Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Realization of cellomics to dive into the whole-body or whole-organ cell cloud

Tissues, organs and organ systems are composed of interacting cells (the cellome). We discuss the emergence of an omics approach that we refer to as cellomics. It enables cellome-wide analysis in whole-organ or whole-body specimens, based on advanced three-dimensional imaging and image analysis technology. We think that cellomics will pave the way for the incorporation of cellular, intercellular and spatial information across millions of cells in our body.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The concept and possible workflow of cellomics.
Fig. 2: Application of cellomics.

References

  1. Aoki, W. et al. Sci. Rep. 8, 10380 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moses, L. & Pachter, L. Nat. Methods 19, 534–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto, K. et al. Nat. Protoc. 14, 3506–3537 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Seiriki, K. et al. Neuron 94, 1085–1100.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Economo, M. N. et al. eLife 5, e10566 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Murakami, T. C. et al. Nat. Neurosci. 21, 625–637 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Chakraborty, T. et al. Nat. Methods 16, 1109–1113 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Glaser, A. K. et al. Nat. Methods 19, 613–619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Glaser, A. et al. bioRxiv 2023.06.08.544277 (2023). https://doi.org/10.1101/2023.06.08.544277

  10. Keller, D., Erö, C. & Markram, H. Front. Neuroanat. 12, 83 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cupedo, T., Stroock, A. & Coles, M. Front. Immunol. 3, 343 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Langmead, B. & Salzberg, S. L. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laine, R. F., Arganda-Carreras, I., Henriques, R. & Jacquemet, G. Nat. Methods 18, 1136–1144 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, Q. et al. Cell 181, 936–953.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rood, J. E. et al. Cell 179, 1455–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mano, T. et al. Cell Rep. Methods 1, 100038 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Renier, N. et al. Cell 165, 1789–1802 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pan, C. et al. Cell 179, 1661–1676.e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Glaser, A. K. et al. Nat. Biomed. Eng. 1, 0084 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu, J. T. C. et al. Nat. Biomed. Eng. 5, 203–218 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Enard, W. et al. Nature 418, 869–872 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Bubnis, G., Ban, S., DiFranco, M. D. & Kato, S. Preprint at arXiv https://doi.org/10.48550/arXiv.1903.09227 (2019).

  23. Guo, Y. et al. IEEE Trans. Pattern Anal. Mach. Intell. 43, 4338–4364 (2021).

    Article  PubMed  Google Scholar 

  24. Regev, A. et al. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kishi, J. Y. et al. Nat. Methods 16, 533–544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goltsev, Y. et al. Cell 174, 968–981.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Mano (OIST) and the Ueda lab members, particularly S. Harada, K. Yamaura and F. Kinoshita, for their advice in enhancing the manuscript. This study was supported by grants from the JST ERATO JPMJER2001 (to H.R.U.); JST CREST JPMJCR23B7 (to E.A.S.); MEXT QLEAP JPMXS0120330644 (to H.R.U.); JST Moonshot R&D JPMJMS2023 (to K.M.); AMED/MEXT JPMJER2001 (to H.R.U.); JP22ama221517, JP20gm6210027, JP21ak0101181 and JP21wm0425003 (to E.A.S.); the JSPS KAKENHI JP18H05270 (to H.R.U.), 20K06885 (to K.M.), 22H02824, 22H04926 and 23K20044 (to E.A.S.), and 20K16498 (to T.T.M.); grants-in-aid from the Human Frontier Science Program (to H.R.U.);Operating Costs Subsidies for Private Universities (to E.A.S.); Takeda Science Foundation, UTEC-UTokyo, Uehara Memorial Foundation and Nakatani Foundation (to E.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

E.A.S. and H.R.U. came up with the concept of cellomics. T.T.M. and E.A.S. prepared the manuscript and figures. K.M. and H.R.U. were involved in revising the content and manuscript.

Corresponding author

Correspondence to Hiroki R. Ueda.

Ethics declarations

Competing interests

CUBICStars Inc., which H.R.U. founded and where T.T.M., K.M. and E.A.S. are employed, has filed patents regarding CUBIC-HV and CUBIC-Cloud. The company also provides CUBIC-Cloud web services. H.R.U., E.A.S., T.T.M. and K.M. are co-inventors on patents and patent applications owned or filed by RIKEN covering the CUBIC reagents and/or MOVIE. E.A.S. receives collaboration funding from Kantum Ushikata Co., LTD., that is related to the development of devices for cellomics.

Peer review

Peer review information

Nature Methods thanks Raju Tomer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitani, T.T., Susaki, E.A., Matsumoto, K. et al. Realization of cellomics to dive into the whole-body or whole-organ cell cloud. Nat Methods 21, 1138–1142 (2024). https://doi.org/10.1038/s41592-024-02307-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-024-02307-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing