosci. 2019;42:604–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pan PM, Sato JR, Paillere Martinot ML, Martinot JL, Artiges E, Penttila J, et al. Longitudinal trajectory of the link between ventral striatum and depression in adolescence. Am J Psychiatry. 2022;179:470–81.

    Article  PubMed  Google Scholar 

  62. Vink M, Derks JM, Hoogendam JM, Hillegers M, Kahn RS. Functional differences in emotion processing during adolescence and early adulthood. Neuroimage. 2014;91:70–6.

    Article  PubMed  Google Scholar 

  63. Burwell RA, Shirk SR. Subtypes of rumination in adolescence: associations between brooding, reflection, depressive symptoms, and coping. J Clin Child Adolesc Psychol. 2007;36:56–65.

    Article  PubMed  Google Scholar 

  64. Grierson AB, Hickie IB, Naismith SL, Scott J. The role of rumination in illness trajectories in youth: linking trans-diagnostic processes with clinical staging models. Psychol Med. 2016;46:2467–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Idsoe T, Keles S, Olseth AR, Ogden T. Cognitive behavioral treatment for depressed adolescents: results from a cluster randomized controlled trial of a group course. BMC Psychiatry. 2019;19:155.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ordaz SJ, LeMoult J, Colich NL, Prasad G, Pollak M, Popolizio M, et al. Ruminative brooding is associated with salience network coherence in early pubertal youth. Soc Cogn Affect Neurosci. 2017;12:298–310.

    Article  PubMed  Google Scholar 

  67. Rakesh D, Allen NB, Whittle S. Longitudinal changes in within-salience network functional connectivity mediate the relationship between childhood abuse and neglect, and mental health during adolescence. Psychol Med. 2021;53:1–13.

  68. Christoff K, Irving ZC, Fox KC, Spreng RN, Andrews-Hanna JR. Mind-wandering as spontaneous thought: a dynamic framework. Nat Rev Neurosci. 2016;17:718–31.

    Article  CAS  PubMed  Google Scholar 

  69. Ottaviani C, Medea B, Lonigro A, Tarvainen M, Couyoumdjian A. Cognitive rigidity is mirrored by autonomic inflexibility in daily life perseverative cognition. Biol Psychol. 2015;107:24–30.

    Article  PubMed  Google Scholar 

  70. Chalmers JA, Quintana DS, Abbott MJ, Kemp AH. Anxiety disorders are associated with reduced heart rate variability: a meta-analysis. Front Psychiatry. 2014;5:80.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Griffiths KR, Quintana DS, Hermens DF, Spooner C, Tsang TW, Clarke S, et al. Sustained attention and heart rate variability in children and adolescents with ADHD. Biol Psychol. 2017;124:11–20.

    Article  PubMed  Google Scholar 

  72. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    Article  PubMed  Google Scholar 

  73. Wells A. Breaking the cybernetic code: understanding and treating the human metacognitive control system to enhance mental health. Front Psychol. 2019;10:2621.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cole EJ, Phillips AL, Bentzley BS, Stimpson KH, Nejad R, Barmak F, et al. Stanford Neuromodulation Therapy (SNT): a double-blind randomized controlled trial. Am J Psychiatry. 2022;179:132–41.

    Article  PubMed  Google Scholar 

  75. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  CAS  PubMed  Google Scholar 

  76. Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron. 2019;102:75–90.

    Article  CAS  PubMed  Google Scholar 

  77. Raffaelli Q, Mills C, de Stefano NA, Mehl MR, Chambers K, Fitzgerald SA, et al. The think aloud paradigm reveals differences in the content, dynamics and conceptual scope of resting state thought in trait brooding. Sci Rep. 2021;11:19362.

    Article  CAS  PubMed  Google Scholar 

  78. Li HX, Lu B, Wang YW, Li XY, Chen X, Yan CG. Neural representations of self-generated thought during think-aloud fMRI. Neuroimage. 2023;265:119775.

    Article  PubMed  Google Scholar 

  79. Kucyi A, Kam JWY, Andrews-Hanna JR, Christoff K, Whitfield-Gabrieli S. Recent advances in the neuroscience of spontaneous and off-task thought: implications for mental health. Nat Ment Health. 2023;1:827–40.

    Article  PubMed  Google Scholar 

  80. Conway M, Csank PA, Holm SL, Blake CK. On assessing individual differences in rumination on sadness. J Pers Assess. 2000;75:404–25.

    Article  CAS  PubMed  Google Scholar 

  81. Alloy LB, Abramson LY, Hogan ME, Whitehouse WG, Rose DT, Robinson MS, et al. The Temple-Wisconsin Cognitive Vulnerability to Depression Project: lifetime history of axis I psychopathology in individuals at high and low cognitive risk for depression. J Abnorm Psychol. 2000;109:403–18.

    Article  CAS  PubMed  Google Scholar 

  82. Wells A, Papageorgiou C. Depressive Rumination: Nature, Theory, and Treatment. Chichester, UK: Wiley; 2004. https://doi.org/10.1002/9780470713853.

  83. Fritz H. Rumination and adjustment to a first coronary event. Psychosom Med. 1999;61:105.

    Article  Google Scholar 

  84. Smith JM, Alloy LB. A roadmap to rumination: a review of the definition, assessment, and conceptualization of this multifaceted construct. Clin Psychol Rev. 2009;29:116–28.

    Article  PubMed  Google Scholar 

  85. Mumford JA, Ramsey JD. Bayesian networks for fMRI: a primer. Neuroimage. 2014;86:573–82.

    Article  PubMed  Google Scholar 

  86. Karcher NR, Barch DM. The ABCD study: understanding the development of risk for mental and physical health outcomes. Neuropsychopharmacology. 2021;46:131–42.

    Article  PubMed  Google Scholar 

  87. Zhang X, Zhou Y, Sun J, Yang R, Chen J, Cheng X, et al. A cohort study of adolescents with depression in China: tracking multidimensional outcomes and early biomarkers for intervention. Gen Psychiatr. 2022;35:e100782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The IMAGEN consortium’s members Tobias Banaschewski, Arun LW Bokde, Sylvane Desrivières, Herta Flor, Hugh Garavan, Rüdiger Brühl, Penny Gowland, Andreas Heinz, Frauke Nees, Luise Poustka, Michael Smolka, Henrik Walter, Robert Whelan, Tomáš Paus, Gunter Schumann, Jean-Luc Martinot and Eric Artiges are acknowledged for their support as authors. A full list of the IMAGEN collaborators and their affiliations appears in the Supplemental Materials 8. Pr. Gilles Berstchy is acknowledged for his support. Pr. Stephane Lehericy and the radiographer staff at Center de NeuroImagerie de Recherche de l’Institut du Cerveau are acknowledged for their support in MRI datasets acquisition.

Funding

This work received support from the following sources: the European Union–funded FP6 Integrated Project IMAGEN (Grant No. LSHM- CT-2007-037286), the Horizon 2020 funded ERC Advanced Grant ‘STRATIFY’ (Brain network based stratification of reinforcement-related disorders) (695313); the Eranet Neuron (Grant No. ANR-18-NEUR00002-01– ADORe), Agence Nationale de la Recherche (Grant ANR-12-SAMA-0004 - GeBra), Assistance Publique-Hôpitaux de Paris and INSERM (interface grant), Paris Descartes University (Grant collaborative-project-2010), Paris Sud University (Grant No. IDEX-2012), Fondation de l’Avenir (Grant AP-RM-17-013), Fondation de France (Grant 00081242), Fédération pour la Recherche sur le Cerveau, and Fondation pour la Recherche Médicale (Grant DPA20140629802), The Ile-de-France region grant to the project VEAVE (How to reduce Violence against Children and Adolescents in the Ile-de-France region and its “whole life” consequences; action 16700103, Convention APHP INSERM n° 23002745–23002747); the National Institute for Health Research (NIHR) Biomedical Research Center at South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesministerium für Bildung und Forschung (BMBF grants 01GS08152; 01EV0711; Forschungsnetz AERIAL 01EE1406A, 01EE1406B; Forschungsnetz IMAC- Mind 01GL1745B), the Deutsche Forschungsgemeinschaft (DFG grants SM 80/7-2, SFB 940, TRR 265, NE 1383/14-1), the Medical Research Foundation and Medical Research Council (grants MR/R00465X/1 and MR/S020306/1). The INSERM, Strasbourg University, and SATT CONECTUS provided sponsorship (PI: Jean-Luc Martinot).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

The IMAGEN consortium’s authors provided substantial contributions to the conception, design, and acquisition of data for the current work. All authors approved the finalized article, ensuring its content’s accuracy and integrity as suitable for publication purposes. Rocco Marchitelli was involved in the auditing of sample data. He was in charge of the preprocessing of all neuroimaging data and conducted all statistical analyses. Alain Trouvé developed the software for dynamic FC analysis. Rocco Marchitelli, Marie-Laure Paillere Martinot, Jean-Luc Martinot, and Eric Artiges interpreted the work’s findings and critically revised it with respect to its intellectual content. Rocco Marchitelli, Jean-Luc Martinot, and Eric Artiges wrote and revised the article.

Corresponding author

Correspondence to Jean-Luc Martinot.

Ethics declarations

Competing interests

TB served in an advisory or consultancy role for ADHS Digital, Infectopharm, Lundbeck, Medice, Neurim Pharmaceuticals, Oberberg GmbH, Roche, and Takeda. He received conference support or speaker’s fee by Medice and Takeda. He has been involved in clinical trials conducted by Shire & Viforpharma. He received royalties from Hogrefe, Kohlhammer, CIP Medien, and Oxford University Press. He has been involved in clinical trials conducted by Shire & Viforpharma. GB has received honoraria from General Electric Healthcare for teaching on scanner programming courses. LP served in an advisory or consultancy role for Roche and Viforpharm and received speaker’s fee by Shire. She received royalties from Hogrefe, Kohlhammer, and Schattauer. The present work is unrelated to the above grants and relationships. The other authors report no biomedical commercial relationships or conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchitelli, R., Paillère Martinot, ML., Trouvé, A. et al. Coupled changes between ruminating thoughts and resting-state brain networks during the transition into adulthood. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02610-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02610-9

Search

Quick links