Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A sensory–motor theory of the neocortex

Abstract

Recent neurophysiological and neuroanatomical studies suggest a close interaction between sensory and motor processes across the neocortex. Here, I propose that the neocortex implements active predictive coding (APC): each cortical area estimates both latent sensory states and actions (including potentially abstract actions internal to the cortex), and the cortex as a whole predicts the consequences of actions at multiple hierarchical levels. Feedback from higher areas modulates the dynamics of state and action networks in lower areas. I show how the same APC architecture can explain (1) how we recognize an object and its parts using eye movements, (2) why perception seems stable despite eye movements, (3) how we learn compositional representations, for example, part–whole hierarchies, (4) how complex actions can be planned using simpler actions, and (5) how we form episodic memories of sensory–motor experiences and learn abstract concepts such as a family tree. I postulate a mapping of the APC model to the laminar architecture of the cortex and suggest possible roles for cortico–cortical and cortico–subcortical pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Widespread influence of actions across the cortex.
Fig. 2: Using hierarchies and compositionality to simplify complex tasks.
Fig. 3: Active vision, part–whole learning and transfer of knowledge.
Fig. 4: Hierarchical planning.

Similar content being viewed by others

References

  1. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    CAS  PubMed  Google Scholar 

  2. Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical computation. Neuron 100, 424–435 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Friston, K. & Kiebel, S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. London B Biol. Sci. 364, 1211–1221 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. Jiang, L. P. & Rao, R. P. N. Predictive coding theories of cortical function. Oxford Research Encyclopedia of Neuroscience https://doi.org/10.1093/acrefore/9780190264086.013.328 (Oxford Univ. Press, 2022).

  5. Halpern, B. P. Tasting and smelling as active, exploratory sensory processes. Am. J. Otolaryngol. 4, 246–249 (1983).

    CAS  PubMed  Google Scholar 

  6. Lederman, S. J. & Klatzky, R. L. Hand movements: a window into haptic object recognition. Cogn. Psychol. 19, 342–368 (1987).

    CAS  PubMed  Google Scholar 

  7. Ahissar, E. & Assa, E. Perception as a closed-loop convergence process. eLife 5, e12830 (2016).

    PubMed  Google Scholar 

  8. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    CAS  PubMed  Google Scholar 

  9. Zatka-Haas, P., Steinmetz, N. A., Carandini, M. & Harris, K. D. Sensory coding and the causal impact of mouse cortex in a visual decision. eLife 10, e63163 (2021).

    CAS  PubMed  Google Scholar 

  10. Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    CAS  Google Scholar 

  12. Talluri, B. C. et al. Activity in primate visual cortex is minimally driven by spontaneous movements. Nat. Neurosci. 26, 1953–1959 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jordan, R. & Keller, G. B. Opposing influence of top–down and bottom–up input on excitatory layer 2/3 neurons in mouse primary visual cortex. Neuron 108, 1194–1206 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakamura, K. & Colby, C. L. Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc. Natl Acad. Sci. USA 99, 4026–4031 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Duhamel, J. R., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    CAS  PubMed  Google Scholar 

  16. Umeno, M. M. & Goldberg, M. E. Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J. Neurophysiol. 78, 1373–1383 (1997).

    CAS  PubMed  Google Scholar 

  17. Wurtz, R. H., McAlonan, K., Cavanaugh, J. & Berman, R. A. Thalamic pathways for active vision. Trends Cogn. Sci. 15, 177–184 (2011).

    PubMed  PubMed Central  Google Scholar 

  18. Sherman, S. M. & Guillery, R. W. Functional Connections of Cortical Areas: A New View from the Thalamus (MIT, 2013).

  19. Prasad, J., Carroll, B. & Sherman, S. Layer 5 corticofugal projections from diverse cortical areas: variations on a pattern of thalamic and extrathalamic targets. J. Neurosci. 40, 5785–5796 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mountcastle, V. in the Mindful Brain (eds Edelman, G. & Mountcastle, V.) 7–50 (MIT, 1978).

  21. Creutzfeldt, O. D. Generality of the functional structure of the neocortex. Naturwissenschaften 64, 507–517 (1977).

    CAS  PubMed  Google Scholar 

  22. Mumford, D. On the computational architecture of the neocortex. II. The role of cortico–cortical loops. Biol. Cybern. 66, 241–251 (1992).

    CAS  PubMed  Google Scholar 

  23. Hawkins, J. A Thousand Brains: A New Theory of Intelligence (Basic Books, 2021).

  24. Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    CAS  PubMed  Google Scholar 

  25. Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Roe, A. W., Pallas, S. L., Kwon, Y. H. & Sur, M. Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex. J. Neurosci. 12, 3651–3664 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Felleman, D. & Essen, D. V. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    PubMed  Google Scholar 

  28. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Grafton, S. T. & de C. Hamilton, A. F. Evidence for a distributed hierarchy of action representation in the brain. Hum. Mov. Sci. 26, 590–616 (2007).

    PubMed  PubMed Central  Google Scholar 

  31. Gklezakos, D. C. & Rao, R. P. N. Active predictive coding networks: a neural solution to the problem of learning reference frames and part–whole hierarchies. Preprint at arxiv.org/abs/2201.08813 (2022).

  32. Rao, R. P. N., Gklezakos, D. C. & Sathish, V. Active predictive coding: a unifying neural model for active perception, compositional learning, and hierarchical planning. Neural Comput. 36, 1–32 (2024).

    Google Scholar 

  33. Fisher, A. & Rao, R. P. N. Recursive neural programs: a differentiable framework for learning compositional part–whole hierarchies and image grammars. PNAS Nexus 2, pgad337 (2023).

    PubMed  PubMed Central  Google Scholar 

  34. Kasper, E., Larkman, A., Lübke, J. & Blakemore, C. Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets. J. Comp. Neurol. 339, 459–474 (1994).

    CAS  PubMed  Google Scholar 

  35. Stebbings, K., Lesicko, A. & Llano, D. The auditory corticocollicular system: molecular and circuit-level considerations. Hear. Res. 314, 51–59 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiong, X. et al. Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nat. Commun. 6, 7224 (2015).

    CAS  PubMed  Google Scholar 

  37. Frezel, N. et al. In-depth characterization of layer 5 output neurons of the primary somatosensory cortex innervating the mouse dorsal spinal cord. Cereb. Cortex Commun. 1, tgaa052 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rathelot, J. A. & Strick, P. L. Subdivisions of primary motor cortex based on cortico–motoneuronal cells. Proc. Natl Acad. Sci. USA 106, 918–923 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mao, T. et al. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72, 111–123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hooks, B. M. et al. Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J. Neurosci. 33, 748–760 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Heindorf, M., Arber, S. & Keller, G. B. Mouse motor cortex coordinates the behavioral response to unpredicted sensory feedback. Neuron 99, 1040–1054 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Holey, B. E. & Schneider, D. M. Sensation and expectation are embedded in mouse motor cortical activity. Preprint at bioRxiv https://doi.org/10.1101/2023.09.13.557633 (2023).

  43. Kim, E., Juavinett, A., Kyubwa, E., Jacobs, M. & Callaway, E. Three types of cortical layer 5 neurons that differ in brain-wide connectivity and function. Neuron 88, 1253–1267 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction 2nd edn http://incompleteideas.net/book/the-book-2nd.html (MIT Press, 2018).

  45. Kaelbling, L. P., Littman, M. L. & Cassandra, A. R. Planning and acting in partially observable stochastic domains. Artif. Intell. 101, 99–134 (1998).

    Google Scholar 

  46. Rao, R. P. N. Decision making under uncertainty: a neural model based on partially observable Markov decision processes. Front. Comput. Neurosci. 4, 146 (2010).

    PubMed  Google Scholar 

  47. von Helmholtz, H. Handbuch der Physiologischen Optik Vol. 3 (Voss, 1867).

  48. Friston, K., Adams, R. A., Perrinet, L. & Breakspear, M. Perceptions as hypotheses: saccades as experiments. Front. Psychol. 3, 151 (2012).

    PubMed  Google Scholar 

  49. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    CAS  PubMed  Google Scholar 

  50. Shipp, S. Neural elements for predictive coding. Front. Psychol. 7, 1792 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Miura, S. & Scanziani, M. Distinguishing externally from saccade-induced motion in visual cortex. Nature 610, 135–142 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Keller, G. B., Bonhoeffer, T. & Hübener, M. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74, 809–815 (2012).

    CAS  PubMed  Google Scholar 

  53. Bastos, A. M., Lundqvist, M., Waite, A. S., Kopell, N. & Miller, E. K. Layer and rhythm specificity for predictive routing. Proc. Natl Acad. Sci. USA 117, 31459–31469 (2020).

  54. Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A. & Keller, G. B. Sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95, 1420–1432 (2017).

    CAS  PubMed  Google Scholar 

  55. Schneider, D. M., Sundararajan, J. & Mooney, R. A cortical filter that learns to suppress the acoustic consequences of movement. Nature 561, 391–395 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Markov, N. T. & Kennedy, H. The importance of being hierarchical. Curr. Opin. Neurobiol. 23, 187–194 (2013).

    CAS  PubMed  Google Scholar 

  57. Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J. Building machines that learn and think like people. Behav. Brain Sci. 40, e253 (2017).

    PubMed  Google Scholar 

  58. Smolensky, P., McCoy, R. T., Fernandez, R., Goldrick, M. & Gao, J. Neurocompositional computing: from the central paradox of cognition to a new generation of AI systems. AI Mag. 43, 308–322 (2022).

    Google Scholar 

  59. Lewis, M., Purdy, S., Ahmad, S. & Hawkins, J. Locations in the neocortex: a theory of sensorimotor object recognition using cortical grid cells. Front. Neural Circuits 13, 22 (2019).

  60. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    CAS  PubMed  Google Scholar 

  61. Jiang, L. P. & Rao, R. P. N. Dynamic predictive coding: a model of hierarchical sequence learning and prediction in the neocortex. PLoS Comput. Biol. 20, e1011801 (2024).

  62. Whittington, J. C. R. & Bogacz, R. An approximation of the error backpropagation algorithm in a predictive coding network with local Hebbian synaptic plasticity. Neural Comput. 29, 1229–1262 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Attias, H. Planning by probabilistic inference. In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics (AISTATS 2003) (eds Bishop, C. M. & Frey, B. J.) 9–16 (PMLR, 2003).

  64. Verma, D. & Rao, R. P. N. Planning and acting in uncertain environments using probabilistic inference. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems 2382–2387 (IEEE, 2006).

  65. Botvinick, M. & Toussaint, M. Planning as inference. Trends Cogn. Sci. 16, 485–488 (2012).

    PubMed  Google Scholar 

  66. Richards, A. Robust Constrained Model Predictive Control. PhD thesis, MIT (2004).

  67. Botvinick, M. M., Niv, Y. & Barto, A. G. Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective. Cognition 113, 262–280 (2009).

    PubMed  Google Scholar 

  68. Kahneman, D. Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011).

  69. Friston, K., Parr, T. & de Vries, B. The graphical brain: belief propagation and active inference. Netw. Neurosci. 1, 381–414 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. O’Reilly, R. C., Russin, J. L., Zolfaghar, M. & Rohrlich, J. Deep predictive learning in neocortex and pulvinar. J. Cogn. Neurosci. 33, 1158–1196 (2021).

    PubMed  PubMed Central  Google Scholar 

  71. Willett, F. R. et al. Hand knob area of premotor cortex represents the whole body in a compositional way. Cell 181, 396–409 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, X.-J. Task representations in neural networks trained to perform many cognitive tasks. Nat. Neurosci. 22, 297–306 (2019).

    CAS  PubMed  Google Scholar 

  73. Kurth-Nelson, Z. et al. Replay and compositional computation. Neuron 111, 454–469 (2023).

    CAS  PubMed  Google Scholar 

  74. Mnih, V., Heess, N., Graves, A. & Kavukcuoglu, K. Recurrent models of visual attention. In Advances in Neural Information Processing Systems 27 (eds Ghahramani, Z. et al.) 2204–2212 (Curran Associates, 2014).

  75. Makino, H. Arithmetic value representation for hierarchical behavior composition. Nat. Neurosci. 26, 140–149 (2023).

    CAS  PubMed  Google Scholar 

  76. Hogendoorn, H. Perception in real-time: predicting the present, reconstructing the past. Trends Cogn. Sci. 26, 128–141 (2022).

    PubMed  Google Scholar 

  77. Whittington, J. C. R. et al. The Tolman–Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 183, 1249–1263 (2020).

    Google Scholar 

  78. Hafner, D., Lee, K.-H., Fischer, I. & Abbeel, P. Deep hierarchical planning from pixels. In Advances in Neural Information Processing Systems 35 (eds Koyejo, S. et al.) 26091–26104 (Curran Associates, 2022).

  79. Lee, T. S. & Mumford, D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–1448 (2003).

    PubMed  Google Scholar 

  80. George, D. & Hawkins, J. Towards a mathematical theory of cortical micro-circuits. PLoS Comput. Biol. 5, e1000532 (2009).

    PubMed  PubMed Central  Google Scholar 

  81. Wolpert, D. M. & Miall, R. C. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996).

    PubMed  Google Scholar 

  82. Mehta, M. R. Neuronal dynamics of predictive coding. Neuroscientist 7, 490–495 (2001).

    CAS  PubMed  Google Scholar 

  83. Heeger, D. J. Theory of cortical function. Proc. Natl Acad. Sci. USA 114, 1773–1782 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mackay, D. in Automata Studies (eds Shannon, C. E. & McCarthy, J.) 235–251 (Princeton Univ., 1956).

  85. Albus, J. S. Brains, Behavior and Robotics (BYTE, 1981).

  86. Scott, S. Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 5, 532–546 (2004).

    CAS  PubMed  Google Scholar 

  87. Jordan, M. I. & Rumelhart, D. E. Forward models: supervised learning with a distal teacher. Cogn. Sci. 16, 307–354 (1992).

    Google Scholar 

  88. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999).

    CAS  PubMed  Google Scholar 

  89. Fetz, E. E. in Textbook of Physiology (eds Patton, H. D. et al.) 608–631 (Saunders, 1989).

  90. Jones, E. G., Coulter, J. D. & Hendry, S. H. C. Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J. Comp. Neurol. 181, 291–347 (1978).

    CAS  PubMed  Google Scholar 

  91. Adams, R., Shipp, S. & Friston, K. Predictions not commands: active inference in the motor system. Brain Struct. Funct. 218, 611–643 (2013).

    PubMed  Google Scholar 

  92. Falchier, A., Clavagnier, S., Barone, P. & Kennedy, H. Anatomical evidence of multimodal integration in primate striate cortex. J. Neurosci. 22, 5749–5759 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Audette, N. J., Zhou, W., La Chioma, A. & Schneider, D. M. Precise movement-based predictions in the mouse auditory cortex. Curr. Biol. 32, 4925–4940 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Craik, K. J. W. The Nature of Explanation (Macmillan, 1943).

  95. Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural network that finds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025–1033 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sauerbrei, B. A. et al. Cortical pattern generation during dexterous movement is input-driven. Nature 577, 386–391 (2020).

    CAS  PubMed  Google Scholar 

  98. Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H. & Wang, X.-J. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88, 419–431 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Salinas, E. & Sejnowski, T. J. Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7, 430–440 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Larkum, M. E., Senn, W. & Lüscher, H.-R. Top–down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb. Cortex 14, 1059–1070 (2004).

    PubMed  Google Scholar 

  101. Ferguson, K. A. & Cardin, J. A. Mechanisms underlying gain modulation in the cortex. Nat. Rev. Neurosci. 21, 80–92 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Stroud, J. P., Porter, M. A., Hennequin, G. & Vogels, T. P. Motor primitives in space and time via targeted gain modulation in cortical networks. Nat. Neurosci. 21, 1774–1783 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. McAdams, C. J. & Maunsell, J. H. R. Effects of attention on orientation–tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ha, D., Dai, A. M. & Le, Q. V. Hypernetworks. In 5th International Conference on Learning Representations (ICLR 2017) openreview.net/forum?id=rkpACe1lx (OpenReview.net, 2017).

  105. Eliasmith, C. et al. A large-scale model of the functioning brain. Science 338, 1202–1205 (2012).

    CAS  PubMed  Google Scholar 

  106. Galanti, T. & Wolf, L. On the modularity of hypernetworks. In Advances in Neural Information Processing Systems 33 (eds Larochelle, H. et al.) 10409–10419 (Curran Associates, 2020).

  107. Tomov, M. S., Yagati, S., Kumar, A., Yang, W. & Gershman, S. J. Discovery of hierarchical representations for efficient planning. PLoS Comput. Biol. 16, e1007594 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Olson, C. R. Brain representation of object-centered space in monkeys and humans. Annu. Rev. Neurosci. 26, 331–354 (2003).

    CAS  PubMed  Google Scholar 

  109. George, D. et al. Clone-structured graph representations enable flexible learning and vicarious evaluation of cognitive maps. Nat. Commun. 12, 2392 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Friston, K. J., Rosch, R., Parr, T., Price, C. & Bowman, H. Deep temporal models and active inference. Neurosci. Biobehav. Rev. 77, 388–402 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank A. Fisher, D. Gklezakos, P. Jiang, P. Rangarajan and V. Sathish for many discussions and the collaborative work cited in the text. I also thank K. Friston, C. Eliasmith and members of his laboratory, researchers at Numenta, S. Mirbagheri, N. Steinmetz and G. Burachas for discussions and feedback. This work was supported by National Science Foundation EFRI grant 2223495, National Institutes of Health grant 1UF1NS126485-01, the Defense Advanced Research Projects Agency under contract HR001120C0021, a UW + Amazon Science Hub grant, a Weill Neurohub Investigator grant, a Frameworks grant from the Templeton World Charity Foundation and a Cherng Jia and Elizabeth Yun Hwang Professorship. The opinions expressed in this publication are those of the author and do not necessarily reflect the views of the funders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh P. N. Rao.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Karl Friston, Aleena Garner, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, R.P.N. A sensory–motor theory of the neocortex. Nat Neurosci 27, 1221–1235 (2024). https://doi.org/10.1038/s41593-024-01673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-024-01673-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing