Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

The genetic architecture of biological age in nine human organ systems

Abstract

Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci–BAG pairs (P < 5 × 10–8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer’s disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genomic loci associated with the nine BAGs.
Fig. 2: Phenome-wide associations of the identified genomic loci and SNP-wide heritability estimates of the nine BAGs.
Fig. 3: Gene-level biological pathway annotation and tissue-specific gene expression.
Fig. 4: Gene–drug–disease network of the nine BAGs.
Fig. 5: Partitioned heritability enrichment and genetic correlation of the nine BAGs.
Fig. 6: Causal multiorgan network between the nine BAGs and 17 clinical traits of chronic diseases, lifestyle factors and cognition.

Similar content being viewed by others

Data availability

This study used the UK Biobank resource under application numbers 35148 and 60698. The raw imaging data are restricted to registered researchers and are protected and unavailable due to data privacy laws; access can be obtained at https://www.ukbiobank.ac.uk/. The GWAS summary statistics corresponding to this study are publicly available on the MEDICINE knowledge portal (https://labs-laboratory.com/medicine). The gene–drug–disease network used data from the DrugBank database (v.5.1.9; https://go.drugbank.com/). Our genetic analyses also used GWAS summary statistics from the IEU OpenGWAS database (https://gwas.mrcieu.ac.uk/) and GWAS Catalog (https://www.ebi.ac.uk/gwas/) as well as GWAS summary data from individual studies by requesting directly from the authors. Gene sets were obtained from the Molecular Signatures Database (MSigDB, v7.5.1; https://www.gsea-msigdb.org/gsea/msigdb/). Tissue specificity enrichment analysis used data from GTEx V8 (https://gtexportal.org/home/). The analysis for partitioned heritability estimates used data from ROADMAP (https://egg2.wustl.edu/roadmap/web_portal/) and ENTEx (https://www.encodeproject.org/). All source data and original figures are also publicly available at Zenodo at https://doi.org/10.5281/zenodo.11075409 (ref. 84). All unrestricted data supporting the findings are also available from the corresponding author upon request.

Code availability

The software and resources used in this study are all publicly available at the following links:

• BioAge (git version 37e54eb): https://github.com/yetianmed/BioAge, biological age prediction

• PLINK (v2.0): https://www.cog-genomics.org/plink/, linear model GWAS

• FUMA (v1.5.0): https://fuma.ctglab.nl/, gene mapping and genomic locus annotation

• GCTA (v1.94.1): https://yanglab.westlake.edu.cn/software/gcta/#Overview, heritability estimates and mixed-effect GWAS with fastGWA

• LDSC (git version aa33296): https://github.com/bulik/ldsc, genetic correlation and partitioned heritability

• TwoSampleMR (v0.5.6): https://mrcieu.github.io/TwoSampleMR/index.html, Mendelian randomization

• Coloc (v5): https://github.com/chr1swallace/coloc, Bayesian colocalization

• LCV (git version 39950a8): https://github.com/lukejoconnor/LCV, LCV for causal inference

• GREP (v1.0.0): https://github.com/saorisakaue/GREP, gene–drug–disease network analysis

References

  1. Melzer, D., Pilling, L. C. & Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. 21, 88–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Hodson, R. Precision medicine. Nature 537, S49 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Tian, Y. E. et al. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat. Med. 29, 1221–1231 (2023).https://doi.org/10.1038/s41591-023-02296-6

  4. Wen, J. et al. Genetic, clinical underpinnings of brain change along two neuroanatomical dimensions of clinically-defined Alzheimer’s disease. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2022.09.16.508329v3 (2024).

  5. Liu, Y. et al. Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning. eLife 10, e65554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCracken, C. et al. Multi-organ imaging demonstrates the heart–brain–liver axis in UK Biobank participants. Nat. Commun. 13, 7839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nie, C. et al. Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep. 38, 110459 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nat. Metab. 1, 1177–1188 (2019).

    Article  PubMed  Google Scholar 

  9. Wen, J. et al. The genetic architecture of multimodal human brain age. Nat. Commun. 15, 2604 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Evans, L. M. et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat. Genet. 50, 737–745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nikolsky, Y. et al. Genome-wide functional synergy between amplified and mutated genes in human breast cancer. Cancer Res. 68, 9532–9540 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, T. et al. Genome-wide DNA methylation analysis of pulmonary function in middle and old-aged Chinese monozygotic twins. Respir. Res. 22, 300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. GTEx Consortium. The Genotype–Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

  18. Mittermayer, F. et al. Addressing unmet medical needs in type 2 diabetes: a narrative review of drugs under development. Curr. Diabetes Rev. 11, 17–31 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheverud, J. M. A comparison of genetic and phenotypic correlations. Evolution 42, 958–968 (1988).

  20. Regitz-Zagrosek, V. & Gebhard, C. Gender medicine: effects of sex and gender on cardiovascular disease manifestation and outcomes. Nat. Rev. Cardiol. 20, 236–247 (2023).

    Article  PubMed  Google Scholar 

  21. Hwang, G. et al. Assessment of neuroanatomical endophenotypes of autism spectrum disorder and association with characteristics of individuals with schizophrenia and the general population. JAMA Psychiatry 80, 498–507 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wen, J. et al. Characterizing heterogeneity in neuroimaging, cognition, clinical symptoms, and genetics among patients with late-life depression. JAMA Psychiatry 79, 464–474 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang, Z. et al. A deep learning framework identifies dimensional representations of Alzheimer’s disease from brain structure. Nat. Commun. 12, 7065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chand, G. B. et al. Schizophrenia imaging signatures and their associations with cognition, psychopathology, and genetics in the general population. Am. J. Psychiatry 179, 650–660 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Deelen, J. et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat. Commun. 10, 3669 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hill, W. D. et al. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nat. Commun. 10, 5741 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Codd, V. et al. Polygenic basis and biomedical consequences of telomere length variation. Nat. Genet. 53, 1425–1433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Connor, L. J. & Price, A. L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 50, 1728–1734 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smith, S. M. et al. Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations. eLife 9, e52677 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. London, A., Benhar, I. & Schwartz, M. The retina as a window to the brain—from eye research to CNS disorders. Nat. Rev. Neurol. 9, 44–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, B. et al. Heart–brain connections: phenotypic and genetic insights from magnetic resonance images. Science 380, abn6598 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Parlakgül, G. et al. Regulation of liver subcellular architecture controls metabolic homeostasis. Nature 603, 736–742 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Díaz Del Moral, S., Benaouicha, M., Muñoz-Chápuli, R. & Carmona, R. The insulin-like growth factor signalling pathway in cardiac development and regeneration. Int. J. Mol. Sci. 23, 234 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shen, H. et al. Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling. eLife 9, e53071 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, Q. et al. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat. Metab. 3, 1706–1726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tan, P., Jin, L., Qin, X. & He, B. Natural flavonoids: potential therapeutic strategies for non-alcoholic fatty liver disease. Front. Pharmacol. 13, 1005312 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao, B. et al. Common genetic variation influencing human white matter microstructure. Science 372, eabf3736 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ballard, C. et al. Drug repositioning and repurposing for Alzheimer disease. Nat. Rev. Neurol. 16, 661–673 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Okun, J. G. et al. Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nat. Metab. 3, 394–409 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Barsh, G. S., Farooqi, I. S. & O’Rahilly, S. Genetics of body-weight regulation. Nature 404, 644–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Anandacoomarasamy, A., Caterson, I., Sambrook, P., Fransen, M. & March, L. The impact of obesity on the musculoskeletal system. Int. J. Obes. 32, 211–222 (2008).

    Article  CAS  Google Scholar 

  45. Van Gaal, L. F., Mertens, I. L. & De Block, C. E. Mechanisms linking obesity with cardiovascular disease. Nature 444, 875–880 (2006).

    Article  PubMed  Google Scholar 

  46. Stanikova, D. et al. Testosterone imbalance may link depression and increased body weight in premenopausal women. Transl. Psychiatry 9, 160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fyfe, I. Influence of amyloid-β on tau spread in Alzheimer disease explained. Nat. Rev. Neurol. 18, 318–318 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med. 12, 1005–1015 (2006).

    CAS  PubMed  Google Scholar 

  49. Lacroix, A. et al. Sex modulation of faces prediction error in the autistic brain. Commun. Biol. 7, 127 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Y. et al. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Transl. Psychiatry 10, 4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferretti, M. T. et al. Sex differences in Alzheimer disease—the gateway to precision medicine. Nat. Rev. Neurol. 14, 457–469 (2018).

    Article  PubMed  Google Scholar 

  52. Li, F. et al. Sex differences orchestrated by androgens at single-cell resolution. Nature 629, 193–200 (2024).

  53. Zuber, V. et al. Multi-response Mendelian randomization: identification of shared and distinct exposures for multimorbidity and multiple related disease outcomes. Am. J. Hum. Genet. 110, 1177–1199 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xue, A. et al. Genome-wide analyses of behavioural traits are subject to bias by misreports and longitudinal changes. Nat. Commun. 12, 20211 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Primers 2, 6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zheng, J., Li, Y., Abecasis, G. R. & Scheet, P. A comparison of approaches to account for uncertainty in analysis of imputed genotypes. Genet. Epidemiol. 35, 102–110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet. 11, 459–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abraham, G., Qiu, Y. & Inouye, M. FlashPCA2: principal component analysis of Biobank-scale genotype datasets. Bioinformatics 33, 2776–2778 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Wen, J. et al. Genomic loci influence patterns of structural covariance in the human brain. Proc. Natl Acad. Sci. USA 120, e2300842120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. Nat. Genet. 51, 1749–1755 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. Preprint at bioRxiv https://doi.org/10.1101/2020.08.10.244293 (2020).

  67. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sey, N. Y. A. et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. Neurosci. 23, 583–593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat. Genet. 55, 1267–1276 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Sakaue, S. & Okada, Y. GREP: genome for REPositioning drugs. Bioinformatics 35, 3821–3823 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  77. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Burgess, S. et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res. 4, 186 (2019).

    Article  PubMed  Google Scholar 

  79. Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR Statement. JAMA 326, 1614–1621 (2021).

    Article  PubMed  Google Scholar 

  80. Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wen, J. The genetic architecture of biological age in nine human organ systems. Zenodo https://zenodo.org/records/11075409 (2024).

Download references

Acknowledgements

We want to express our gratitude to the UK Biobank team for their invaluable contribution to advancing clinical research in our field. We gratefully acknowledge the support of the iSTAGING Consortium, funded by the National Institute on Aging through grant RF1 AG054409 at the University of Pennsylvania (C.D.). Additionally, we acknowledge the funding program from the Rebecca L. Cooper Foundation at the University of Melbourne (A.Z.). We thank P. Parmpi and J. Incmikoski at the University of Pennsylvania for their valuable administrative support. We thank J. Deelen and J. M. Murabito for their generosity in providing the GWAS summary statistics.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: J.W. Acquisition, analysis or interpretation of data: J.W. Drafting of the manuscript: J.W., Y.E.T., A.Z. and C.D. Critical revision of the manuscript for important intellectual content: J.W., Y.E.T., I.S., Z.Y., Y.C., F.A., E.M., B.Z., A.Q.T., A.Z. and C.D. Statistical analysis: J.W. BAG index generation: Y.E.T.

Corresponding author

Correspondence to Junhao Wen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Amanda Elliot, Dan Arking and Luke Pilling for their contributions to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Scatterplots of the main GWAS sensitivity analysis for nine BAGs.

We scrutinized the robustness of the nine primary GWAS using the European ancestry populations by fully considering linkage disequilibrium. We only included the independent significant SNPs in four different sensitivity check analyses. We reported three statistics i) r-β: Pearson’s r between the two sets of β coefficients from the two splits; ii) C-β: concordance rate of the sign of the β coefficients from the two splits – if the same SNP exerts the same protective/risk effect between the two splits; iii) P-β: the difference between the two sets of β coefficients from the two splits – if the two sets of β coefficients (mean) statistically differ (two-sample t-test). Detailed statistics are presented in Supplementary Note 1 for a) split-sample, b) sex-stratified, c) fastGWA vs. PLINK, and d) European vs. Non-European GWAS analyses.

Extended Data Fig. 2 SNP-based heritability, beta coefficients, and alternative allele frequency using the brain-BAG comparable populations and different inclusion criteria for the SNPs.

a) The SNP-based heritability of the nine BAGs using populations from downsampling to the brain BAG population. Error bars represent the standard error of the estimated parameters, and the measure of the center for the error bars represents the inferred statistics (that is, SNP-based heritability). b) The absolute value of the beta coefficients of the independent significant SNPs of the nine BAG GWASs using populations from downsampling to the brain BAG population (N = 30,108); the independent significant SNPs are shown separately for each BAG. c) The alternative (effective) allele frequency of the independent significant SNPs from the nine BAG GWASs using populations from downsampling to the brain BAG population (N = 30,108). d) The beta coefficients of the independent significant SNPs using the original full samples but with all identified independent significant SNPs across the nine BAG GWASs (with the same number of SNPs tested), where we see no difference regarding allele frequency in Figure e). f) The absolute value of the beta coefficients of the independent significant SNPs plus the candidate SNPs in LD of the nine BAG GWASs using the original full samples; the SNPs are shown separately for each BAG. g) The alternative allele frequency for the setting in Figure f). h) The absolute beta coefficients of the nine BAGs using all genome-wide SNPs (the y-axis was truncated to 0.1 for visualization purposes). i) the alternative allele frequency did not differ for Figure h) including all genome-wide SNPs. For Figure c, e, g, and i, the upper/lower whiskers show the upper/lower boundaries based on the 1.5xthe interquartile range (IQR). The upper/lower hinge displays the top/bottom end of the IQR. The central measures denote the median values.

Extended Data Fig. 3 Trumpet plots of the alternative allele frequency vs. the beta coefficient of the nine BAG GWASs.

The trumpet plots display the inverse relationship between the alternative (effect) allele frequency and the effect size (beta coefficient) for the brain, cardiovascular, eye, hepatic, immune, metabolic, musculoskeletal, pulmonary, and renal BAGs. Only the independent significant SNPs were considered. The dot size corresponds to the effect size, while the transparency of the dot is proportional to its statistical significance.

Extended Data Fig. 4 Bayesian colocalization signal between the pulmonary BAG and FEV/FVC.

Here, we illustrate the colocalization signal between the pulmonary BAG and the FEV/FCV feature at the genomic locus: 4q24, with the top lead SNP (causal SNP: rs7664805). Genetic colocalization was evidenced at one locus (4q24) between the pulmonary BAG and the FEV/FCV feature. The signed PP.H4.ABF (0.99) denotes the posterior probability (PP) of hypothesis H4, which suggests that both traits share the same causal SNP (rs7664805). All P-values were two-sided.

Extended Data Fig. 5 Gene-set enrichment analysis using sex-stratified GWAS results.

Gene-set enrichment analysis was performed using the GWAS summary statistics specific to females (a) and males (b). Gene set enrichment analyses were performed using curated gene sets and GO terms from the MsigDB database. Only significant gene sets are presented after adjusting for multiple comparisons using the Bonferroni correction. All P-values were two-sided.

Extended Data Fig. 6 Tissue-specific gene expression analysis using sex-stratified GWAS results.

Tissue-specific enrichment analysis was performed using the GWAS summary statistics specific to females (a) and males (b). Gene-property analyses evaluate tissue-specific gene expressions for the nine BAG-related genes using the full SNP P-values distribution. Only significant gene sets are presented after adjusting for multiple comparisons using the Bonferroni correction. All P-values were two-sided.

Extended Data Fig. 7 Genetic correlations using sex-stratified GWAS results.

The genetic correlation between each pair of BAGs was determined using sex-stratified GWAS summary statistics from our analyses. Most of the genetic correlations showed consistency between females and males, albeit sex differences are evident in certain BAGs, particularly in the cardiovascular BAG results. Specifically, males exhibit dominant correlations between cardiovascular BAGs and hepatic and renal BAGs, while females demonstrate specific correlations with musculoskeletal and pulmonary BAGs. All P-values were two-sided, and Bonferroni correction was employed to denote significant signals (* symbols).

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Tian, Y.E., Skampardoni, I. et al. The genetic architecture of biological age in nine human organ systems. Nat Aging (2024). https://doi.org/10.1038/s43587-024-00662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43587-024-00662-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing