×

Simultaneous inference of periods and period-luminosity relations for Mira variable stars. (English) Zbl 1478.62379

Summary: The period-luminosity relation (PLR) of Mira variable stars is an important tool to determine astronomical distances. The common approach of estimating the PLR is a two-step procedure that first estimates the Mira periods and then runs a linear regression of magnitude on log period. When the light curves are sparse and noisy, the accuracy of period estimation decreases and can suffer from aliasing effects. Some methods improve accuracy by incorporating complex model structures at the expense of significant computational costs. Another drawback of existing methods is that they only provide point estimation without proper estimation of uncertainty. To overcome these challenges, we develop a hierarchical Bayesian model that simultaneously models the quasi-periodic variations for a collection of Mira light curves while estimating their common PLR. By borrowing strengths through the PLR, our method automatically reduces the aliasing effect, improves the accuracy of period estimation and is capable of characterizing the estimation uncertainty. We develop a scalable stochastic variational inference algorithm for computation that can effectively deal with the multimodal posterior of period. The effectiveness of the proposed method is demonstrated through simulations and an application to observations of Miras in the Local Group galaxy M33. Without using ad hoc period correction tricks, our method achieves a distance estimate of M33 that is consistent with published work. Our method also shows superior robustness to downsampling of the light curves.

MSC:

62P35 Applications of statistics to physics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
85A05 Galactic and stellar dynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Blei, D. M., Kucukelbir, A. and McAuliffe, J. D. (2017). Variational inference: A review for statisticians. J. Amer. Statist. Assoc. 112 859-877. · doi:10.1080/01621459.2017.1285773
[2] Bonanos, A. Z., Stanek, K. Z., Kudritzki, R. P., Macri, L. M., Sasselov, D. D., Kaluzny, J., Stetson, P. B., Bersier, D., Bresolin, F. et al. (2006). The first direct distance determination to a detached eclipsing binary in m33. Astrophys. J. 652 313.
[3] Flewelling, H. (2018). Pan-STARRS Data Release 2. In American Astronomical Society Meeting Abstracts 231 436.01.
[4] Freedman, W. L., Madore, B. F., Gibson, B. K., Ferrarese, L., Kelson, D. D., Sakai, S., Mould, J. R., Kennicutt, R. C. Jr., Ford, H. C. et al. (2001). Final results from the hubble space telescope key project to measure the hubble constant. Astrophys. J. 553 47.
[5] Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1 515-533. · Zbl 1331.62139 · doi:10.1214/06-BA117A
[6] Ghadimi, S. and Lan, G. (2013). Stochastic first- and zeroth-order methods for nonconvex stochastic programming. SIAM J. Optim. 23 2341-2368. · Zbl 1295.90026 · doi:10.1137/120880811
[7] Gieren, W., Górski, M., Pietrzyński, G., Konorski, P., Suchomska, K., Graczyk, D., Pilecki, B., Bresolin, F., Kudritzki, R.-P. et al. (2013). The araucaria project. A distance determination to the local group spiral m33 from near-infrared photometry of cepheid variables. Astrophys. J. 773 69.
[8] He, S., Yuan, W., Huang, J. Z., Long, J. and Macri, L. M. (2016). Period estimation for sparsely sampled quasi-periodic light curves applied to miras. Astron. J. 152 164.
[9] He, S., Lin, Z., Yuan, W., Macri, L. M. and Huang, J. Z. (2021). Supplement to “Simultaneous inference of periods and period-luminosity relations for Mira variable stars.” https://doi.org/10.1214/21-AOAS1440SUPPA, https://doi.org/10.1214/21-AOAS1440SUPPB
[10] Hoffman, M. D., Blei, D. M., Wang, C. and Paisley, J. (2013). Stochastic variational inference. J. Mach. Learn. Res. 14 1303-1347. · Zbl 1317.68163
[11] Huang, C. D., Riess, A. G., Hoffmann, S. L., Klein, C., Bloom, J., Yuan, W., Macri, L. M., Jones, D. O., Whitelock, P. A. et al. (2018). A near-infrared period-luminosity relation for miras in ngc 4258, an anchor for a new distance ladder. Astrophys. J. 857 67.
[12] Javadi, A., Saberi, M., van Loon, J. T., Khosroshahi, H., Golabatooni, N. and Mirtorabi, M. T. (2015). The uk infrared telescope m33 monitoring project-IV. Variable red giant stars across the galactic disc. Mon. Not. R. Astron. Soc. 447 3973-3991.
[13] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. and Saul, L. K. (1999). An introduction to variational methods for graphical models. Mach. Learn. 37 183-233. · Zbl 0945.68164
[14] Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39 447-462.
[15] Long, J. P., Chi, E. C. and Baraniuk, R. G. (2016). Estimating a common period for a set of irregularly sampled functions with applications to periodic variable star data. Ann. Appl. Stat. 10 165-197. · Zbl 1454.62534 · doi:10.1214/15-AOAS885
[16] Macri, L. M. M. (2001). The extragalactic distance scale. Ph.D. thesis, Harvard Univ.
[17] Macri, L., Stanek, K., Sasselov, D., Krockenberger, M. and Kaluzny, J. (2001). Direct distances to nearby galaxies using detached eclipsing binaries and cepheids. VI. Variables in the central part of m33. Astron. J. 121 870.
[18] Mowlavi, N., Lecoeur-Taïbi, I., Lebzelter, T., Rimoldini, L., Lorenz, D., Audard, M., De Ridder, J., Eyer, L., Guy, L. et al. (2018). Gaia data release 2-the first gaia catalogue of long-period variable candidates. Astron. Astrophys. 618 A58.
[19] Pellerin, A. and Macri, L. M. (2011). The m 33 synoptic stellar survey. I. Cepheid variables. Astrophys. J., Suppl. Ser. 193 26.
[20] Pietrzyński, G., Gieren, W., Graczyk, D., Thompson, I., Pilecki, B., Nardetto, N., Kudritzki, R.-P., Bresolin, F., Bono, G. et al. (2013). A precise and accurate distance to the large magellanic cloud from late-type eclipsing-binary systems. In Advancing the Physics of Cosmic Distances (R. de Grijs, ed.). IAU Symposium 289 169-172.
[21] Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA. · Zbl 1177.68165
[22] Riess, A. G., Macri, L., Casertano, S., Lampeitl, H., Ferguson, H. C., Filippenko, A. V., Jha, S. W., Li, W. and Chornock, R. (2011). A 3
[23] Riess, A. G., Macri, L. M., Hoffmann, S. L., Scolnic, D., Casertano, S., Filippenko, A. V., Tucker, B. E., Reid, M. J., Jones, D. O. et al. (2016). A 2.4
[24] Riess, A. G., Casertano, S., Yuan, W., Macri, L. M. and Scolnic, D. (2019). Large magellanic cloud cepheid standards provide a 1
[25] Sarajedini, A., Barker, M., Geisler, D., Harding, P. and Schommer, R. (2006). Rr lyrae variables in m33. I. Evidence for a field halo population. Astron. J. 132 1361.
[26] Scargle, J. D. (1982). December. Studies in astronomical time series analysis. II—Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263 835-853.
[27] Scowcroft, V., Bersier, D., Mould, J. and Wood, P. R. (2009). The effect of metallicity on cepheid magnitudes and the distance to m33. Mon. Not. R. Astron. Soc. 396 1287-1296.
[28] Soszyński, I., Udalski, A., Szymański, M. K., Kubiak, M., Pietrzyński, G., Wyrzykowski, Ł., Szewczyk, O., Ulaczyk, K. and Poleski, R. (2009). The optical gravitational lensing experiment. The OGLE-III catalog of variable stars. III. RR lyrae stars in the large magellanic cloud. Acta Astronomica 59 1-18.
[29] Udalski, A., Szymański, M. K., Soszyński, I. and Poleski, R. (2008). The optical gravitational lensing experiment. Final reductions of the ogle-iii data. Acta Astronomica 58 69-87.
[30] Vanderplas, J. T. and Ivezic, Ž. (2015). Periodograms for multiband astronomical time series. Astrophys. J. 812 18.
[31] Wainwright, M. J., Jordan, M. I. et al. (2008). Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1 1-305. · Zbl 1193.62107
[32] Wang, Y. and Blei, D. M. (2019). Frequentist consistency of variational Bayes. J. Amer. Statist. Assoc. 114 1147-1161. · Zbl 1428.62119 · doi:10.1080/01621459.2018.1473776
[33] Whitelock, P. A. and Feast, M. W. (2014). Gaia, variable stars and the distance scale. EAS Publications Series 67 263-269.
[34] Whitelock, P., Menzies, J., Feast, M., Nsengiyumva, F. and Matsunaga, N. (2014). Vizier online data catalog: Jhks photometry of agb stars in ngc 6822 (whitelock+, 2013). VizieR Online Data Catalog 742.
[35] Yuan, W., Macri, L. M., He, S., Huang, J. Z., Kanbur, S. M. and Ngeow, C.-C. (2017). Large magellanic cloud near-infrared synoptic survey. V. Period-luminosity relations of miras. Astron. J. 154 149.
[36] Yuan, W., Macri, L. M., Javadi, A., Lin, Z. and Huang, J. Z. (2018). Near-infrared mira period-luminosity relations in m33. Astron. J. 156 112.
[37] Zechmeister, M. and Kürster, M. (2009). The generalised lomb-scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496 577-584.
[38] Zhang, C., Butepage, J., Kjellstrom, H. and Mandt, S. (2019). Advances in variational inference. IEEE Trans. Pattern Anal. Mach. Intell. 41 2008-2026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.