Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The balance of STING signaling orchestrates immunity in cancer

Abstract

Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cGAS–STING pathway activation and regulation in cancer.
Fig. 2: STING suppression and regulation in cancer.
Fig. 3: Past, present and future understanding of the cGAS–STING pathway in cancer.

Similar content being viewed by others

References

  1. Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550 (2008).

    CAS  PubMed  Google Scholar 

  2. Jin, L. et al. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol. Cell. Biol. 28, 5014–5026 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun, W. et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl Acad. Sci. USA 106, 8653–8658 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, X. D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

    CAS  PubMed  Google Scholar 

  7. Civril, F. et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498, 332–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Woodward, J. J., Iavarone, A. T. & Portnoy, D. A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328, 1703–1705 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, X., Bai, X. C. & Chen, Z. J. Structures and mechanisms in the cGAS–STING innate immunity pathway. Immunity 53, 43–53 (2020).

    CAS  PubMed  Google Scholar 

  11. Hopfner, K. P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

    CAS  PubMed  Google Scholar 

  12. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet. 20, 657–674 (2019).

    CAS  PubMed  Google Scholar 

  13. Jeltema, D., Abbott, K. & Yan, N. STING trafficking as a new dimension of immune signaling. J. Exp. Med. 220, e20220990 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Volkman, H. E., Cambier, S., Gray, E. E. & Stetson, D. B. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. Elife 8, e47491 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, B. et al. The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature 587, 673–677 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, T. et al. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 371, eabc5386 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao, P. et al. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154, 748–762 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, C. et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature 567, 394–398 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yum, S., Li, M., Fang, Y. & Chen, Z. J. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc. Natl Acad. Sci. USA 118, e2100225118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanaka, Y. & Chen, Z. J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5, ra20 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. Balka, K. R. et al. TBK1 and IKKε act redundantly to mediate STING-Induced NF-κB responses in myeloid cells. Cell Rep. 31, 107492 (2020).

    CAS  PubMed  Google Scholar 

  22. Hong, C. et al. cGAS–STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607, 366–373 (2022).

    CAS  PubMed  Google Scholar 

  23. Humphries, F. et al. Targeting STING oligomerization with small-molecule inhibitors. Proc. Natl Acad. Sci. USA 120, e2305420120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ergun, S. L., Fernandez, D., Weiss, T. M. & Li, L. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell 178, 290–301 (2019).

    CAS  PubMed  Google Scholar 

  25. Mehta, A. et al. Human induced pluripotent stem cells generated from STING-associated vasculopathy with onset in infancy (SAVI) patients with a heterozygous mutation in the STING gene. Stem Cell Res. 65, 102974 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fremond, M. L. et al. Overview of STING-associated vasculopathy with onset in infancy (SAVI) among 21 patients. J. Allergy Clin. Immunol. Pract. 9, 803–818 (2021).

    CAS  PubMed  Google Scholar 

  27. Delafontaine, S. et al. Heterozygous mutations in the C-terminal domain of COPA underlie a complex autoinflammatory syndrome. J. Clin. Invest. 134, e163604 (2024).

    PubMed  PubMed Central  Google Scholar 

  28. Steiner, A. et al. Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nat. Commun. 13, 2321 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mukai, K. et al. Homeostatic regulation of STING by retrograde membrane traffic to the ER. Nat. Commun. 12, 61 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gentili, M. et al. ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. Nat. Commun. 14, 611 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Balka, K. R. et al. Termination of STING responses is mediated via ESCRT-dependent degradation. EMBO J. 42, e112712 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, Y. et al. Clathrin-associated AP-1 controls termination of STING signalling. Nature 610, 761–767 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wan, W. et al. STING directly recruits WIPI2 for autophagosome formation during STING-induced autophagy. EMBO J. 42, e112387 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gui, X. et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567, 262–266 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuchitsu, Y. et al. STING signalling is terminated through ESCRT-dependent microautophagy of vesicles originating from recycling endosomes. Nat. Cell Biol. 25, 453–466 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pepin, G. et al. Connexin-dependent transfer of cGAMP to phagocytes modulates antiviral responses. mBio 11, e03187–19 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Blest, H. T. W. & Chauveau, L. cGAMP the travelling messenger. Front. Immunol. 14, 1150705 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, J., Dobbs, N., Yang, K. & Yan, N. Interferon-independent activities of mammalian STING mediate antiviral response and tumor immune evasion. Immunity 53, 115–126 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dunphy, G. et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol. Cell 71, 745–760 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Al-Asmari, S. S. et al. Pharmacological targeting of STING-dependent IL-6 production in cancer cells. Front. Cell Dev. Biol. 9, 709618 (2021).

    PubMed  Google Scholar 

  42. Meibers, H. E. et al. Effector memory T cells induce innate inflammation by triggering DNA damage and a non-canonical STING pathway in dendritic cells. Cell Rep. 42, 113180 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jackson, S. P. The DNA-damage response: new molecular insights and new approaches to cancer therapy. Biochem. Soc. Trans. 37, 483–494 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghosh, M., Saha, S., Li, J., Montrose, D. C. & Martinez, L. A. p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression. Mol. Cell 83, 266–280 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ghosh, M. et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell 39, 494–508 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fenech, M. et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26, 125–132 (2011).

    CAS  PubMed  Google Scholar 

  49. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Leuzzi, G. et al. SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion. Cell 187, 861–881 (2024).

    CAS  PubMed  Google Scholar 

  52. Li, C. et al. Targeting MUS81 promotes the anticancer effect of WEE1 inhibitor and immune checkpoint blocking combination therapy via activating cGAS/STING signaling in gastric cancer cells. J. Exp. Clin. Cancer Res. 40, 315 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wörmann, S. M. et al. APOBEC3A drives deaminase domain-independent chromosomal instability to promote pancreatic cancer metastasis. Nat. Cancer 2, 1338–1356 (2021).

    PubMed  Google Scholar 

  54. Teo, Z. L. et al. Combined PARP and WEE1 inhibition triggers anti-tumor immune response in BRCA1/2 wildtype triple-negative breast cancer. NPJ Breast Cancer 9, 68 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. von Loga, K. et al. Extreme intratumour heterogeneity and driver evolution in mismatch repair deficient gastro-oesophageal cancer. Nat. Commun. 11, 139 (2020).

    Google Scholar 

  56. Guan, J. et al. MLH1 deficiency-triggered DNA hyperexcision by exonuclease 1 activates the cGAS–STING pathway. Cancer Cell 39, 109–121 (2021).

    CAS  PubMed  Google Scholar 

  57. Vornholz, L. et al. Synthetic enforcement of STING signaling in cancer cells appropriates the immune microenvironment for checkpoint inhibitor therapy. Sci. Adv. 9, eadd8564 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dilley, R. L. & Greenberg, R. A. ALTernative telomere maintenance and cancer. Trends Cancer 1, 145–156 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Chen, Y.-A. et al. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS–STING DNA sensing pathway. Nat. Struct. Mol. Biol. 24, 1124–1131 (2017).

    CAS  PubMed  Google Scholar 

  60. Cho, M.-G. et al. MRE11 liberates cGAS from nucleosome sequestration during tumorigenesis. Nature 625, 585–592 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bian, L., Meng, Y., Zhang, M. & Li, D. MRE11–RAD50–NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol. Cancer 18, 169 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, H. et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563, 131–136 (2018).

    CAS  PubMed  Google Scholar 

  63. Xu, P. et al. The CRL5-SPSB3 ubiquitin ligase targets nuclear cGAS for degradation. Nature 627, 873–879 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Roberts, Z. J., Ching, L. M. & Vogel, S. N. IFN-beta-dependent inhibition of tumor growth by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). J. Interferon Cytokine Res. 28, 133–139 (2008).

    CAS  PubMed  Google Scholar 

  65. Downey, C. M., Aghaei, M., Schwendener, R. A. & Jirik, F. R. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2'3'-cGAMP, induces M2 macrophage repolarization. PLoS ONE 9, e99988 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Conlon, J. et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immunol. 190, 5216–5225 (2013).

    CAS  PubMed  Google Scholar 

  68. Temizoz, B. et al. 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a partial STING agonist, competes for human STING activation. Front. Immunol. 15, 1353336 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, J., Meng, F. & Yeo, Y. Delivery of STING agonists for cancer immunotherapy. Curr. Opin. Biotechnol. 87, 103105 (2024).

    CAS  PubMed  Google Scholar 

  72. Jneid, B. et al. Selective STING stimulation in dendritic cells primes antitumor T cell responses. Sci. Immunol. 8, eabn6612 (2023).

    CAS  PubMed  Google Scholar 

  73. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, J. et al. STING licensing of type I dendritic cells potentiates antitumor immunity. Sci. Immunol. https://doi.org/10.1126/sciimmunol.adj3945 (2024).

  75. Demaria, O. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl Acad. Sci. USA 112, 15408–15413 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Benoit-Lizon, I. et al. CD4 T cell-intrinsic STING signaling controls the differentiation and effector functions of TH1 and TH9 cells. J. Immunother. Cancer 10, e003459 (2022).

    PubMed  PubMed Central  Google Scholar 

  77. Wu, J. et al. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death. J. Exp. Med. 216, 867–883 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kabelitz, D. et al. Signal strength of STING activation determines cytokine plasticity and cell death in human monocytes. Sci. Rep. 12, 17827 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gaidt, M. M. et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171, 1110–1124 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Long, J. et al. Notch signaling protects CD4 T cells from STING-mediated apoptosis during acute systemic inflammation. Sci. Adv. 6, eabc5447 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Quaney, M. J. et al. STING controls T cell memory fitness during infection through T cell-intrinsic and IDO-dependent mechanisms. Proc. Natl Acad. Sci. USA 120, e2205049120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Larkin, B. et al. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 199, 397–402 (2017).

    CAS  PubMed  Google Scholar 

  83. Sivick, K. E. et al. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085 (2018).

    CAS  PubMed  Google Scholar 

  84. Meric-Bernstam, F. et al. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clin. Cancer Res. 28, 677–688 (2022).

    CAS  PubMed  Google Scholar 

  85. Meric-Bernstam, F. et al. Combination of the STING agonist MIW815 (ADU-S100) and PD-1 inhibitor spartalizumab in advanced/metastatic solid tumors or lymphomas: an open-label, multicenter, phase ib study. Clin. Cancer Res. 29, 110–121 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hines, J. B., Kacew, A. J. & Sweis, R. F. The development of STING agonists and emerging results as a cancer immunotherapy. Curr. Oncol. Rep. 25, 189–199 (2023).

    PubMed  PubMed Central  Google Scholar 

  87. Pan, B. S. et al. An orally available non-nucleotide STING agonist with antitumor activity. Science 369, eaba6098 (2020).

    CAS  PubMed  Google Scholar 

  88. Chin, E. N. et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science 369, 993–999 (2020).

    CAS  PubMed  Google Scholar 

  89. Zhang, P. et al. STING agonist-loaded, CD47/PD-L1-targeting nanoparticles potentiate antitumor immunity and radiotherapy for glioblastoma. Nat. Commun. 14, 1610 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nakamura, T. et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J. Immunother. Cancer 9, e002852 (2021).

    PubMed  PubMed Central  Google Scholar 

  91. Amouzegar, A., Chelvanambi, M., Filderman, J. N., Storkus, W. J. & Luke, J. J. STING agonists as cancer therapeutics. Cancers 13, 2695 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Soomer-James, J., Damelin, M. & Malli, N. XMT-2056, a HER2-targeted STING agonist antibody–drug conjugate, exhibits ADCC function that synergizes with STING pathway activation and contributes to anti-tumor responses. Cancer Res. 83, 4423 (2023).

  93. Duvall, J. R. et al. XMT-2056, a HER2-targeted Immunosynthen STING-agonist antibody-drug conjugate, binds a novel epitope of HER2 and shows increased anti-tumor activity in combination with trastuzumab and pertuzumab. Cancer Res. 82, 3503 (2022).

  94. Wang, X. et al. The role of CXCR3 and its ligands in cancer. Front. Oncol. 12, 1022688 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022).

    CAS  PubMed  Google Scholar 

  96. Ribas, A. et al. Overcoming PD-1 blockade resistance with CpG-A toll-like receptor 9 agonist vidutolimod in patients with metastatic melanoma. Cancer Discov. 11, 2998–3007 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bill, R. et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers. Science 381, 515–524 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Biskup, E. et al. Photochemotherapy induces interferon type III expression via STING pathway. Cells 9, 2452 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pang, E. S. et al. Discordance in STING-induced activation and cell death between mouse and human dendritic cell populations. Front. Immunol. 13, 794776 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sui, H. et al. STING is an essential mediator of the Ku70-mediated production of IFN-λ1 in response to exogenous DNA. Sci. Signal. 10, eaah5054 (2017).

    PubMed  Google Scholar 

  101. Lazear, H. M., Nice, T. J. & Diamond, M. S. Interferon-lambda: immune functions at barrier surfaces and beyond. Immunity 43, 15–28 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hemann, E. A. et al. Interferon-lambda modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus. Nat. Immunol. 20, 1035–1045 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Read, S. A. et al. Macrophage coordination of the interferon lambda immune response. Front. Immunol. 10, 2674 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Mennechet, F. J. & Uze, G. Interferon-lambda-treated dendritic cells specifically induce proliferation of FOXP3-expressing suppressor T cells. Blood 107, 4417–4423 (2006).

    CAS  PubMed  Google Scholar 

  105. Galani, I. E. et al. Interferon-lambda mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity 46, 875–890 (2017).

    CAS  PubMed  Google Scholar 

  106. Hubert, M. et al. IFN-III is selectively produced by cDC1 and predicts good clinical outcome in breast cancer. Sci. Immunol. 5, eaav3942 (2020).

    CAS  PubMed  Google Scholar 

  107. Reis, G. et al. Early treatment with pegylated interferon lambda for COVID-19. N. Engl. J. Med. 388, 518–528 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Loo, T. M., Miyata, K., Tanaka, Y. & Takahashi, A. Cellular senescence and senescence-associated secretory phenotype via the cGAS–STING signaling pathway in cancer. Cancer Sci. 111, 304–311 (2020).

    CAS  PubMed  Google Scholar 

  109. Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kuang, F., Liu, J., Li, C., Kang, R. & Tang, D. Cathepsin B is a mediator of organelle-specific initiation of ferroptosis. Biochem. Biophys. Res. Commun. 533, 1464–1469 (2020).

    CAS  PubMed  Google Scholar 

  113. Gao, Y. et al. Intercellular transfer of activated STING triggered by RAB22A-mediated non-canonical autophagy promotes antitumor immunity. Cell Res. 32, 1086–1104 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, L. et al. STING is a cell-intrinsic metabolic checkpoint restricting aerobic glycolysis by targeting HK2. Nat. Cell Biol. 25, 1208–1222 (2023).

    CAS  PubMed  Google Scholar 

  115. Hayman, T. J. et al. STING enhances cell death through regulation of reactive oxygen species and DNA damage. Nat. Commun. 12, 2327 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yamashiro, L. H. et al. Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nat. Commun. 11, 3382 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, S. et al. STING-induced regulatory B cells compromise NK function in cancer immunity. Nature 610, 373–380 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim, J. et al. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Ther. 31, 28–42 (2024).

    CAS  PubMed  Google Scholar 

  119. Orange, S. T., Leslie, J., Ross, M., Mann, D. A. & Wackerhage, H. The exercise IL-6 enigma in cancer. Trends Endocrinol. Metab. 34, 749–763 (2023).

    CAS  PubMed  Google Scholar 

  120. Briukhovetska, D. et al. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer 21, 481–499 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mauer, J., Denson, J. L. & Bruning, J. C. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 36, 92–101 (2015).

    CAS  PubMed  Google Scholar 

  122. Carozza, J. A. et al. Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity. Nat. Cancer 1, 184–196 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Maltbaek, J. H., Cambier, S., Snyder, J. M. & Stetson, D. B. ABCC1 transporter exports the immunostimulatory cyclic dinucleotide cGAMP. Immunity 55, 1799–1812 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kato, K. et al. Structural insights into cGAMP degradation by ecto-nucleotide pyrophosphatase phosphodiesterase 1. Nat. Commun. 9, 4424 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. Li, L. et al. Hydrolysis of 2'3'-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Carozza, J. A. et al. Structure-aided development of small-molecule inhibitors of ENPP1, the extracellular phosphodiesterase of the immunotransmitter cGAMP. Cell Chem. Biol. 27, 1347–1358 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Concepcion, A. R. et al. The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING-p53 signaling. Nat. Immunol. 23, 287–302 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou, C. et al. Transfer of cGAMP into bystander cells via LRRC8 Volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity. Immunity 52, 767–781 (2020).

    CAS  PubMed  Google Scholar 

  129. Zhou, Y. et al. Blockade of the phagocytic receptor MerTK on tumor-associated macrophages enhances P2X7R-dependent STING activation by tumor-derived cGAMP. Immunity 52, 357–373 (2020).

    CAS  PubMed  Google Scholar 

  130. Ritchie, C., Cordova, A. F., Hess, G. T., Bassik, M. C. & Li, L. SLC19A1 is an importer of the immunotransmitter cGAMP. Mol. Cell 75, 372–381 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Luteijn, R. D. et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434–438 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Cordova, A. F., Ritchie, C., Bohnert, V. & Li, L. Human SLC46A2 is the dominant cGAMP importer in extracellular cGAMP-sensing macrophages and monocytes. ACS Cent. Sci. 7, 1073–1088 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Carozza, J. A. et al. ENPP1’s regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating STING signaling. Proc. Natl Acad. Sci. USA 119, e2119189119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Li, J. et al. Metastasis and immune evasion from extracellular cGAMP hydrolysis. Cancer Discov. 11, 1212–1227 (2021).

    CAS  PubMed  Google Scholar 

  135. Gangar, M. et al. Design, synthesis and biological evaluation studies of novel small molecule ENPP1 inhibitors for cancer immunotherapy. Bioorg. Chem. 119, 105549 (2022).

    CAS  PubMed  Google Scholar 

  136. Solomon, P. E. et al. Discovery of VH domains that allosterically inhibit ENPP1. Nat. Chem. Biol. 20, 30–41 (2024).

    CAS  PubMed  Google Scholar 

  137. Groelly, F. J., Fawkes, M., Dagg, R. A., Blackford, A. N. & Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 23, 78–94 (2023).

    CAS  PubMed  Google Scholar 

  138. Nakajima, S. et al. Radiation-induced remodeling of the tumor microenvironment through tumor cell-intrinsic expression of cGAS–STING in esophageal squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 115, 957–971 (2023).

    PubMed  Google Scholar 

  139. Lv, J. et al. The tumor immune microenvironment of nasopharyngeal carcinoma after gemcitabine plus cisplatin treatment. Nat. Med. 29, 1424–1436 (2023).

    CAS  PubMed  Google Scholar 

  140. Ding, L. et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Rep. 25, 2972–2980 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ding, L. et al. STING agonism overcomes STAT3-mediated immunosuppression and adaptive resistance to PARP inhibition in ovarian cancer. J. Immunother. Cancer 11, e005627 (2023).

    PubMed  PubMed Central  Google Scholar 

  142. Wang, Q. et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat. Commun. 13, 3022 (2022).

    PubMed  PubMed Central  Google Scholar 

  143. Zhu, Q. et al. Novel dual inhibitors of PARP and HDAC induce intratumoral STING-mediated antitumor immunity in triple-negative breast cancer. Cell Death Dis. 15, 10 (2024).

    PubMed  PubMed Central  Google Scholar 

  144. Ma, Z. et al. AhR diminishes the efficacy of chemotherapy via suppressing STING dependent type-I interferon in bladder cancer. Nat. Commun. 14, 5415 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Opitz, C. A., Holfelder, P., Prentzell, M. T. & Trump, S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem. Pharmacol. 216, 115798 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Salojin, C. et al. The first-in-class small molecule TREX1 inhibitor CPI-381 demonstrates type I IFN induction and sensitization of tumors to immune checkpoint blockade. J. Immunother. Cancer 9, A800 (2021).

  148. Chen, V. et al. Generation of novel potent human TREX1 inhibitors facilitated by crystallography. Cancer Res. 83, 1636 (2023).

  149. Sen, T. et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 9, 646–661 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Du, S. S. et al. Radiation therapy promotes hepatocellular carcinoma immune cloaking via PD-L1 upregulation induced by cGAS–STING activation. Int. J. Radiat. Oncol. Biol. Phys. 112, 1243–1255 (2022).

    PubMed  Google Scholar 

  151. Luo, W. et al. Critical role of the cGAS–STING pathway in doxorubicin-induced cardiotoxicity. Circ. Res. 132, e223–e242 (2023).

    CAS  PubMed  Google Scholar 

  152. Ni, H. et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J. Immunother. Cancer 10, e005151 (2022).

    PubMed  PubMed Central  Google Scholar 

  153. Couillin, I. & Riteau, N. STING signaling and sterile inflammation. Front. Immunol. 12, 753789 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Xia, T., Konno, H., Ahn, J. & Barber, G. N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 14, 282–297 (2016).

    CAS  PubMed  Google Scholar 

  155. Konno, H. et al. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 37, 2037–2051 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Falahat, R. et al. Epigenetic state determines the in vivo efficacy of STING agonist therapy. Nat. Commun. 14, 1573 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lai, J. et al. Zebularine elevates STING expression and enhances cGAMP cancer immunotherapy in mice. Mol. Ther. 29, 1758–1771 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wu, L. et al. KDM5 histone demethylases repress immune response via suppression of STING. PLoS Biol. 16, e2006134 (2018).

    PubMed  PubMed Central  Google Scholar 

  159. Kottakis, F. et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539, 390–395 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee, K. M. et al. Epigenetic repression of STING by MYC promotes immune evasion and resistance to immune checkpoint inhibitors in triple-negative breast cancer. Cancer Immunol. Res. 10, 829–843 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, X. & Winey, M. The MPS1 family of protein kinases. Annu. Rev. Biochem. 81, 561–585 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Hu, X. et al. TTK inhibition activates STING signal and promotes anti-PD1 immunotherapy in breast cancer. Biochem. Biophys. Res. Commun. 694, 149388 (2024).

    CAS  PubMed  Google Scholar 

  163. Kitajima, S. et al. MPS1 inhibition primes immunogenicity of KRAS-LKB1 mutant lung cancer. Cancer Cell 40, 1128–1144 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kobelt, D. et al. Pro-inflammatory TNF-α and IFN-γ promote tumor growth and metastasis via induction of MACC1. Front. Immunol. 11, 980 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Filderman, J. N. et al. Antagonism of regulatory ISGs enhances the anti-melanoma efficacy of STING agonists. Front. Immunol. 15, 1334769 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee, S. E. et al. Improvement of STING-mediated cancer immunotherapy using immune checkpoint inhibitors as a game-changer. Cancer Immunol. Immunother. 71, 3029–3042 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen, W. et al. Chronic type I interferon signaling promotes lipid-peroxidation-driven terminal CD8+ T cell exhaustion and curtails anti-PD-1 efficacy. Cell Rep. 41, 111647 (2022).

    CAS  PubMed  Google Scholar 

  168. Ahn, J. et al. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 5, 5166 (2014).

    CAS  PubMed  Google Scholar 

  169. Bakhoum, M. F. et al. Loss of polycomb repressive complex 1 activity and chromosomal instability drive uveal melanoma progression. Nat. Commun. 12, 5402 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhao, M. et al. Mutant p53 gains oncogenic functions through a chromosomal instability-induced cytosolic DNA response. Nat. Commun. 15, 180 (2024).

    PubMed  PubMed Central  Google Scholar 

  171. Li, J. et al. Non-cell-autonomous cancer progression from chromosomal instability. Nature 620, 1080–1088 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018).

    CAS  PubMed  Google Scholar 

  173. Nakamura, M. et al. Development of STING degrader with double covalent ligands. Bioorg. Med. Chem. Lett. 102, 129677 (2024).

    CAS  PubMed  Google Scholar 

  174. Zhu, Z. et al. Development of VHL-recruiting STING PROTACs that suppress innate immunity. Cell. Mol. Life Sci. 80, 149 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu, J. et al. Novel CRBN-recruiting proteolysis-targeting chimeras as degraders of stimulator of interferon genes with in vivo anti-inflammatory efficacy. J. Med. Chem. 65, 6593–6611 (2022).

    CAS  PubMed  Google Scholar 

  176. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are supported by funding from the Lundbeck foundation (grant no. R238-2016-2708), the Novo Nordisk Foundation Distinguished Innovator (grant no. NNF20OC0062825) and the Danish Cancer Society (grant no. R231-A14090). We are grateful for the support by R. O. Bak and A. Etzerodt providing valuable input and discussion of subjects entailed in the Review. We acknowledge the existence of several relevant research papers, which hold valuable insights and contributions to the field, that we were not able to incorporate in this Review.

Author information

Authors and Affiliations

Authors

Contributions

M.R.J. developed the concept of the manuscript. K.R.B.L. and E.L.L. contributed to the drafting of the manuscript and generating figures. All authors edited and approved the final version.

Corresponding author

Correspondence to Martin Roelsgaard Jakobsen.

Ethics declarations

Competing interests

M.R.J. is scientific cofounder and board member of STipe Therapeutics and Unikum Therapeutics. K.R.B.L. and E.L.L. declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Michael Gantier, Nan Yan, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Nick Bernard, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanng, K.R.B., Lauridsen, E.L. & Jakobsen, M.R. The balance of STING signaling orchestrates immunity in cancer. Nat Immunol 25, 1144–1157 (2024). https://doi.org/10.1038/s41590-024-01872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-024-01872-3

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer