Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Origami engineering

Abstract

Origami traces its origins to an ancient art form transforming flat thin surfaces into various complex, fabulous 3D objects. Nowadays, such transformation transcends art by offering a conceptual framework for non-destructive and scale-independent abstractions for engineering applications across diverse fields with potential impact in education, science and technology. For instance, a growing number of architected materials and structures are based on origami principles, leading to unique properties that are distinct from those previously found in either natural or engineered systems. To disseminate those concepts, this Primer provides a comprehensive overview of the major principles and elements in origami engineering, including theoretical fundamentals, simulation tools, manufacturing techniques and testing protocols that require non-standard set-ups. We highlight applications involving deployable structures, metamaterials, robotics, medical devices and programmable matter to achieve functions such as vibration control, mechanical computing and shape morphing. We identify challenges for the field, including finite rigidity, panel thickness accommodation, incompatibility with regular mechanical testing devices, manufacturing of non-developable patterns, sensitivity to imperfections and identifying the relevant physics at the scale of interest. We further envision the future of origami engineering aimed at next-generation multifunctional material and structural systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Origami overview.
Fig. 2: Origami experiments and manufacturing.
Fig. 3: Set-up designed for conducting compression and torsion experiments on the Kresling origami.
Fig. 4: Representation of the fusion of geometry, mathematics and art through origami tessellations.
Fig. 5: Mechanics of origami structures.
Fig. 6: Origami applications.

Similar content being viewed by others

References

  1. Kresling, B. Origami-structures in nature: lessons in designing “smart” materials. MRS Online Proceedings Library 1420, 42–54 (2012).

    Article  Google Scholar 

  2. Kresling, B. Folded tubes as compared to kikko (‘tortoise-shell’) bamboo. Origami 3, 197–207 (2002).

    Google Scholar 

  3. Foster, C. G. Some observations on the Yoshimura buckle pattern for thin-walled cylinders. J. Appl. Mech. 46, 377–380 (1979).

    Article  ADS  Google Scholar 

  4. Liu, K., Tachi, T. & Paulino, G. H. Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces. Nat. Commun. 10, 4238 (2019).

    Article  ADS  Google Scholar 

  5. Cheung, K. C., Tachi, T., Calisch, S. & Miura, K. Origami interleaved tube cellular materials. Smart Mater. Struct. 23, 094012 (2014).

    Article  ADS  Google Scholar 

  6. Hull, T. Project Origami: Activities for Exploring Mathematics (CRC, 2012).

  7. O’Rourke, J. How to Fold It: The Mathematics of Linkages, Origami, and Polyhedra (Cambridge Univ. Press, 2011).

  8. Demaine, E. D. & Joseph, O. R. Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Cambridge Univ. Press, 2007).

  9. Ma, J., Zang, S., Feng, H., Chen, Y. & You, Z. Theoretical characterization of a non-rigid-foldable square-twist origami for property programmability. Int. J. Mech. Sci. 189, 105981 (2021).

    Article  Google Scholar 

  10. Wang, L.-C. et al. Active reconfigurable tristable square-twist origami. Adv. Funct. Mater. 30, 1909087 (2020).

    Article  Google Scholar 

  11. Li, Y. & Pellegrino, S. A theory for the design of multi-stable morphing structures. J. Mech. Phys. Solids 136, 103772 (2020).

    Article  MathSciNet  Google Scholar 

  12. Belcastro, S.-M. & Hull, T. C. Modelling the folding of paper into three dimensions using affine transformations. Linear Algebra Its Appl. 348, 273–282 (2002).

    Article  MathSciNet  Google Scholar 

  13. Hull, T. C. Origametry: Mathematical Methods in Paper Folding (Cambridge Univ. Press, 2020).

  14. Tachi, T. Generalization of rigid-foldable quadrilateral-mesh origami. J. Int. Assoc. Shell Spat. Struct. 50, 173–179 (2009).

    Google Scholar 

  15. Peraza Hernandez, E. A., Hartl, D. J. & Lagoudas, D. C. Active Origami: Modeling, Design, and Applications (Springer, 2018).

  16. J. Denavit, R. S. H. A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 22, 215–221 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  17. Chen, Y., Peng, R. & You, Z. Origami of thick panels. Science 349, 396–400 (2015).

    Article  ADS  Google Scholar 

  18. Chen, Y. & You, Z. Motion Structures: Deployable Structural Assemblies of Mechanisms (CRC, 2011).

  19. Abel, Z. et al. Rigid origami vertices: conditions and forcing sets. J. Comput. Geom. 7, 171–184 (2016).

    MathSciNet  Google Scholar 

  20. He, Z. & Guest, S. D. On rigid origami I: piecewise-planar paper with straight-line creases. Proc. R. Soc. Math. Phys. Eng. Sci. 475, 20190215 (2019).

    ADS  MathSciNet  Google Scholar 

  21. He, Z. & Guest, S. D. On rigid origami II: quadrilateral creased papers. Proc. R. Soc. Math. Phys. Eng. Sci. 476, 20200020 (2020).

    ADS  MathSciNet  Google Scholar 

  22. Tachi, T. in Origami 4 1st edn, Ch. 16 (ed. Lang, R. J.) 175–187 (A K Peters/CRC Press, 2009).

  23. Lang, R. J., Tolman, K. A., Crampton, E. B., Magleby, S. P. & Howell, L. L. A review of thickness-accommodation techniques in origami-inspired engineering. Appl. Mech. Rev. 70, 010805 (2018).

    Article  ADS  Google Scholar 

  24. Tachi, T. Rigid-foldable thick origami. Origami 5, 253–264 (2011).

    Article  Google Scholar 

  25. Edmondson, B. J., Lang, R. J., Magleby, S. P. & Howell, L. L. An offset panel technique for thick rigidily foldable origami. in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Vol. 46377 V05BT08A054 (American Society of Mechanical Engineers, 2015).

  26. Gu, Y., Wei, G. & Chen, Y. Thick-panel origami cube. Mech. Mach. Theory 164, 104411 (2021).

    Article  Google Scholar 

  27. Ku, J. S. & Demaine, E. D. Folding flat crease patterns with thick materials. J. Mech. Robot. 8, 031003 (2016).

    Article  Google Scholar 

  28. Yang, J., Zhang, X., Chen, Y. & You, Z. Folding arrays of uniform-thickness panels to compact bundles with a single degree of freedom. Proc. R. Soc. Math. Phys. Eng. Sci. 478, 20220043 (2022).

    ADS  MathSciNet  Google Scholar 

  29. Lang, R. J., Nelson, T., Magleby, S. & Howell, L. Thick rigidly foldable origami mechanisms based on synchronized offset rolling contact elements. J. Mech. Robot. 9, 021013 (2017).

    Article  Google Scholar 

  30. Schenk, M. & Guest, S. D. Geometry of Miura-folded metamaterials. Proc. Natl Acad. Sci. USA 110, 3276–3281 (2013).

    Article  ADS  Google Scholar 

  31. Pratapa, P. P., Liu, K. & Paulino, G. H. Geometric mechanics of origami patterns exhibiting Poisson’s ratio switch by breaking mountain and valley assignment. Phys. Rev. Lett. 122, 155501 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  32. Liu, K., Pratapa, P. P., Misseroni, D., Tachi, T. & Paulino, G. H. Triclinic metamaterials by tristable origami with reprogrammable frustration. Adv. Mater. 34, 2107998 (2022).

    Article  Google Scholar 

  33. Melancon, D., Gorissen, B., García-Mora, C. J., Hoberman, C. & Bertoldi, K. Multistable inflatable origami structures at the metre scale. Nature 592, 545–550 (2021).

    Article  ADS  Google Scholar 

  34. Kaufmann, J., Bhovad, P. & Li, S. Harnessing the multistability of Kresling origami for reconfigurable articulation in soft robotic arms. Soft Robot. 9, 212–223 (2022).

    Article  Google Scholar 

  35. Lu, L., Dang, X., Feng, F., Lv, P. & Duan, H. Conical Kresling origami and its applications to curvature and energy programming. Proc. R. Soc. A 478, 20210712 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  36. Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).

    Article  ADS  Google Scholar 

  37. Filipov, E. T., Tachi, T. & Paulino, G. H. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl Acad. Sci. USA 112, 12321–12326 (2015).

    Article  ADS  Google Scholar 

  38. Jamalimehr, A., Mirzajanzadeh, M., Akbarzadeh, A. & Pasini, D. Rigidly flat-foldable class of lockable origami-inspired metamaterials with topological stiff states. Nat. Commun. 13, 1816 (2022).

    Article  ADS  Google Scholar 

  39. Zhai, Z., Wang, Y. & Jiang, H. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proc. Natl Acad. Sci. USA 115, 2032–2037 (2018).

    Article  ADS  Google Scholar 

  40. Yasuda, H., Tachi, T., Lee, M. & Yang, J. Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat. Commun. 8, 962 (2017).

    Article  ADS  Google Scholar 

  41. Kim, W. et al. Bioinspired dual-morphing stretchable origami. Sci. Robot. 4, eaay3493 (2019).

    Article  Google Scholar 

  42. Kotikian, A. et al. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 4, eaax7044 (2019).

    Article  Google Scholar 

  43. Mintchev, S., Shintake, J. & Floreano, D. Bioinspired dual-stiffness origami. Sci. Robot. 3, eaau0275 (2018).

    Article  Google Scholar 

  44. Pratapa, P. P., Suryanarayana, P. & Paulino, G. H. Bloch wave framework for structures with nonlocal interactions: application to the design of origami acoustic metamaterials. J. Mech. Phys. Solids 118, 115–132 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  45. Yasuda, H. et al. Origami-based impact mitigation via rarefaction solitary wave creation. Sci. Adv. 5, eaau2835 (2019).

    Article  ADS  Google Scholar 

  46. Novelino, L. S., Ze, Q., Wu, S., Paulino, G. H. & Zhao, R. Untethered control of functional origami microrobots with distributed actuation. Proc. Natl Acad. Sci. USA 117, 24096–24101 (2020).

    Article  ADS  Google Scholar 

  47. Liu, K., Novelino, L. S., Gardoni, P. & Paulino, G. H. Big influence of small random imperfections in origami-based metamaterials. Proc. R. Soc. A 476, 20200236 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  48. Xia, Y., Kidambi, N., Filipov, E. & Wang, K.-W. Deployment dynamics of Miura origami sheets. J. Comput. Nonlinear Dyn. 17, 071005 (2022).

    Article  Google Scholar 

  49. Misseroni, D., Pratapa, P. P., Liu, K. & Paulino, G. H. Experimental realization of tunable Poisson’s ratio in deployable origami metamaterials. Extreme Mech. Lett. 53, 101685 (2022).

    Article  Google Scholar 

  50. Mora, S., Pugno, N. M. & Misseroni, D. 3D printed architected lattice structures by material jetting. Mater. Today 107, 132 (2022).

    Google Scholar 

  51. Melancon, D., Forte, A. E., Kamp, L. M., Gorissen, B. & Bertoldi, K. Inflatable origami: multimodal deformation via multistability. Adv. Funct. Mater. 32, 2201891 (2022).

    Article  Google Scholar 

  52. Mehrpouya, M., Azizi, A., Janbaz, S. & Gisario, A. Investigation on the functionality of thermoresponsive origami structures. Adv. Eng. Mater. 22, 2000296 (2020).

    Article  Google Scholar 

  53. Dalaq, A. S. & Daqaq, M. F. Experimentally-validated computational modeling and characterization of the quasi-static behavior of functional 3D-printed origami-inspired springs. Mater. Des. 216, 110541 (2022).

    Article  Google Scholar 

  54. Huang, C., Tan, T., Hu, X., Yang, F. & Yan, Z. Bio-inspired programmable multi-stable origami. Appl. Phys. Lett. 121, 051902 (2022).

    Article  ADS  Google Scholar 

  55. Qi, J., Li, C., Tie, Y., Zheng, Y. & Duan, Y. Energy absorption characteristics of origami-inspired honeycomb sandwich structures under low-velocity impact loading. Mater. Des. 207, 109837 (2021).

    Article  Google Scholar 

  56. Zhao, Z. et al. 3D printing of complex origami assemblages for reconfigurable structures. Soft Matter 14, 8051–8059 (2018).

    Article  ADS  Google Scholar 

  57. Zhao, Z. et al. Origami by frontal photopolymerization. Sci. Adv. 3, e1602326 (2017).

    Article  ADS  Google Scholar 

  58. Lin, Z. et al. Folding at the microscale: enabling multifunctional 3D origami-architected metamaterials. Small 16, 2002229 (2020).

    Article  Google Scholar 

  59. Fang, Z. et al. Modular 4D printing via interfacial welding of digital light-controllable dynamic covalent polymer networks. Matter 2, 1187–1197 (2020).

    Article  Google Scholar 

  60. Ge, Q., Dunn, C. K., Qi, H. J. & Dunn, M. L. Active origami by 4D printing. Smart Mater. Struct. 23, 094007 (2014).

    Article  ADS  Google Scholar 

  61. Xia, X., Spadaccini, C. M. & Greer, J. R. Responsive materials architected in space and time. Nat. Rev. Mater. 7, 683–701 (2022).

    Article  ADS  Google Scholar 

  62. Chen, T., Bilal, O. R., Lang, R., Daraio, C. & Shea, K. Autonomous deployment of a solar panel using elastic origami and distributed shape-memory-polymer actuators. Phys. Rev. Appl. 11, 064069 (2019).

    Article  ADS  Google Scholar 

  63. Liu, K. & Paulino, G. H. Nonlinear mechanics of non-rigid origami: an efficient computational approach. Proc. R. Soc. Math. Phys. Eng. Sci. 473, 20170348 (2017).

    ADS  MathSciNet  Google Scholar 

  64. Zang, S., Misseroni, D., Zhao, T. & Paulino, G.H. Kresling origami mechanics explained: experiments and theory. J. Mech. Phys. Solids 188, 105630 (2024).

    Article  MathSciNet  Google Scholar 

  65. Sitti, M. Mobile Microrobotics (MIT Press, 2017).

  66. Cui, J. et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 575, 164–168 (2019).

    Article  ADS  Google Scholar 

  67. Thota, M. & Wang, K. W. Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation. J. Appl. Phys. 122, 154901 (2017).

    Article  ADS  Google Scholar 

  68. Boatti, E., Vasios, N. & Bertoldi, K. Origami metamaterials for tunable thermal expansion. Adv. Mater. 29, 1700360 (2017).

    Article  Google Scholar 

  69. Mukhopadhyay, T. et al. Programmable stiffness and shape modulation in origami materials: emergence of a distant actuation feature. Appl. Mater. Today 19, 100537 (2020).

    Article  Google Scholar 

  70. Silverberg, J. L. et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647–650 (2014).

    Article  ADS  Google Scholar 

  71. Lang, R. J. Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami (CRC, 2017).

  72. Miura, K. & Lang, R. J. The science of Miura-ori: a review. Origami 4, 87–99 (2009).

    Google Scholar 

  73. Kobayashi, H., Kresling, B. & Vincent, J. F. V. The geometry of unfolding tree leaves. Proc. R. Soc. Lond. B Biol. Sci. 265, 147–154 (1998).

    Article  Google Scholar 

  74. Chen, Y., Feng, H., Ma, J., Peng, R. & You, Z. Symmetric waterbomb origami. Proc. R. Soc. Math. Phys. Eng. Sci. 472, 20150846 (2016).

    ADS  MathSciNet  Google Scholar 

  75. Randlett, S. The Art of Origami: Paper Folding, Traditional and Modern (EP Dutton, 1961).

  76. Pratapa, P. P. & Bellamkonda, A. Thick panel origami for load-bearing deployable structures. Mech. Res. Commun. 124, 103937 (2022).

    Article  Google Scholar 

  77. Tachi, T. Design of infinitesimally and finitely flexible origami based on reciprocal figures. J. Geom. Graph. 16, 223–234 (2012).

    MathSciNet  Google Scholar 

  78. Suto, K., Noma, Y., Tanimichi, K., Narumi, K. & Tachi, T. Crane: an integrated computational design platform for functional, foldable, and fabricable origami products. ACM Trans. Comput. Hum. Interact. 30, 1–29 (2023).

    Article  Google Scholar 

  79. Schenk, M. & Guest, S. D. Origami folding: a structural engineering approach. Origami 5, 291–304 (2011).

    Google Scholar 

  80. Vasudevan, S. P. & Pratapa, P. P. Origami metamaterials with near-constant Poisson functions over finite strains. J. Eng. Mech. 147, 04021093 (2021).

    Article  Google Scholar 

  81. Moshtaghzadeh, M., Izadpanahi, E. & Mardanpour, P. Prediction of fatigue life of a flexible foldable origami antenna with Kresling pattern. Eng. Struct. 251, 113399 (2022).

    Article  Google Scholar 

  82. Waitukaitis, S., Menaut, R., Chen, B. G. & van Hecke, M. Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114, 055503 (2015).

    Article  ADS  Google Scholar 

  83. Sturm, R., Schatrow, P. & Klett, Y. Multiscale modeling methods for analysis of failure modes in foldcore sandwich panels. Appl. Compos. Mater. 22, 857–868 (2015).

    Article  ADS  Google Scholar 

  84. Tang, J. & Wei, F. Miniaturized origami robots: actuation approaches and potential applications. Macromol. Mater. Eng. 307, 2100671 (2022).

    Article  Google Scholar 

  85. Thota, M. & Wang, K. W. Tunable waveguiding in origami phononic structures. J. Sound. Vib. 430, 93–100 (2018).

    Article  ADS  Google Scholar 

  86. Tang, R. et al. Origami-enabled deformable silicon solar cells. Appl. Phys. Lett. 104, 083501 (2014).

    Article  ADS  Google Scholar 

  87. Li, S., Vogt, D. M., Rus, D. & Wood, R. J. Fluid-driven origami-inspired artificial muscles. Proc. Natl Acad. Sci. USA 114, 13132–13137 (2017).

    Article  ADS  Google Scholar 

  88. Fang, H., Li, S., Ji, H. & Wang, K. W. Dynamics of a bistable Miura-origami structure. Phys. Rev. E 95, 052211 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  89. McClintock, H., Temel, F. Z., Doshi, N., Koh, J. & Wood, R. J. The milliDelta: a high-bandwidth, high-precision, millimeter-scale delta robot. Sci. Robot. 3, eaar3018 (2018).

    Article  Google Scholar 

  90. Wang, C., Guo, H., Liu, R. & Deng, Z. A programmable origami-inspired space deployable structure with curved surfaces. Eng. Struct. 256, 113934 (2022).

    Article  Google Scholar 

  91. Gabler, F., Karnaushenko, D. D., Karnaushenko, D. & Schmidt, O. G. Magnetic origami creates high performance micro devices. Nat. Commun. 10, 3013 (2019).

    Article  ADS  Google Scholar 

  92. Velvaluri, P. et al. Origami-inspired thin-film shape memory alloy devices. Sci. Rep. 11, 10988 (2021).

    Article  ADS  Google Scholar 

  93. Taghavi, M., Helps, T. & Rossiter, J. Electro-ribbon actuators and electro-origami robots. Sci. Robot. 3, eaau9795 (2018).

    Article  Google Scholar 

  94. Reis, P. M., López Jiménez, F. & Marthelot, J. Transforming architectures inspired by origami. Proc. Natl Acad. Sci. USA 112, 12234–12235 (2015).

    Article  ADS  Google Scholar 

  95. Pesenti, M., Masera, G. & Fiorito, F. Exploration of adaptive origami shading concepts through integrated dynamic simulations. J. Archit. Eng. 24, 04018022 (2018).

    Article  Google Scholar 

  96. Le-Thanh, L., Le-Duc, T., Ngo-Minh, H., Nguyen, Q.-H. & Nguyen-Xuan, H. Optimal design of an origami-inspired kinetic façade by balancing composite motion optimization for improving daylight performance and energy efficiency. Energy 219, 119557 (2021).

    Article  Google Scholar 

  97. Miranda, R., Babilio, E., Singh, N., Santos, F. & Fraternali, F. Mechanics of smart origami sunscreens with energy harvesting ability. Mech. Res. Commun. 105, 103503 (2020).

    Article  Google Scholar 

  98. Babilio, E., Miranda, R. & Fraternali, F. On the kinematics and actuation of dynamic sunscreens with tensegrity architecture. Front. Mater. 6, 00007 (2019).

    Article  ADS  Google Scholar 

  99. Attia, S. Evaluation of adaptive facades: the case study of Al Bahr towers in the UAE. QScience Connect. 2017, 6 (2018).

    Article  Google Scholar 

  100. Xu, Y. et al. Origami system for efficient solar driven distillation in emergency water supply. Chem. Eng. J. 356, 869–876 (2019).

    Article  Google Scholar 

  101. Zirbel, S. A. et al. Hanaflex: a large solar array for space applications. in Micro- and Nanotechnology Sensors, Systems, and Applications VII Vol. 9467, 179–187 (SPIE, 2015).

  102. Klett, Y., Middendorf, P., Sobek, W., Haase, W. & Heidingsfeld, M. Potential of origami-based shell elements as next-generation envelope components. in 2017 IEEE Int. Conf. Advanced Intelligent Mechatronics 916–920 (AIM, 2017).

  103. Quaglia, C. P., Yu, N., Thrall, A. P. & Paolucci, S. Balancing energy efficiency and structural performance through multi-objective shape optimization: case study of a rapidly deployable origami-inspired shelter. Energy Build. 82, 733–745 (2014).

    Article  Google Scholar 

  104. Lee, T.-U. & Gattas, J. M. Geometric design and construction of structurally stabilized accordion shelters. J. Mech. Robot. 8, 031009 (2016).

    Article  Google Scholar 

  105. Kadic, M., Milton, G. W., van Hecke, M. & Wegener, M. 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019).

    Article  Google Scholar 

  106. Bertoldi, K., Vitelli, V., Christensen, J. & Van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 1–11 (2017).

    Article  Google Scholar 

  107. Zhang, Q., Wang, X., Cai, J. & Feng, J. Motion paths and mechanical behavior of origami-inspired tunable structures. Mater. Today Commun. 26, 101872 (2021).

    Article  Google Scholar 

  108. Lee, T.-U., Chen, Y., Heitzmann, M. T. & Gattas, J. M. Compliant curved-crease origami-inspired metamaterials with a programmable force-displacement response. Mater. Des. 207, 109859 (2021).

    Article  Google Scholar 

  109. Feng, H., Peng, R., Zang, S., Ma, J. & Chen, Y. Rigid foldability and mountain–valley crease assignments of square-twist origami pattern. Mech. Mach. Theory 152, 103947 (2020).

    Article  Google Scholar 

  110. Saito, K., Tsukahara, A. & Okabe, Y. Designing of self-deploying origami structures using geometrically misaligned crease patterns. Proc. R. Soc. Math. Phys. Eng. Sci. 472, 20150235 (2016).

    ADS  MathSciNet  Google Scholar 

  111. Zhai, Z., Wang, Y., Lin, K., Wu, L. & Jiang, H. In situ stiffness manipulation using elegant curved origami. Sci. Adv. 6, eabe2000 (2020).

    Article  ADS  Google Scholar 

  112. Zhai, Z., Wu, L. & Jiang, H. Mechanical metamaterials based on origami and kirigami. Appl. Phys. Rev. 8, 041319 (2021).

    Article  ADS  Google Scholar 

  113. Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R. & Vaziri, A. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci. Rep. 7, 1–9 (2017).

    Article  Google Scholar 

  114. Zhao, S., Zhang, Y., Zhang, Y., Yang, J. & Kitipornchai, S. Graphene origami-enabled auxetic metallic metamaterials: an atomistic insight. Int. J. Mech. Sci. 212, 106814 (2021).

    Article  Google Scholar 

  115. Fang, H., Chu, S.-C. A., Xia, Y. & Wang, K.-W. Programmable self-locking origami mechanical metamaterials. Adv. Mater. 30, 1706311 (2018).

    Article  Google Scholar 

  116. Pinson, M. B. et al. Self-folding origami at any energy scale. Nat. Commun. 8, 15477 (2017).

    Article  ADS  Google Scholar 

  117. Lee, D.-Y., Kim, J.-K., Sohn, C.-Y., Heo, J.-M. & Cho, K.-J. High-load capacity origami transformable wheel. Sci. Robot. 6, eabe0201 (2021).

    Article  Google Scholar 

  118. Tolman, S. S., Delimont, I. L., Howell, L. L. & Fullwood, D. T. Material selection for elastic energy absorption in origami-inspired compliant corrugations. Smart Mater. Struct. 23, 094010 (2014).

    Article  ADS  Google Scholar 

  119. Wen, G. et al. Stacked-origami mechanical metamaterial with tailored multistage stiffness. Mater. Des. 212, 110203 (2021).

    Article  Google Scholar 

  120. Ma, J., Song, J. & Chen, Y. An origami-inspired structure with graded stiffness. Int. J. Mech. Sci. 136, 134–142 (2018).

    Article  Google Scholar 

  121. Pratapa, P. P., Liu, K., Vasudevan, S. P. & Paulino, G. H. Reprogrammable kinematic branches in tessellated origami structures. J. Mech. Robot. 13, 1–22 (2021).

    Article  Google Scholar 

  122. Wang, Z. et al. Origami-based reconfigurable metamaterials for tunable chirality. Adv. Mater. 29, 1700412 (2017).

    Article  Google Scholar 

  123. Xu, X. et al. Origami-inspired chiral metamaterials with tunable circular dichroism through mechanically guided three-dimensional assembly. J. Appl. Mech. 90, 011007 (2022).

    Article  Google Scholar 

  124. Li, M. et al. Origami metawall: mechanically controlled absorption and deflection of light. Adv. Sci. 6, 1901434 (2019).

    Article  Google Scholar 

  125. Ji, J. C., Luo, Q. & Ye, K. Vibration control based metamaterials and origami structures: a state-of-the-art review. Mech. Syst. Signal. Process. 161, 107945 (2021).

    Article  Google Scholar 

  126. Fuchi, K., Diaz, A. R., Rothwell, E. J., Ouedraogo, R. O. & Tang, J. An origami tunable metamaterial. J. Appl. Phys. 111, 084905 (2012).

    Article  ADS  Google Scholar 

  127. Zhao, P., Zhang, K. & Deng, Z. Origami-inspired lattice for the broadband vibration attenuation by Symplectic method. Extreme Mech. Lett. 54, 101771 (2022).

    Article  Google Scholar 

  128. Feng, H., Ma, J., Chen, Y. & You, Z. Twist of tubular mechanical metamaterials based on waterbomb origami. Sci. Rep. 8, 9522 (2018).

    Article  ADS  Google Scholar 

  129. Wu, S. et al. Stretchable origami robotic arm with omnidirectional bending and twisting. Proc. Natl Acad. Sci. USA 118, e2110023118 (2021).

    Article  Google Scholar 

  130. Hines, L., Petersen, K., Lum, G. Z. & Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 29, 1603483 (2017).

    Article  Google Scholar 

  131. Jiang, Y. et al. Ultra-tunable bistable structures for universal robotic applications. Cell Rep. Phys. Sci. 4, 101365 (2023).

    Article  Google Scholar 

  132. Jiang, H. et al. Hierarchical control of soft manipulators towards unstructured interactions. Int. J. Robot. Res. 40, 411–434 (2021).

    Article  Google Scholar 

  133. Lee, J.-G. & Rodrigue, H. Origami-based vacuum pneumatic artificial muscles with large contraction ratios. Soft Robot. 6, 109–117 (2019).

    Article  Google Scholar 

  134. Lin, Y. et al. Controllable stiffness origami “skeletons” for lightweight and multifunctional artificial muscles. Adv. Funct. Mater. 30, 2000349 (2020).

    Article  Google Scholar 

  135. Johnson, M. et al. Fabricating biomedical origami: a state-of-the-art review. Int. J. Comput. Assist. Radiol. Surg. 12, 2023–2032 (2017).

    Article  Google Scholar 

  136. Randall, C. L., Gultepe, E. & Gracias, D. H. Self-folding devices and materials for biomedical applications. Trends Biotechnol. 30, 138–146 (2012).

    Article  Google Scholar 

  137. Taylor, A. J., Xu, S., Wood, B. J. & Tse, Z. T. H. Origami lesion-targeting device for CT-guided interventions. J. Imaging 5, 23 (2019).

    Article  Google Scholar 

  138. Taylor, A., Miller, M., Fok, M., Nilsson, K. & Tsz Ho Tse, Z. Intracardiac magnetic resonance imaging catheter with origami deployable mechanisms1. J. Med. Devices 10, 020957 (2016).

    Article  Google Scholar 

  139. Kim, S.-J., Lee, D.-Y., Jung, G.-P. & Cho, K.-J. An origami-inspired, self-locking robotic arm that can be folded flat. Sci. Robot. 3, eaar2915 (2018).

    Article  Google Scholar 

  140. Banerjee, H. et al. Origami-layer-jamming deployable surgical retractor with variable stiffness and tactile sensing. J. Mech. Robot. 12, 031010 (2020).

    Article  Google Scholar 

  141. Bobbert, F. S. L., Janbaz, S., van Manen, T., Li, Y. & Zadpoor, A. A. Russian doll deployable meta-implants: fusion of kirigami, origami, and multi-stability. Mater. Des. 191, 108624 (2020).

    Article  Google Scholar 

  142. Yang, N. et al. New network architectures with tunable mechanical properties inspired by origami. Mater. Today Adv. 4, 100028 (2019).

    Article  Google Scholar 

  143. Prabhakar, S., Singh, J. P., Roy, D. & Prasad, N. E. Stable 3D hierarchical scaffolds by origami approach: effect of interfacial crosslinking by nanohybrid shish-kebab assemblies. Mater. Des. 213, 110353 (2022).

    Article  Google Scholar 

  144. Kim, S.-H. et al. Hydrogel-laden paper scaffold system for origami-based tissue engineering. Proc. Natl Acad. Sci. USA 112, 15426–15431 (2015).

    Article  ADS  Google Scholar 

  145. Chauhan, M. et al. An origami-based soft robotic actuator for upper gastrointestinal endoscopic applications. Front. Robot. AI 8, 664720 (2021).

    Article  Google Scholar 

  146. Zhu, S. & Li, T. Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 8, 2864–2872 (2014).

    Article  Google Scholar 

  147. Suzuki, H. & Wood, R. J. Origami-inspired miniature manipulator for teleoperated microsurgery. Nat. Mach. Intell. 2, 437–446 (2020).

    Article  Google Scholar 

  148. Sargent, B. et al. An origami-based medical support system to mitigate flexible shaft buckling. J. Mech. Robot. 12, 1–16 (2020).

    Article  Google Scholar 

  149. Leong, T. G. et al. Tetherless thermobiochemically actuated microgrippers. Proc. Natl Acad. Sci. USA 106, 703–708 (2009).

    Article  ADS  Google Scholar 

  150. Ghosh, A. et al. Stimuli-responsive soft untethered grippers for drug delivery and robotic surgery. Front. Mech. Eng. 3, 7 (2017).

    Article  Google Scholar 

  151. Natori, M. C., Sakamoto, H., Katsumata, N., Yamakawa, H. & Kishimoto, N. Conceptual model study using origami for membrane space structures—a perspective of origami-based engineering. Mech. Eng. Rev. 2, 14–00368 (2015).

    Article  Google Scholar 

  152. Miura, K. & Pellegrino, S. Forms and Concepts for Lightweight Structures (Cambridge Univ. Press, 2020).

  153. Miura, K. Zeta-Core Sandwich—Its Concept and Realization (Institute of Space and Aeronautical Science, Univ. of Tokyo, 1972).

  154. Miura, K. Method of packaging and deployment of large membranes in space. Inst. Space Astronaut. Sci. Rep. 618, 1–9 (1985).

    Google Scholar 

  155. Miura, K. Concepts of deployable space structures. Int. J. Space Struct. 8, 3–16 (1993).

    Article  Google Scholar 

  156. Guest, S. D. & Pellegrino, S. Inextensional wrapping of flat membranes. in Proc. First Int. Semin. Struct. Morphol. 203–215 (Laboratoire de Mécanique et Génie Civil, Université de Montpellier II, Groupe Recherche et Réalisation de Structures Légères pour l’Architecture, Ecole d’Architecture Languedoc Roussillon, 1992).

  157. De Focatiis, D. S. A. & Guest, S. D. Deployable membranes designed from folding tree leaves. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 360, 227–238 (2002).

    Article  ADS  Google Scholar 

  158. Parque, V. et al. Packaging of thick membranes using a multi-spiral folding approach: flat and curved surfaces. Adv. Space Res. 67, 2589–2612 (2021).

    Article  ADS  Google Scholar 

  159. Wilson, L., Pellegrino, S. & Danner, R. Origami sunshield concepts for space telescopes. in 54th AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. 1594 (American Institute of Aeronautics and Astronautics, 2013).

  160. Wasserthal, L. T. The open hemolymph system of Holometabola and its relation to the tracheal space. Microsc. Anat. Invertebr. 11, 583–620 (1998).

    Google Scholar 

  161. Kersten, M., Kling, G. & Burkhardt, J. IXO telescope mirror design and its performance. in Int. Conf. Space Opt. 2010 Vol. 10565, 769–775 (SPIE, 2019).

  162. Ghassaei, A., Demaine, E. D. & Gershenfeld, N. Fast, interactive origami simulation using GPU computation. Origami 7, 1151–1166 (2018).

    Google Scholar 

  163. Demaine, E. D., Ku, J. S. & Lang, R. J. A new file standard to represent folded structures. in Abstr. 26th Fall Workshop Comput. Geom. 27–28 (FWCG, 2016).

  164. Hu, Y., Zhou, Y. & Liang, H. Constructing rigid-foldable generalized Miura-ori tessellations for curved surfaces. J. Mech. Robot. 13, 011017 (2021).

    Article  Google Scholar 

  165. Dudte, L. H., Choi, G. P. & Mahadevan, L. An additive algorithm for origami design. Proc. Natl Acad. Sci. USA 118, e2019241118 (2021).

    Article  MathSciNet  Google Scholar 

  166. Dang, X. et al. Inverse design of deployable origami structures that approximate a general surface. Int. J. Solids Struct. 234, 111224 (2022).

    Article  Google Scholar 

  167. Ze, Q. et al. Soft robotic origami crawler. Sci. Adv. 8, eabm7834 (2022).

    Article  Google Scholar 

  168. Chudoba, R., van der Woerd, J., Schmerl, M. & Hegger, J. ORICRETE: modeling support for design and manufacturing of folded concrete structures. Adv. Eng. Softw. 72, 119–127 (2014).

    Article  Google Scholar 

  169. Fernandes, R. & Gracias, D. H. Self-folding polymeric containers for encapsulation and delivery of drugs. Adv. Drug. Deliv. Rev. 64, 1579–1589 (2012).

    Article  Google Scholar 

  170. Nauroze, S. A., Novelino, L. S., Tentzeris, M. M. & Paulino, G. H. Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing. Proc. Natl Acad. Sci. USA 115, 13210–13215 (2018).

    Article  ADS  Google Scholar 

  171. Sareh, P., Chermprayong, P., Emmanuelli, M., Nadeem, H. & Kovac, M. Rotorigami: a rotary origami protective system for robotic rotorcraft. Sci. Robot. 3, eaah5228 (2018).

    Article  Google Scholar 

  172. Fathers, R. K., Gattas, J. M. & You, Z. Quasi-static crushing of eggbox, cube, and modified cube foldcore sandwich structures. Int. J. Mech. Sci. 101–102, 421–428 (2015).

    Article  Google Scholar 

  173. Hanna, B. H., Lund, J. M., Lang, R. J., Magleby, S. P. & Howell, L. L. Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23, 094009 (2014).

    Article  ADS  Google Scholar 

  174. Fonseca, L. M. & Savi, M. A. Nonlinear dynamics of an autonomous robot with deformable origami wheels. Int. J. Non-Linear Mech. 125, 103533 (2020).

    Article  ADS  Google Scholar 

  175. Kuribayashi, K. et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419, 131–137 (2006).

    Article  Google Scholar 

  176. Yasuda, H., Chong, C., Charalampidis, E. G., Kevrekidis, P. G. & Yang, J. Formation of rarefaction waves in origami-based metamaterials. Phys. Rev. E 93, 043004 (2016).

    Article  ADS  Google Scholar 

  177. Evans, T. A., Lang, R. J., Magleby, S. P. & Howell, L. L. Rigidly foldable origami gadgets and tessellations. R. Soc. Open. Sci. 2, 150067 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  178. Lang, R. J., Magleby, S. & Howell, L. Single degree-of-freedom rigidly foldable cut origami flashers. J. Mech. Robot. 8, 031005 (2016).

    Article  Google Scholar 

  179. Chen, Z. et al. Ron Resch origami pattern inspired energy absorption structures. J. Appl. Mech. 86, 011005 (2018).

    Article  Google Scholar 

  180. Overvelde, J. T. B., Weaver, J. C., Hoberman, C. & Bertoldi, K. Rational design of reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).

    Article  ADS  Google Scholar 

  181. Babaee, S., Overvelde, J. T. B., Chen, E. R., Tournat, V. & Bertoldi, K. Reconfigurable origami-inspired acoustic waveguides. Sci. Adv. 2, e1601019 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.M. acknowledges financial support from the European Union project ERC-CoG 2022-SFOAM-101086644. K.L. is supported by the National Key Research and Development Program of China (grant 2022YFB4701900) and the National Natural Science Foundation of China (grant 12372159). P.P.P. acknowledges support from the Indian Institute of Technology Madras through the seed grant and the Science & Engineering Research Board (SERB) of the Department of Science & Technology, Government of India (award SRG/2019/000999). Y.C. acknowledges the support of the National Natural Science Foundation of China (Projects 52320105005, 52035008) and the New Cornerstone Science Foundation through the XPLORER PRIZE (XPLORER-2020-1035). G.H.P. acknowledges financial support from the Natural Science Foundation (NSF) project 2323276. C.D. acknowledges the Army Research Office under Cooperative Agreement Number W911NF-22-2-0109.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Glaucio H. Paulino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks James McInerney, Jianguo Cai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GIMP: https://www.gimp.org/

ImageJ: https://imagej.nih.gov/ij/index.html

nanoCad: https://nanocad.com/products/nanocad-free/

Quick Time: https://support.apple.com/downloads/quicktime

Starshade origami: https://www.jpl.nasa.gov/edu/learn/project/space-origami-make-your-own-starshade/

VLC: https://www.videolan.org/vlc/

Glossary

Bird’s feet condition

A single-vertex crease pattern can be rigidly folded if, and only if, it contains a bird’s foot, where a set of three creases of the same mountain/valley (M/V) assignment are separated sequentially by angles strictly between 0° and 180°, plus one additional crease of the opposite assignment.

Bloch wave reduction

A discrete Fourier transformation-based technique that enables efficient analysis of infinitely periodic lattice systems.

Colouring

The crease pattern of a flat-foldable origami structure (for example, crane) can be coloured such that no two neighbouring regions are assigned the same colour while using as few colours as possible.

Crease pattern

The pattern of creases left on the surface after an origami structure has been unfolded.

Creases

Marks left on the material surface after a fold has been unfolded.

Degree-four vertices

Vertices delimited by four creases or four panels. For example, parallelogram-based origami is composed of degree-four vertices.

Developable

Origami that can be unfolded into a flat sheet without overlapping or deformation of the panels.

Dihedral angle

The angle between adjacent panels, which describes the current configuration.

Elastic band gaps

The frequency range within which elastic wave propagation is prevented through the medium.

Extensions

Appendages on the panels that can be placed and glued onto the matching seats.

Flat-foldable

Origami that can be folded into a flattened state of zero volume.

Foldcore

A sandwich structure consisting of thin stiff facesheets and thick, low-density core made of an architected material (for example, origami).

Folding angles

The angles that are required for one panel of an adjacent pair to rotate until it meets the other panel in a consistent direction, which could be either the dihedral angle or its supplementary angle.

Kirigami

The Japanese art of cutting and folding thin sheets of materials (for example, paper) from flat into three-dimensional objects.

Linkages

Mechanisms built from stiff bars connected by freely rotating joints (rigid links).

Origami

The art of folding paper (or other surfaces) into three-dimensional shapes, usually from uncut squares or other continuous shapes.

Panels

The basic elements of an origami structure that occupy the area bounded by creases or borders of the surface.

Poisson’s ratio

The negative of the ratio of transverse strain to longitudinal strain in a material subject to uniaxial loading.

Right-hand thumb rule

A commonly used rule to determine direction of rotational quantities and associated vectors. Here, it is used to determine the direction or sign of the turning angles corresponding to an axis of rotation placed along the crease.

Rigid origami

Origami that can be folded while keeping all regions of the surface (for example, paper) flat and all crease lines straight.

Saint-Venant end effects

A small region near the point of load with non-uniform distribution of stress, where the effect of the exact form of the loading cannot be ignored.

Seats

Grooves made by material removal for precise placement of joints.

Tessellations

Coverings on a surface, using one or more patterns (tiles) with no overlaps and no gaps.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misseroni, D., Pratapa, P.P., Liu, K. et al. Origami engineering. Nat Rev Methods Primers 4, 40 (2024). https://doi.org/10.1038/s43586-024-00313-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00313-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing