Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 27;12(10):908.
doi: 10.3390/metabo12100908.

Identification of Single and Combined Serum Metabolites Associated with Food Intake

Affiliations

Identification of Single and Combined Serum Metabolites Associated with Food Intake

Therese Karlsson et al. Metabolites. .

Abstract

Assessment of dietary intake is challenging. Traditional methods suffer from both random and systematic errors; thus objective measures are important complements in monitoring dietary exposure. The study presented here aims to identify serum metabolites associated with reported food intake and to explore whether combinations of metabolites may improve predictive models. Fasting blood samples and a 4-day weighed food diary were collected from healthy Swedish subjects (n = 119) self-defined as having habitual vegan, vegetarian, vegetarian + fish, or omnivore diets. Serum was analyzed for metabolites by 1H-nuclear magnetic resonance spectroscopy. Associations between single and combined metabolites and 39 foods and food groups were explored. Area under the curve (AUC) was calculated for prediction models. In total, 24 foods or food groups associated with serum metabolites using the criteria of rho > 0.2, p < 0.01 and AUC ≥ 0.7 were identified. For the consumption of soybeans, citrus fruits and marmalade, nuts and almonds, green tea, red meat, poultry, total fish and shellfish, dairy, fermented dairy, cheese, eggs, and beer the final models included two or more metabolites. Our results indicate that a combination of metabolites improve the possibilities to use metabolites to identify several foods included in the current diet. Combined metabolite models should be confirmed in dose−response intervention studies.

Keywords: 1H-NMR metabolomics; 4-day dietary record; food intake; habitual food intake; serum metabolites.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Area under the curve for single metabolites and combined metabolite models for (A) red meat, (B) eggs, (C) fermented dairy, (D) beer. Diagonal line represents the reference line.
Figure 2
Figure 2
Study flowchart. Body mass index, BMI; food intake level, FIL.

Similar articles

Cited by

References

    1. Collaborators GBDD Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393:1958–1972. doi: 10.1016/S0140-6736(19)30041-8. - DOI - PMC - PubMed
    1. Collaborators GBDRF Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1223–1249. doi: 10.1016/S0140-6736(20)30752-2. - DOI - PMC - PubMed
    1. Kipnis V., Midthune D., Freedman L., Bingham S., Day N.E., Riboli E., Ferrari P., Carroll R.J. Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr. 2002;5:915–923. doi: 10.1079/PHN2002383. - DOI - PubMed
    1. Brennan L., Hu F.B. Metabolomics-Based Dietary Biomarkers in Nutritional Epidemiology-Current Status and Future Opportunities. Mol. Nutr. Food Res. 2019;63:e1701064. doi: 10.1002/mnfr.201701064. - DOI - PubMed
    1. Scalbert A., Brennan L., Manach C., Andres-Lacueva C., Dragsted L.O., Draper J., Rappaport S.M., van der Hooft J.J., Wishart D.S. The food metabolome: A window over dietary exposure. Am. J. Clin. Nutr. 2014;99:1286–1308. doi: 10.3945/ajcn.113.076133. - DOI - PubMed

LinkOut - more resources