Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial genetics through the lens of single-cell multi-omics

Abstract

Mitochondria carry their own genetic information encoding for a subset of protein-coding genes and translational machinery essential for cellular respiration and metabolism. Despite its small size, the mitochondrial genome, its natural genetic variation and molecular phenotypes have been challenging to study using bulk sequencing approaches, due to its variation in cellular copy number, non-Mendelian modes of inheritance and propensity for mutations. Here we highlight emerging strategies designed to capture mitochondrial genetic variation across individual cells for lineage tracing and studying mitochondrial genetics in primary human cells and clinical specimens. We review recent advances surrounding single-cell mitochondrial genome sequencing and its integration with functional genomic readouts, including leveraging somatic mitochondrial DNA mutations as clonal markers that can resolve cellular population dynamics in complex human tissues. Finally, we discuss how single-cell whole mitochondrial genome sequencing approaches can be utilized to investigate mitochondrial genetics and its contribution to cellular heterogeneity and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamental aspects of mitochondrial genetics.
Fig. 2: Emerging biomedical research avenues of mtDNA.
Fig. 3: Overview of single-cell multi-omic assays for genomic profiling and the co-detection of mtDNA mutations.
Fig. 4: Revealing in situ clonal tracing by mtDNA genetic variation.
Fig. 5: Examples of biological insights into hematopoiesis and the immune system afforded by single-cell mtDNA sequencing.

Similar content being viewed by others

References

  1. Nass, S. & Nass, M. M. K. Intramitochondrial fibers with DNA characteristics: II. Enzymatic and other hydrolytic treatments. J. Cell Biol. 19, 613 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wallace, D. C. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu. Rev. Biochem. 76, 781–821 (2007).

    CAS  PubMed  Google Scholar 

  3. Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).

    CAS  PubMed  Google Scholar 

  4. Wai, T. et al. The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod. 83, 52–62 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Palis, J. Primitive and definitive erythropoiesis in mammals. Front. Physiol. 5, 3 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Gupta, R. et al. Nuclear genetic control of mtDNA copy number and heteroplasmy in humans. Nature 620, 839–848 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Stewart, J. B. & Chinnery, P. F. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat. Rev. Genet. 22, 106–118 (2021).

    CAS  PubMed  Google Scholar 

  8. Emery, L. S., Magnaye, K. M., Bigham, A. W., Akey, J. M. & Bamshad, M. J. Estimates of continental ancestry vary widely among individuals with the same mtDNA haplogroup. Am. J. Hum. Genet. 96, 183–193 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kandasamy, J., Rezonzew, G., Jilling, T., Ballinger, S. & Ambalavanan, N. Mitochondrial DNA variation modulates alveolar development in newborn mice exposed to hyperoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 317, L740–L747 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Farha, S. et al. Mitochondrial haplogroups and risk of pulmonary arterial hypertension. PLoS ONE 11, e0156042 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Kenney, M. C. et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochim. Biophys. Acta 1842, 208–219 (2014).

    CAS  PubMed  Google Scholar 

  12. Campbell, P. et al. Mitochondrial mutation, drift and selection during human development and ageing. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3083262/v1 (2023).

  13. Pesole, G., Gissi, C., De Chirico, A. & Saccone, C. Nucleotide substitution rate of mammalian mitochondrial genomes. J. Mol. Evol. 48, 427–434 (1999).

    CAS  PubMed  Google Scholar 

  14. Haag-Liautard, C. et al. Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol. 6, e204 (2008).

    PubMed  PubMed Central  Google Scholar 

  15. Wallace, D. C. Mitochondrial genetic medicine. Nat. Genet. 50, 1642–1649 (2018).

    CAS  PubMed  Google Scholar 

  16. Yonova-Doing, E. et al. An atlas of mitochondrial DNA genotype–phenotype associations in the UK Biobank. Nat. Genet. 53, 982–993 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai, N. et al. Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nat. Med. 27, 1564–1575 (2021).

    CAS  PubMed  Google Scholar 

  18. Gorelick, A. N. et al. Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. Nat. Metab. 3, 558–570 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Triska, P. et al. Landscape of germline and somatic mitochondrial DNA mutations in pediatric malignancies. Cancer Res. 79, 1318–1330 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kopinski, P. K., Singh, L. N., Zhang, S., Lott, M. T. & Wallace, D. C. Mitochondrial DNA variation and cancer. Nat. Rev. Cancer 21, 431–445 (2021).

    CAS  PubMed  Google Scholar 

  21. Yuan, Y. et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat. Genet. 52, 342–352 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mahmood, M. et al. Mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade response in melanoma. Nat. Cancer https://doi.org/10.1038/s43018-023-00721-w (2024)

  23. Suomalainen, A. & Battersby, B. J. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat. Rev. Mol. Cell Biol. 19, 77–92 (2017).

    PubMed  Google Scholar 

  24. Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the human cell atlas on medicine. Nat. Med. 28, 2486–2496 (2022).

    CAS  PubMed  Google Scholar 

  25. Rajewsky, N. et al. LifeTime and improving European healthcare through cell-based interceptive medicine. Nature 587, 377–386 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Luquette, L. J. et al. Single-cell genome sequencing of human neurons identifies somatic point mutation and indel enrichment in regulatory elements. Nat. Genet. 54, 1564–1571 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176, 1325–1339.e22 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, J. et al. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. eLife 8, e45105 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    CAS  PubMed  Google Scholar 

  31. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).

    CAS  PubMed  Google Scholar 

  32. Hagemann-Jensen, M., Ziegenhain, C. & Sandberg, R. Scalable single-cell RNA sequencing from full transcripts with Smart-seq3xpress. Nat. Biotechnol. 40, 1452–1457 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hahaut, V. et al. Fast and highly sensitive full-length single-cell RNA sequencing using FLASH-seq. Nat. Biotechnol. 40, 1447–1451 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 1–12 (2017).

    Google Scholar 

  35. Miller, T. E. et al. Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations. Nat. Biotechnol. 40, 1030–1034 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gier, R. A. et al. Clonal cell states link Barrett’s esophagus and esophageal adenocarcinoma. Preprint at bioRxiv https://doi.org/10.1101/2023.01.26.525564 (2023).

  37. Salmen, F. et al. High-throughput total RNA sequencing in single cells using VASA-seq. Nat. Biotechnol. 40, 1780–1793 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lareau, C. A. et al. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat. Biotechnol. 39, 451–461 (2021).

    CAS  PubMed  Google Scholar 

  39. Stefan Isaac, R. et al. Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA. Nat. Struct. Mol. Biol. 31, 568–577 (2024).

    PubMed  Google Scholar 

  40. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fiskin, E. et al. Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC. Nat. Biotechnol. 40, 374–381 (2021).

    PubMed  PubMed Central  Google Scholar 

  42. Izzo, F. et al. Mapping genotypes to chromatin accessibility profiles in single cells. Nature 629, 1149–1157 (2024).

    CAS  PubMed  Google Scholar 

  43. Weng, C. et al. Deciphering cell states and genealogies of human hematopoiesis. Nature https://doi.org/10.1038/s41586-024-07066-z (2024).

  44. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sankaran, V. G., Weissman, J. S. & Zon, L. I. Cellular barcoding to decipher clonal dynamics in disease. Science 378, eabm5874 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Spencer Chapman, M. et al. Lineage tracing of human development through somatic mutations. Nature 595, 85–90 (2021).

    CAS  PubMed  Google Scholar 

  47. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343–350 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Picca, A., Faitg, J., Auwerx, J., Ferrucci, L. & D’Amico, D. Mitophagy in human health, ageing and disease. Nat. Metab. 5, 2047–2061 (2023).

    PubMed  Google Scholar 

  49. Fellous, T. G. et al. Locating the stem cell niche and tracing hepatocyte lineages in human liver. Hepatology 49, 1655–1663 (2009).

    CAS  PubMed  Google Scholar 

  50. Taylor, R. W. et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Invest. 112, 1351–1360 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Teixeira, V. H. et al. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors. eLife 2, e00966 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Blackwood, J. K. et al. In situ lineage tracking of human prostatic epithelial stem cell fate reveals a common clonal origin for basal and luminal cells. J. Pathol. 225, 181–188 (2011).

    CAS  PubMed  Google Scholar 

  53. Cereser, B. et al. Analysis of clonal expansions through the normal and premalignant human breast epithelium reveals the presence of luminal stem cells. J. Pathol. 244, 61–70 (2018).

    CAS  PubMed  Google Scholar 

  54. Tempest, N. et al. Histological 3D reconstruction and in vivo lineage tracing of the human endometrium. J. Pathol. 251, 440–451 (2020).

    CAS  PubMed  Google Scholar 

  55. Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, L. et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell 186, 5183–5199.e22 (2023).

    CAS  PubMed  Google Scholar 

  57. Ferrari, S. et al. Efficient gene editing of human long-term hematopoietic stem cells validated by clonal tracking. Nat. Biotechnol. 38, 1298–1308 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lareau, C. A., Ludwig, L. S. & Sankaran, V. G. Longitudinal assessment of clonal mosaicism in human hematopoiesis via mitochondrial mutation tracking. Blood Adv. 3, 4161–4165 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, D. et al. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct. Target Ther. 6, 65 (2021).

    PubMed  PubMed Central  Google Scholar 

  60. Zhang, H. et al. Systematic investigation of mitochondrial transfer between cancer cells and T cells at single-cell resolution. Cancer Cell 41, 1788–1802.e10 (2023).

    CAS  PubMed  Google Scholar 

  61. Beneyto-Calabuig, S. et al. Clonally resolved single-cell multi-omics identifies routes of cellular differentiation in acute myeloid leukemia. Cell Stem Cell 30, 706–721.e8 (2023).

    CAS  PubMed  Google Scholar 

  62. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Haghverdi, L. & Ludwig, L. S. Single-cell multi-omics and lineage tracing to dissect cell fate decision-making. Stem Cell Rep. 18, 13–25 (2023).

    CAS  Google Scholar 

  64. Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. D. & Klein, A. M. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 367, eaaw3381 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  PubMed  Google Scholar 

  66. Penter, L. et al. Longitudinal single-cell dynamics of chromatin accessibility and mitochondrial mutations in chronic lymphocytic leukemia mirror disease history. Cancer Discov. 11, 3048–3063 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Poos, A. M. et al. Resolving therapy resistance mechanisms in multiple myeloma by multi-omics subclone analysis. Blood https://doi.org/10.1182/blood.2023019758 (2023)

  68. Nam, A. S. et al. Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. Nat. Genet. 54, 1514–1526 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Adams, N. M., Grassmann, S. & Sun, J. C. Clonal expansion of innate and adaptive lymphocytes. Nat. Rev. Immunol. 20, 694–707 (2020).

    CAS  PubMed  Google Scholar 

  70. Jenkins, M. K., Chu, H. H., McLachlan, J. B. & Moon, J. J. On the composition of the preimmune repertoire of T cells specific for peptide-major histocompatibility complex ligands. Annu. Rev. Immunol. 28, 275–294 (2010).

    CAS  PubMed  Google Scholar 

  71. Schatz, D. G. & Ji, Y. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11, 251–263 (2011).

    CAS  PubMed  Google Scholar 

  72. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Musvosvi, M. et al. T cell receptor repertoires associated with control and disease progression following Mycobacterium tuberculosis infection. Nat. Med. 29, 258–269 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rückert, T., Lareau, C. A., Mashreghi, M.-F., Ludwig, L. S. & Romagnani, C. Clonal expansion and epigenetic inheritance of long-lasting NK cell memory. Nat. Immunol. 23, 1551–1563 (2022).

    PubMed  PubMed Central  Google Scholar 

  75. Walker, M. A. et al. Purifying selection against pathogenic mitochondrial DNA in human T cells. N. Engl. J. Med. 383, 1556–1563 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Glynos, A. et al. High-throughput single-cell analysis reveals progressive mitochondrial DNA mosaicism throughout life. Sci. Adv. 9, eadi4038 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rossignol, R. et al. Mitochondrial threshold effects. Biochem. J. 370, 751–762 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lareau, C. A. et al. Single-cell multi-omics of mitochondrial DNA disorders reveals dynamics of purifying selection across human immune cells. Nat. Genet. 55, 1198–1209 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Franklin, I. G. et al. T cell differentiation drives the negative selection of pathogenic mitochondrial DNA variants. Life Sci. Alliance 6, e202302271 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, J. et al. Antigen receptor stimulation induces purifying selection against pathogenic mitochondrial tRNA mutations. JCI Insight 8, e167656 (2023).

    PubMed  PubMed Central  Google Scholar 

  81. Cree, L. M. et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 40, 249–254 (2008).

    CAS  PubMed  Google Scholar 

  82. Cao, L. et al. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat. Genet. 39, 386–390 (2007).

    CAS  PubMed  Google Scholar 

  83. Burr, S. P. et al. Cell lineage-specific mitochondrial resilience during mammalian organogenesis. Cell 186, 1212–1229.e21 (2023).

    CAS  PubMed  Google Scholar 

  84. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    CAS  PubMed  Google Scholar 

  85. Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    CAS  PubMed  Google Scholar 

  86. Nissanka, N. & Moraes, C. T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 592, 728–742 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).

    CAS  PubMed  Google Scholar 

  88. Scotece, M. et al. Mitochondrial DNA impact on joint damaged process in a conplastic mouse model after being surgically induced with osteoarthritis. Sci. Rep. 11, 1–12 (2021).

    Google Scholar 

  89. Jacoby, E. et al. Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abo3724 (2022).

  90. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ludwig, L. S. & Lareau, C. A. In Chromatin Accessibility: Methods and Protocols (eds Marinov, G. K. & Greenleaf, W. J.) 269–282 (Humana, 2023).

  92. Ulirsch, J. C. et al. Interrogation of human hematopoiesis at single-cell and single-variant resolution. Nat. Genet. 51, 683–693 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    CAS  PubMed  Google Scholar 

  94. Pai, J. A. & Satpathy, A. T. High-throughput and single-cell T cell receptor sequencing technologies. Nat. Methods 18, 881–892 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lareau, C. A. et al. Mitochondrial single-cell ATAC-seq for high-throughput multi-omic detection of mitochondrial genotypes and chromatin accessibility. Nat. Protoc. 18, 1416–1440 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of the Lareau and Ludwig labs for valuable discussions. This work was supported by NIH K99/R00 HG012579 (C.A.L.), UM1 HG012076 (C.A.L. and L.S.L.), the MDC-NYU exchange program (L.N.), the Hector Fellow Academy (L.N. and L.S.L.), a Longevity Impetus Grant (L.S.L.), the Paul Ehrlich Foundation (L.S.L.), the EMBO Young Investigator Programme (L.S.L.), an Emmy Noether fellowship (LU 2336/2-1) and grants by the German Research Foundation (DFG, LU 2336/3-1, LU 2336/6-1, STA 1586/5-1, TRR241, SFB1588, Heinz Maier-Leibnitz Award to L.S.L.). Individual figures and panels were created with BioRender.com. We apologize to all our colleagues whose work could not be specifically mentioned due to space restrictions.

Author information

Authors and Affiliations

Authors

Contributions

L.N., C.A.L. and L.S.L. conceived and wrote the manuscript.

Corresponding authors

Correspondence to Caleb A. Lareau or Leif S. Ludwig.

Ethics declarations

Competing interests

The Broad Institute has filed for patents relating to the use of technologies described in this paper where C.A.L. and L.S.L., are named inventors (US patent applications 17/251,451 and 17/928,696). C.A.L. and L.S.L. are consultants to Cartography Biosciences. L.N. declares no competing interests.

Peer review

Peer review information

Nature Genetics thanks Aleksandra Trifunovic and the anonymous, reviewer(s), for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitsch, L., Lareau, C.A. & Ludwig, L.S. Mitochondrial genetics through the lens of single-cell multi-omics. Nat Genet 56, 1355–1365 (2024). https://doi.org/10.1038/s41588-024-01794-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01794-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research