Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circadian disruptions and brain clock dysregulation in mood disorders

Abstract

The circadian system, composed of a network of brain and peripheral 24-hour clocks and oscillators, allows organisms to anticipate and synchronize to natural daily events. The day–night cycle is the dominant timing signal to align circadian clocks to the external time. Thereby, exposure to aberrant light–dark cycles leads to disruptions of the circadian system, evoking different health issues, including mental or affective ones. Humans with circadian misalignments, such as those observed in jet-lag-exposed people or shift workers, and animal models of clock disturbances show mood alterations such as anxiety and depressive-like behaviors. The mechanisms underlying the physiopathology of mood disorders in circadian disruption may imply an altered functioning of the main clock in the suprachiasmatic nucleus, from other central oscillators, or a loss of internal synchrony between them. This Review outlines the current knowledge on the link between circadian perturbations and mood disorders in humans and animal models, and the possible neurobiological mechanisms involved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The main circadian clock in the SCN.
Fig. 2: The brain circadian system in mammals.
Fig. 3: Internal coupling and synchronization of the central mammalian circadian system.

Similar content being viewed by others

References

  1. Pittendrigh, C. S. Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55, 16–54 (1993).

    Article  PubMed  Google Scholar 

  2. Chellappa, S. L., Morris, C. J. & Scheer, F. Circadian misalignment increases mood vulnerability in simulated shift work. Sci. Rep. 10, 18614 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hastings, M. H., Maywood, E. S. & Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453–469 (2018).

    Article  PubMed  Google Scholar 

  4. Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).

    Article  PubMed  Google Scholar 

  5. Ono, D., Honma, K. I. & Honma, S. Roles of neuropeptides, VIP and AVP, in the mammalian central circadian clock. Front. Neurosci 15, 650154 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aton, S. J. et al. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476–483 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mieda, M. et al. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85, 1103–1116 (2015).

    Article  PubMed  Google Scholar 

  8. Hattar, S. et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol. 497, 326–349 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Golombek, D. A. & Rosenstein, R. E. Physiology of circadian entrainment. Physiol. Rev. 90, 1063–1102 (2010).

    Article  PubMed  Google Scholar 

  10. Takahashi, J. S. et al. Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308, 186–188 (1984).

    Article  PubMed  Google Scholar 

  11. Khalsa, S. B. et al. A phase response curve to single bright light pulses in human subjects. J. Physiol. 549, 945–952 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).

    Article  PubMed  Google Scholar 

  13. Abe, M. et al. Circadian rhythms in isolated brain regions. J. Neurosci. 22, 350–356 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Abraham, U. et al. Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro. J. Neurosci. 25, 8620–8626 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Granados-Fuentes, D. et al. Daily rhythms in olfactory discrimination depend on clock genes but not the suprachiasmatic nucleus. J. Biol. Rhythms 26, 552–560 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Herz, R. S. et al. The influence of circadian timing on olfactory sensitivity. Chem. Senses 43, 45–51 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hu, H., Cui, Y. & Yang, Y. Circuits and functions of the lateral habenula in health and in disease. Nat. Rev. Neurosci. 21, 277–295 (2020).

    Article  PubMed  Google Scholar 

  18. Salaberry, N. L. et al. A suprachiasmatic-independent circadian clock(s) in the habenula is affected by Per gene mutations and housing light conditions in mice. Brain Struct. Funct. 224, 19–31 (2019).

    Article  PubMed  Google Scholar 

  19. Guilding, C., Hughes, A. T. & Piggins, H. D. Circadian oscillators in the epithalamus. Neuroscience 169, 1630–1639 (2010).

    Article  PubMed  Google Scholar 

  20. Zhao, H. & Rusak, B. Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro. Neuroscience 132, 519–528 (2005).

    Article  PubMed  Google Scholar 

  21. Olejniczak, I. et al. Light affects behavioral despair involving the clock gene Period 1. PLoS Genet. 17, e1009625 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kaiser, C. et al. The human habenula is responsive to changes in luminance and circadian rhythm. Neuroimage 189, 581–588 (2019).

    Article  PubMed  Google Scholar 

  23. Fernandez, D. C. et al. Light affects mood and learning through distinct retina–brain pathways. Cell 175, 71–84 e18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rath, M. F., Rohde, K. & Moller, M. Circadian oscillations of molecular clock components in the cerebellar cortex of the rat. Chronobiol. Int. 29, 1289–1299 (2012).

    Article  PubMed  Google Scholar 

  25. Li, J. Z. et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc. Natl Acad. Sci. USA 110, 9950–9955 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Logan, R. W. et al. Sex differences in molecular rhythms in the human cortex. Biol. Psychiatry 91, 152–162 (2022).

    Article  PubMed  Google Scholar 

  27. Lim, A. S. et al. Sex difference in daily rhythms of clock gene expression in the aged human cerebral cortex. J. Biol. Rhythms 28, 117–129 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ketchesin, K. D. et al. Diurnal rhythms across the human dorsal and ventral striatum. Proc. Natl Acad. Sci. USA 118, e2016150118 (2021).

    Article  PubMed  Google Scholar 

  29. Hampp, G. et al. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr. Biol. 18, 678–683 (2008).

    Article  PubMed  Google Scholar 

  30. Hood, S. et al. Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J. Neurosci. 30, 14046–14058 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Logan, R. W. et al. Chronic stress induces brain region-specific alterations of molecular rhythms that correlate with depression-like behavior in mice. Biol. Psychiatry 78, 249–258 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Landgraf, D., Long, J. E. & Welsh, D. K. Depression-like behaviour in mice is associated with disrupted circadian rhythms in nucleus accumbens and periaqueductal grey. Eur. J. Neurosci. 43, 1309–1320 (2016).

    Article  PubMed  Google Scholar 

  33. Guilding, C. et al. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Mol. Brain 2, 28 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Amir, S. & Stewart, J. Motivational modulation of rhythms of the expression of the clock protein PER2 in the limbic forebrain. Biol. Psychiatry 65, 829–834 (2009).

    Article  PubMed  Google Scholar 

  35. Mure, L. S. et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359, eaao0318 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yan, L., Smale, L. & Nunez, A. A. Circadian and photic modulation of daily rhythms in diurnal mammals. Eur. J. Neurosci. 51, 551–566 (2020).

    Article  PubMed  Google Scholar 

  37. Aschoff, J. Circadian rhythms in man. Science 148, 1427–1432 (1965).

    Article  PubMed  Google Scholar 

  38. Aschoff, J. & Wever, R. Human circadian rhythms: a multioscillatory system. Fed. Proc. 35, 236–32 (1976).

    PubMed  Google Scholar 

  39. Roenneberg, T. & Merrow, M. The circadian clock and human health. Curr. Biol. 26, R432–R443 (2016).

    Article  PubMed  Google Scholar 

  40. Aschoff, J., Gerecke, U. & Wever, R. Desynchronization of human circadian rhythms. Jpn J. Physiol. 17, 450–457 (1967).

    Article  PubMed  Google Scholar 

  41. Scott, M. R. & McClung, C. A. Bipolar disorder. Curr. Opin. Neurobiol. 83, 102801 (2023).

    Article  PubMed  Google Scholar 

  42. Malhi, G. S. & Mann, J. J. Depression. Lancet 392, 2299–2312 (2018).

    Article  PubMed  Google Scholar 

  43. Lemke, M. R. et al. Motor activity and daily variation of symptom intensity in depressed patients. Neuropsychobiology 36, 57–61 (1997).

    Article  PubMed  Google Scholar 

  44. Wehr, T. A., Muscettola, G. & Goodwin, F. K. Urinary 3-methoxy-4-hydroxyphenylglycol circadian rhythm. Early timing (phase-advance) in manic-depressives compared with normal subjects. Arch. Gen. Psychiatry 37, 257–263 (1980).

    Article  PubMed  Google Scholar 

  45. Wehr, T. A. et al. Phase advance of the circadian sleep–wake cycle as an antidepressant. Science 206, 710–713 (1979).

    Article  PubMed  Google Scholar 

  46. Robillard, R. et al. Circadian rhythms and psychiatric profiles in young adults with unipolar depressive disorders. Transl. Psychiatry 8, 213 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Robillard, R. et al. Delayed sleep phase in young people with unipolar or bipolar affective disorders. J. Affect. Disord. 145, 260–263 (2013).

    Article  PubMed  Google Scholar 

  48. Winkler, D. et al. Actigraphy in patients with seasonal affective disorder and healthy control subjects treated with light therapy. Biol. Psychiatry 58, 331–336 (2005).

    Article  PubMed  Google Scholar 

  49. Wolff, E. A. 3rd, Putnam, F. W. & Post, R. M. Motor activity and affective illness. The relationship of amplitude and temporal distribution to changes in affective state. Arch. Gen. Psychiatry 42, 288–294 (1985).

    Article  PubMed  Google Scholar 

  50. Wong, M. L. et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc. Natl Acad. Sci. USA 97, 325–330 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Claustrat, B. et al. A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression. Biol. Psychiatry 19, 1215–1228 (1984).

    PubMed  Google Scholar 

  52. Souetre, E. et al. Circadian rhythms in depression and recovery: evidence for blunted amplitude as the main chronobiological abnormality. Psychiatry Res. 28, 263–278 (1989).

    Article  PubMed  Google Scholar 

  53. Brown, R. et al. Differences in nocturnal melatonin secretion between melancholic depressed patients and control subjects. Am. J. Psychiatry 142, 811–816 (1985).

    Article  PubMed  Google Scholar 

  54. Voderholzer, U. et al. Circadian profiles of melatonin in melancholic depressed patients and healthy subjects in relation to cortisol secretion and sleep. Psychiatry Res. 71, 151–161 (1997).

    Article  PubMed  Google Scholar 

  55. Markianos, M. & Lykouras, L. Circadian rhythms of dopamine-beta-hydroxylase and c-AMP in plasma of controls and patients with affective disorders. J. Neural Transm. 50, 149–155 (1981).

    Article  PubMed  Google Scholar 

  56. Wu, X. et al. Increased glutamic acid decarboxylase expression in the hypothalamic suprachiasmatic nucleus in depression. Brain Struct. Funct. 222, 4079–4088 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wu, Y. H. et al. Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression. J. Affect. Disord. 148, 357–367 (2013).

    Article  PubMed  Google Scholar 

  58. Naismith, S. L. et al. Delayed circadian phase is linked to glutamatergic functions in young people with affective disorders: a proton magnetic resonance spectroscopy study. BMC Psychiatry 14, 345 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Solberg, L. C. et al. Altered hormone levels and circadian rhythm of activity in the WKY rat, a putative animal model of depression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R786–R794 (2001).

    Article  PubMed  Google Scholar 

  60. Loizeau, V. et al. Behavioural characteristics and sex differences of a treatment-resistant depression model: chronic mild stress in the Wistar-Kyoto rat. Behav. Brain Res. 457, 114712 (2024).

    Article  PubMed  Google Scholar 

  61. Shiromani, P. J. et al. Diurnal rhythm of core body temperature is phase advanced in a rodent model of depression. Biol. Psychiatry 29, 923–930 (1991).

    Article  PubMed  Google Scholar 

  62. Landgraf, D. et al. Genetic disruption of circadian rhythms in the suprachiasmatic nucleus causes helplessness, behavioral despair, and anxiety-like behavior in mice. Biol. Psychiatry 80, 827–835 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vadnie, C. A. et al. The suprachiasmatic nucleus regulates anxiety-like behavior in mice. Front. Neurosci. 15, 765850 (2021).

    Article  PubMed  Google Scholar 

  64. Spencer, S. et al. Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior. Eur. J. Neurosci. 37, 242–250 (2013).

    Article  PubMed  Google Scholar 

  65. Vetter, C. et al. Aligning work and circadian time in shift workers improves sleep and reduces circadian disruption. Curr. Biol. 25, 907–911 (2015).

    Article  PubMed  Google Scholar 

  66. Czeisler, C. A., Moore-Ede, M. C. & Coleman, R. H. Rotating shift work schedules that disrupt sleep are improved by applying circadian principles. Science 217, 460–463 (1982).

    Article  PubMed  Google Scholar 

  67. Waterhouse, J. et al. Jet lag: trends and coping strategies. Lancet 369, 1117–1129 (2007).

    Article  PubMed  Google Scholar 

  68. Cho, K. Chronic ‘jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Nat. Neurosci. 4, 567–568 (2001).

    Article  PubMed  Google Scholar 

  69. Zhang, F. et al. The effect of jet lag on the human brain: a neuroimaging study. Hum. Brain Mapp. 41, 2281–2291 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Inder, M. L., Crowe, M. T. & Porter, R. Effect of transmeridian travel and jetlag on mood disorders: evidence and implications. Aust. N. Z. J. Psychiatry 50, 220–227 (2016).

    Article  PubMed  Google Scholar 

  71. Jauhar, P. & Weller, M. P. Psychiatric morbidity and time zone changes: a study of patients from Heathrow airport. Br. J. Psychiatry 140, 231–235 (1982).

    Article  PubMed  Google Scholar 

  72. Young, D. M. Psychiatric morbidity in travelers to Honolulu, Hawaii. Compr. Psychiatry 36, 224–228 (1995).

    Article  PubMed  Google Scholar 

  73. Moon, J. H. et al. Advanced circadian phase in mania and delayed circadian phase in mixed mania and depression returned to normal after treatment of bipolar disorder. eBioMedicine 11, 285–295 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Boivin, D. B., Boudreau, P. & Kosmadopoulos, A. Disturbance of the circadian system in shift work and its health impact. J. Biol. Rhythms 37, 3–28 (2022).

    Article  PubMed  Google Scholar 

  75. Healy, D., Minors, D. S. & Waterhouse, J. M. Shiftwork, helplessness and depression. J. Affect. Disord. 29, 17–25 (1993).

    Article  PubMed  Google Scholar 

  76. Khan, W. A. A. et al. The relationship between shift-work, sleep, and mental health among paramedics in Australia. Sleep Health 6, 330–337 (2020).

    Article  PubMed  Google Scholar 

  77. Violanti, J. M. et al. Shift-work and suicide ideation among police officers. Am. J. Ind. Med. 51, 758–768 (2008).

    Article  PubMed  Google Scholar 

  78. Koshy, A. et al. Disruption of central and peripheral circadian clocks in police officers working at night. FASEB J. 33, 6789–6800 (2019).

    Article  PubMed  Google Scholar 

  79. Sack, R. L., Blood, M. L. & Lewy, A. J. Melatonin rhythms in night shift workers. Sleep 15, 434–441 (1992).

    Article  PubMed  Google Scholar 

  80. Baba, M. et al. Analysis of salivary cortisol levels to determine the association between depression level and differences in circadian rhythms of shift-working nurses. J. Occup. Health 57, 237–244 (2015).

    Article  PubMed  Google Scholar 

  81. Park, C. H. et al. Sleep disturbance-related depressive symptom and brain volume reduction in shift-working nurses. Sci. Rep. 10, 9100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wittmann, M. et al. Social jetlag: misalignment of biological and social time. Chronobiol. Int. 23, 497–509 (2006).

    Article  PubMed  Google Scholar 

  83. Levandovski, R. et al. Depression scores associate with chronotype and social jetlag in a rural population. Chronobiol. Int. 28, 771–778 (2011).

    Article  PubMed  Google Scholar 

  84. Kang, S. G. et al. Weekend catch-up sleep is independently associated with suicide attempts and self-injury in Korean adolescents. Compr. Psychiatry 55, 319–325 (2014).

    Article  PubMed  Google Scholar 

  85. Juda, M., Vetter, C. & Roenneberg, T. Chronotype modulates sleep duration, sleep quality, and social jet lag in shift-workers. J. Biol. Rhythms 28, 141–151 (2013).

    Article  PubMed  Google Scholar 

  86. Roenneberg, T., Wirz-Justice, A. & Merrow, M. Life between clocks: daily temporal patterns of human chronotypes. J. Biol. Rhythms 18, 80–90 (2003).

    Article  PubMed  Google Scholar 

  87. Park, H., Lee, H. K. & Lee, K. Chronotype and suicide: the mediating effect of depressive symptoms. Psychiatry Res. 269, 316–320 (2018).

    Article  PubMed  Google Scholar 

  88. Merikanto, I. & Partonen, T. Eveningness increases risks for depressive and anxiety symptoms and hospital treatments mediated by insufficient sleep in a population-based study of 18,039 adults. Depress. Anxiety 38, 1066–1077 (2021).

    Article  PubMed  Google Scholar 

  89. Esaki, Y. et al. Higher prevalence of intentional self-harm in bipolar disorder with evening chronotype: a finding from the APPLE cohort study. J. Affect. Disord. 277, 727–732 (2020).

    Article  PubMed  Google Scholar 

  90. Gaspar-Barba, E. et al. Depressive symptomatology is influenced by chronotypes. J. Affect. Disord. 119, 100–106 (2009).

    Article  PubMed  Google Scholar 

  91. Haraden, D. A., Mullin, B. C. & Hankin, B. L. Internalizing symptoms and chronotype in youth: a longitudinal assessment of anxiety, depression and tripartite model. Psychiatry Res. 272, 797–805 (2019).

    Article  PubMed  Google Scholar 

  92. Chen, S. J. et al. The trajectories and associations of eveningness and insomnia with daytime sleepiness, depression and suicidal ideation in adolescents: a 3-year longitudinal study. J. Affect. Disord. 294, 533–542 (2021).

    Article  PubMed  Google Scholar 

  93. Vulser, H. et al. Chronotype, longitudinal volumetric brain variations throughout adolescence, and depressive symptom development. J. Am. Acad. Child Adolesc. Psychiatry 62, 48–58 (2023).

    Article  PubMed  Google Scholar 

  94. Nguyen, C. et al. In vivo molecular chronotyping, circadian misalignment, and high rates of depression in young adults. J. Affect. Disord. 250, 425–431 (2019).

    Article  PubMed  Google Scholar 

  95. Cajochen, C. et al. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J. Appl. Physiol. 110, 1432–1438 (2011).

    Article  PubMed  Google Scholar 

  96. Obayashi, K. et al. Exposure to light at night and risk of depression in the elderly. J. Affect. Disord. 151, 331–336 (2013).

    Article  PubMed  Google Scholar 

  97. Lemola, S. et al. Adolescents’ electronic media use at night, sleep disturbance, and depressive symptoms in the smartphone age. J. Youth Adolesc. 44, 405–418 (2015).

    Article  PubMed  Google Scholar 

  98. Tonon, A. C. et al. Sleep disturbances, circadian activity, and nocturnal light exposure characterize high risk for and current depression in adolescence. Sleep 45, zsac104 (2022).

    Article  PubMed  Google Scholar 

  99. Min, J. Y. & Min, K. B. Outdoor light at night and the prevalence of depressive symptoms and suicidal behaviors: a cross-sectional study in a nationally representative sample of Korean adults. J. Affect. Disord. 227, 199–205 (2018).

    Article  PubMed  Google Scholar 

  100. Rahman, S. A. et al. Spectral sensitivity of circadian phase resetting, melatonin suppression and acute alerting effects of intermittent light exposure. Biochem. Pharmacol. 191, 114504 (2021).

    Article  PubMed  Google Scholar 

  101. LeGates, T. A. et al. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491, 594–598 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Brown, T. M. et al. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol. 20, e3001571 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wirz-Justice, A., Skene, D. J. & Munch, M. The relevance of daylight for humans. Biochem. Pharmacol. 191, 114304 (2021).

    Article  PubMed  Google Scholar 

  104. Bauer, M. et al. Association between solar insolation and a history of suicide attempts in bipolar I disorder. J. Psychiatr. Res. 113, 1–9 (2019).

    Article  PubMed  Google Scholar 

  105. Graw, P. et al. Winter and summer outdoor light exposure in women with and without seasonal affective disorder. J. Affect. Disord. 56, 163–169 (1999).

    Article  PubMed  Google Scholar 

  106. Rosenthal, N. E. et al. Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch. Gen. Psychiatry 41, 72–80 (1984).

    Article  PubMed  Google Scholar 

  107. Wirz-Justice, A. et al. ‘Natural’ light treatment of seasonal affective disorder. J. Affect. Disord. 37, 109–120 (1996).

    Article  PubMed  Google Scholar 

  108. Burns, A. C. et al. Time spent in outdoor light is associated with mood, sleep, and circadian rhythm-related outcomes: a cross-sectional and longitudinal study in over 400,000 UK Biobank participants. J. Affect. Disord. 295, 347–352 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Figueiro, M. G. et al. The impact of daytime light exposures on sleep and mood in office workers. Sleep Health 3, 204–215 (2017).

    Article  PubMed  Google Scholar 

  110. Boubekri, M. et al. Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. J. Clin. Sleep Med. 10, 603–611 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Reddy, A. B. et al. Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J. Neurosci. 22, 7326–7330 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chen, R. et al. Chronic circadian phase advance in male mice induces depressive-like responses and suppresses neuroimmune activation. Brain Behav. Immun. Health 17, 100337 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Horsey, E. A. et al. Chronic jet lag simulation decreases hippocampal neurogenesis and enhances depressive behaviors and cognitive deficits in adult male rats. Front. Behav. Neurosci. 13, 272 (2019).

    Article  PubMed  Google Scholar 

  114. Davidson, A. J. et al. Chronic jet-lag increases mortality in aged mice. Curr. Biol. 16, R914–R916 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  115. de la Iglesia, H. O. et al. Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr. Biol. 14, 796–800 (2004).

    Article  PubMed  Google Scholar 

  116. Ben-Hamo, M. et al. Circadian forced desynchrony of the master clock leads to phenotypic manifestation of depression in rats. eNeuro 3, ENEURO.0237–16.2016 (2016).

    Article  PubMed  Google Scholar 

  117. Haraguchi, A. et al. Use of a social jetlag-mimicking mouse model to determine the effects of a two-day delayed light- and/or feeding-shift on central and peripheral clock rhythms plus cognitive functioning. Chronobiol. Int. 38, 426–442 (2021).

    Article  PubMed  Google Scholar 

  118. Walker, W. H. 2nd et al. Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior. Mol. Psychiatry 25, 1080–1093 (2020).

    Article  PubMed  Google Scholar 

  119. Bedrosian, T. A. et al. Nocturnal light exposure impairs affective responses in a wavelength-dependent manner. J. Neurosci. 33, 13081–13087 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Fonken, L. K. et al. Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J. Biol. Rhythms 27, 319–327 (2012).

    Article  PubMed  Google Scholar 

  121. An, K. et al. A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice. Nat. Neurosci. 23, 869–880 (2020).

    Article  PubMed  Google Scholar 

  122. Weil, T. et al. Daily changes in light influence mood via inhibitory networks within the thalamic perihabenular nucleus. Sci. Adv. 8, eabn3567 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Leach, G., Adidharma, W. & Yan, L. Depression-like responses induced by daytime light deficiency in the diurnal grass rat (Arvicanthis niloticus). PLoS ONE 8, e57115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Itzhacki, J. et al. Light rescues circadian behavior and brain dopamine abnormalities in diurnal rodents exposed to a winter-like photoperiod. Brain Struct. Funct. 223, 2641–2652 (2018).

    Article  PubMed  Google Scholar 

  125. Bilu, C. et al. Beneficial effects of daytime high-intensity light exposure on daily rhythms, metabolic state and affect. Sci. Rep. 10, 19782 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Huang, L. et al. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron 102, 128–142e8 (2019).

    Article  PubMed  Google Scholar 

  127. Lewy, A. J. et al. Antidepressant and circadian phase-shifting effects of light. Science 235, 352–354 (1987).

    Article  PubMed  Google Scholar 

  128. Millan, M. J. et al. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J. Pharmacol. Exp. Ther. 306, 954–964 (2003).

    Article  PubMed  Google Scholar 

  129. Loving, R. T., Kripke, D. F. & Shuchter, S. R. Bright light augments antidepressant effects of medication and wake therapy. Depress. Anxiety 16, 1–3 (2002).

    Article  PubMed  Google Scholar 

  130. Sahlem, G. L. et al. Adjunctive triple chronotherapy (combined total sleep deprivation, sleep phase advance, and bright light therapy) rapidly improves mood and suicidality in suicidal depressed inpatients: an open label pilot study. J. Psychiatr. Res. 59, 101–107 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mistlberger, R. E. & Skene, D. J. Nonphotic entrainment in humans? J. Biol. Rhythms 20, 339–352 (2005).

    Article  PubMed  Google Scholar 

  132. Mistlberger, R. E. & Antle, M. C. Entrainment of circadian clocks in mammals by arousal and food. Essays Biochem. 49, 119–136 (2011).

    Article  PubMed  Google Scholar 

  133. Qian, J. et al. Daytime eating prevents mood vulnerability in night work. Proc. Natl Acad. Sci. USA 119, e2206348119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Talamanca, L., Gobet, C. & Naef, F. Sex-dimorphic and age-dependent organization of 24-hour gene expression rhythms in humans. Science 379, 478–483 (2023).

    Article  PubMed  Google Scholar 

  135. Duffy, J. F. et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc. Natl Acad. Sci. USA 108, 15602–15608 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wong, I. S. et al. For better or worse? Changing shift schedules and the risk of work injury among men and women. Scand. J. Work Environ. Health 40, 621–630 (2014).

    Article  PubMed  Google Scholar 

  137. Chellappa, S. L. et al. Sex differences in light sensitivity impact on brightness perception, vigilant attention and sleep in humans. Sci. Rep. 7, 14215 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. McClung, C. A. et al. Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc. Natl Acad. Sci. USA 102, 9377–9381 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Chung, S. et al. Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell 157, 858–868 (2014).

    Article  PubMed  Google Scholar 

  140. Dallmann, R. et al. Impaired daily glucocorticoid rhythm in Per1 (Brd) mice. J. Comp. Physiol. A 192, 769–775 (2006).

    Article  Google Scholar 

  141. Li, Y. et al. Depression-like behavior is associated with lower Per2 mRNA expression in the lateral habenula of rats. Genes Brain. Behav. 20, e12702 (2021).

    Article  PubMed  Google Scholar 

  142. Bae, K. et al. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525–536 (2001).

    Article  PubMed  Google Scholar 

  143. Zhang, L. et al. A PERIOD3 variant causes a circadian phenotype and is associated with a seasonal mood trait. Proc. Natl Acad. Sci. USA 113, E1536–E1544 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Qiu, P. et al. BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders. Natl Sci. Rev. 6, 87–100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. van der Horst, G. T. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630 (1999).

    Article  PubMed  Google Scholar 

  146. De Bundel, D. et al. Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. Front. Behav. Neurosci. 7, 152 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Sokolowska, E. et al. The circadian gene Cryptochrome 2 influences stress-induced brain activity and depressive-like behavior in mice. Genes Brain Behav 20, e12708 (2021).

    Article  PubMed  Google Scholar 

  148. Wang, W. et al. Desynchronizing the sleep–wake cycle from circadian timing to assess their separate contributions to physiology and behaviour and to estimate intrinsic circadian period. Nat. Protoc. 18, 579–603 (2023).

    Article  PubMed  Google Scholar 

  149. Opperhuizen, A. L. et al. Rodent models to study the metabolic effects of shiftwork in humans. Front. Pharmacol. 6, 50 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ohta, H., Yamazaki, S. & McMahon, D. G. Constant light desynchronizes mammalian clock neurons. Nat. Neurosci. 8, 267–269 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Agence National de la Recherche (ANR-14-CE13-0002-01 ADDiCLOCK JCJC), the consortium Danone/Foundation pour la Recherche Medicale (FRM), and the Centre National de la Recherche Scientifique (CNRS). I acknowledge colleagues whose relevant contributions could not be cited in the present work due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Mendoza.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Christian Cajochen, Timo Partonen, Jacques Taillard and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza, J. Circadian disruptions and brain clock dysregulation in mood disorders. Nat. Mental Health 2, 749–763 (2024). https://doi.org/10.1038/s44220-024-00260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00260-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing