Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of synthetic polymers directed toward living cells

Abstract

Cells execute remarkable functions using biopolymers synthesized from natural building blocks. Engineering cells to leverage the vast array of synthesizable abiotic polymers could provide enhanced or entirely new cellular functions. Here we discuss the applications of in situ-synthesized abiotic polymers in three distinct domains: intracellular polymerization, cell-surface polymerization and extracellular polymerization. These advances have led to novel applications in various areas, such as cancer therapy, cell imaging, cellular activity manipulation, cell protection and electrode assembly. Examples of these synthetic approaches can be applied across all domains of life, ranging from microbes and cultured mammalian cells to plants and animals. Finally, we discuss challenges and future opportunities in this emerging field, which could enable new synthetic approaches to influence biological processes and functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual overview of abiotic polymer synthesis on living cells.
Fig. 2: Intracellular polymerization.
Fig. 3: Cell surface engineering.
Fig. 4: Extracellular polymerization.

Similar content being viewed by others

References

  1. Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, Y., Feig, V. R. & Bao, Z. Conjugated polymer for implantable electronics toward clinical application. Adv. Healthcare Mater. 10, 2001916 (2021).

    Article  CAS  Google Scholar 

  3. Fang, Y. et al. Dissecting biological and synthetic soft-hard interfaces for tissue-like systems. Chem. Rev. 122, 5233–5276 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Zeglio, E., Rutz, A. L., Winkler, T. E., Malliaras, G. G. & Herland, A. Conjugated polymers for assessing and controlling biological functions. Adv. Mater. 31, 1806712 (2019).

    Article  Google Scholar 

  6. Tang, T.-C. et al. Materials design by synthetic biology. Nat. Rev. Mater. 6, 332–350 (2021).

    Article  CAS  Google Scholar 

  7. Burgos-Morales, O. et al. Synthetic biology as driver for the biologization of materials sciences. Mater. Today Bio 11, 100115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kightlinger, W., Warfel, K. F., DeLisa, M. P. & Jewett, M. C. Synthetic glycobiology: parts, systems and applications. ACS Synth. Biol. 9, 1534–1562 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dai, Y. et al. Oxidative polymerization in living cells. J. Am. Chem. Soc. 143, 10709–10717 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, C. et al. Intracellular hyperbranched polymerization for circumventing cancer drug resistance. ACS Nano 17, 11905–11913 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Lv, N. et al. ROS-initiated in-situ polymerization of diacetylene-containing lipidated peptide amphiphile in living cells. Sci. China Mater. 65, 2861–2870 (2022).

    Article  CAS  Google Scholar 

  12. Kim, S. et al. Intramitochondrial disulfide polymerization controls cancer cell fate. ACS Nano 15, 14492–14508 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Shen, Q. et al. Intracellular radical polymerization of paclitaxel-bearing acrylamide for self-inflicted apoptosis of cancer cells. ACS Mater. Lett. 3, 1307–1314 (2021).

    Article  CAS  Google Scholar 

  14. Zhang, Y. et al. Controlled intracellular polymerization for cancer treatment. JACS Au 2, 579–589 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma, T. et al. Morphological transformation and in situ polymerization of caspase-3 responsive diacetylene-containing lipidated peptide amphiphile for self-amplified cooperative antitumor therapy. Small 18, 2204759 (2022).

    Article  CAS  Google Scholar 

  16. Qi, G. et al. Enzyme-mediated intracellular polymerization of AIEgens for light-up tumor localization and theranostics. Adv. Mater. 34, 2106885 (2022).

    Article  CAS  Google Scholar 

  17. Chen, Y. et al. Nanocompartment-confined polymerization in living systems. Nat. Commun. 14, 5229 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geng, J. et al. Radical polymerization inside living cells. Nat. Chem. 11, 578–586 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Liang, G., Ren, H. & Rao, J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem. 2, 54–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cui, L. et al. Reduction triggered in situ polymerization in living mice. J. Am. Chem. Soc. 142, 15575–15584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, L.-L. et al. Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions. Nat. Commun. 8, 1276 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peng, B., Zhao, X., Yang, M.-S. & Li, L.-L. Intracellular transglutaminase-catalyzed polymerization and assembly for bioimaging of hypoxic neuroblastoma cells. J. Mater. Chem. B 7, 5626–5632 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Nishio, K. et al. Magnetic control of cells by chemical fabrication of melanin. J. Am. Chem. Soc. 144, 16720–16725 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, M. et al. Tyrosine residues initiated photopolymerization in living organisms. Nat. Commun. 14, 3598 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, G. et al. Decorating an individual living cell with a shell of controllable thickness by cytocompatible surface initiated graft polymerization. Chem. Commun. 54, 4677–4680 (2018).

    Article  CAS  Google Scholar 

  26. Jiao, C., Zhao, C., Ma, Y. & Yang, W. A versatile strategy to coat individual cell with fully/partially covered shell for preparation of self-propelling living cells. ACS Nano 15, 15920–15929 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, S. H. et al. Mussel-inspired encapsulation and functionalization of individual yeast cells. J. Am. Chem. Soc. 133, 2795–2797 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Pan, C. et al. Polymerization-mediated multifunctionalization of living cells for enhanced cell-based therapy. Adv. Mater. 33, 2007379 (2021).

    Article  CAS  Google Scholar 

  29. Zhong, Y. et al. Site-selected in situ polymerization for living cell surface engineering. Nat. Commun. 14, 7285 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song, R.-B. et al. Living and conducting: coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem. Int. Ed. 56, 10516–10520 (2017).

    Article  CAS  Google Scholar 

  31. Ramanavicius, A. et al. Synthesis of polypyrrole within the cell wall of yeast by redox-cycling of [Fe(CN)6]3−/[Fe(CN)6]4−. Enzyme Microb. Technol. 83, 40–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Magennis, E. P. et al. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nat. Mater. 13, 748–755 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo, Y. et al. Synthesis of glycopolymers with specificity for bacterial strains via bacteria-guided polymerization. Chem. Sci. 10, 5251–5257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi, G. et al. Bacterium-templated polymer for self-selective ablation of multidrug-resistant bacteria. Adv. Funct. Mater. 30, 2001338 (2020).

    Article  CAS  Google Scholar 

  35. Chen, W. et al. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 12, 5995–6005 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, W. et al. Combination of bacterial-photothermal therapy with an anti-PD-1 peptide depot for enhanced immunity against advanced cancer. Adv. Funct. Mater. 30, 1906623 (2020).

    Article  CAS  Google Scholar 

  37. Yin, Z. et al. Supramolecular polymerization powered by Escherichia coli: fabricating a near-infrared photothermal antibacterial agent in situ. CCS Chem. 4, 3285–3295 (2022).

    Article  CAS  Google Scholar 

  38. Qi, J. et al. Cyto-friendly polymerization at cell surfaces modulates cell fate by clustering cell-surface receptors. Chem. Sci. 11, 4221–4225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qi, R. et al. In situ synthesis of photoactive polymers on a living cell surface via bio-palladium catalysis for modulating biological functions. Angew. Chem. Int. Ed. 60, 5759–5765 (2021).

    Article  CAS  Google Scholar 

  40. Lilly, J. L., Romero, G., Xu, W., Shin, H. Y. & Berron, B. J. Characterization of molecular transport in ultrathin hydrogel coatings for cellular immunoprotection. Biomacromolecules 16, 541–549 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, J. Y. et al. Cytocompatible polymer grafting from individual living cells by atom-transfer radical polymerization. Angew. Chem. Int. Ed. 55, 15306–15309 (2016).

    Article  CAS  Google Scholar 

  42. Niu, J. et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 9, 537–545 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Bennett, M. R., Gurnani, P., Hill, P. J., Alexander, C. & Rawson, F. J. Iron-catalysed radical polymerisation by living bacteria. Angew. Chem. Int. Ed. 59, 4750–4755 (2020).

    Article  CAS  Google Scholar 

  44. Liu, J. et al. Genetically targeted chemical assembly of functional materials in living cells, tissues and animals. Science 367, 1372–1376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, A. et al. Genetically targeted chemical assembly of polymers specifically localized extracellularly to surface membranes of living neurons. Sci. Adv. 9, eadi1870 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sessler, C. D. et al. Optogenetic polymerization and assembly of electrically functional polymers for modulation of single-neuron excitability. Sci. Adv. 8, eade1136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, A., Jiang, Y., Loh, K. Y., Bao, Z. & Deisseroth, K. Genetically targeted chemical assembly. Nat. Rev. Bioeng. 2, 82–94 (2024).

    Article  Google Scholar 

  48. Richardson-Burns, S. M. et al. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28, 1539–1552 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Richardson-Burns, S. M., Hendricks, J. L. & Martin, D. C. Electrochemical polymerization of conducting polymers in living neural tissue. J. Neural Eng. 4, L6–L13 (2007).

    Article  PubMed  Google Scholar 

  50. Murbach, J. M. et al. In situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) for peripheral nerve interfaces. MRS Commun. 8, 1043–1049 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ouyang, L., Green, R., Feldman, K. E. & Martin, D. C. in Progress in Brain Research Vol. 194 (eds Schouenborg, J. et al.) 263–271 (Elsevier, 2011).

  52. Ouyang, L., Shaw, C. L., Kuo, C.-C., Griffin, A. L. & Martin, D. C. In vivo polymerization of poly(3,4-ethylenedioxythiophene) in the living rat hippocampus does not cause a significant loss of performance in a delayed alternation task. J. Neural Eng. 11, 026005 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen, H.-l, Yang, D., Chen, C.-R., Tian, G.-Z. & Kim, D.-H. In situ polymerization of conducting polymers around living neural cells: cellular effect study. Colloids Surf. B 213, 112410 (2022).

    Article  CAS  Google Scholar 

  54. Zhang, A., Zwang, T. J. & Lieber, C. M. Biochemically functionalized probes for cell-type-specific targeting and recording in the brain. Sci. Adv. 9, eadk1050 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bodart, C. et al. Electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) coatings for implantable deep-brain-stimulating microelectrodes. ACS Appl. Mater. Interfaces 11, 17226–17233 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Stavrinidou, E. et al. In vivo polymerization and manufacturing of wires and supercapacitors in plants. Proc. Natl Acad. Sci. USA 114, 2807–2812 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dufil, G. et al. Enzyme-assisted in vivo polymerisation of conjugated oligomer based conductors. J. Mater. Chem. B 8, 4221–4227 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Parker, D. et al. Biohybrid plants with electronic roots via in vivo polymerization of conjugated oligomers. Mater. Horiz. 8, 3295–3305 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Mantione, D. et al. Thiophene-based trimers for in vivo electronic functionalization of tissues. ACS Appl. Electron. Mater. 2, 4065–4071 (2020).

    Article  CAS  Google Scholar 

  60. Tommasini, G. et al. Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers. Bioact. Mater. 10, 107–116 (2022).

    CAS  PubMed  Google Scholar 

  61. Strakosas, X. et al. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics. Science 379, 795–802 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Yokel, R. A. Nanoparticle brain delivery: a guide to verification methods. Nanomedicine 15, 409–432 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, A. et al. H2O2-activated in situ polymerization of aniline derivative in hydrogel for real-time monitoring and inhibition of wound bacterial infection. Biomaterials 289, 121798 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, A. et al. In situ polymerization of aniline derivative in vivo for NIR-II phototheranostics of tumor. ACS Appl. Mater. Interfaces 15, 5870–5882 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Qin, Y. et al. Harnessing oxidative microenvironment for in vivo synthesis of subcellular conductive polymer microvesicles enhances nerve reconstruction. Nano Lett. 22, 3825–3831 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. van der Vliet, A. & Janssen-Heininger, Y. M. W. Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator or messenger? J. Cell. Biochem. 115, 427–435 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fan, G., Graham, A. J., Kolli, J., Lynd, N. A. & Keitz, B. K. Aerobic radical polymerization mediated by microbial metabolism. Nat. Chem. 12, 638–646 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moradali, M. F. & Rehm, B. H. A. Bacterial biopolymers: from pathogenesis to advanced materials. Nat. Rev. Microbiol. 18, 195–210 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gilbert, C. & Ellis, T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 1–15 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Future Manufacturing Program grant (award no. 2037164) and the Keck Foundation. Z.B. is a CZ Biohub-San Francisco Investigator and an Arc Institute Innovation Investigator. A.Z. acknowledges support from the American Heart Association (AHA; award no. 23POST1018301).

Author information

Authors and Affiliations

Authors

Contributions

A.Z., K.D. and Z.B. wrote the manuscript. S.Z. and J.T. contributed to the discussions and revisions.

Corresponding authors

Correspondence to Karl Deisseroth or Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Bozhi Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Zhao, S., Tyson, J. et al. Applications of synthetic polymers directed toward living cells. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00560-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing