Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measuring gravitational attraction with a lattice atom interferometer

Abstract

Despite being the dominant force of nature on large scales, gravity remains relatively elusive to precision laboratory experiments. Atom interferometers are powerful tools for investigating, for example, Earth’s gravity1, the gravitational constant2, deviations from Newtonian gravity3,4,5,6 and general relativity7. However, using atoms in free fall limits measurement time to a few seconds8, and much less when measuring interactions with a small source mass2,5,6,9. Recently, interferometers with atoms suspended for 70 s in an optical-lattice mode filtered by an optical cavity have been demonstrated10,11,12,13,14. However, the optical lattice must balance Earth’s gravity by applying forces that are a billionfold stronger than the putative signals, so even tiny imperfections may generate complex systematic effects. Thus, lattice interferometers have yet to be used for precision tests of gravity. Here we optimize the gravitational sensitivity of a lattice interferometer and use a system of signal inversions to suppress and quantify systematic effects. We measure the attraction of a miniature source mass to be amass = 33.3 ± 5.6stat ± 2.7syst nm s−2, consistent with Newtonian gravity, ruling out ‘screened fifth force’ theories3,15,16 over their natural parameter space. The overall accuracy of 6.2 nm s−2 surpasses by more than a factor of four the best similar measurements with atoms in free fall5,6. Improved atom cooling and tilt-noise suppression may further increase sensitivity for investigating forces at sub-millimetre ranges17,18, compact gravimetry19,20,21,22, measuring the gravitational Aharonov–Bohm effect9,23 and the gravitational constant2, and testing whether the gravitational field has quantum properties24.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental apparatus and lattice atom interferometer trajectories.
Fig. 2: Experiment timescales.
Fig. 3: Measurement dataset.
Fig. 4: Constraints on deviations from Newtonian gravity.

Similar content being viewed by others

Data availability

All data presented in this paper are deposited online63.

Code availability

Analysis code is available on request.

References

  1. Peters, A., Chung, K. Y. & Chu, S. Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. & Tino, G. M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Burrage, C., Copeland, E. J. & Hinds, E. A. Probing dark energy with atom interferometry. J. Cosmol. Astropart. Phys. 3, 042 (2015).

    Article  ADS  Google Scholar 

  4. Hamilton, P. et al. Atom-interferometry constraints on dark energy. Science 349, 849–851 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Jaffe, M. et al. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass. Nat. Phys. 13, 938–942 (2017).

    Article  CAS  Google Scholar 

  6. Sabulsky, D. O. et al. Experiment to detect dark energy forces using atom interferometry. Phys. Rev. Lett. 123, 061102 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Asenbaum, P., Overstreet, C., Kim, M., Curti, J. & Kasevich, M. A. Atom-interferometric test of the equivalence principle at the 10−12 level. Phys. Rev. Lett. 125, 191101 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Dickerson, S. M., Hogan, J. M., Sugarbaker, A., Johnson, D. M. S. & Kasevich, M. A. Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111, 83001 (2013).

    Article  ADS  Google Scholar 

  9. Overstreet, C., Asenbaum, P., Curti, J., Kim, M. & Kasevich, M. A. Observation of a gravitational Aharonov-Bohm effect. Science 375, 226–229 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  10. Panda, C. D. et al. Coherence limits in lattice atom interferometry at the one-minute scale. Nat. Phys. https://doi.org/10.1038/s41567-024-02518-9 (2024).

  11. Xu, V. et al. Probing gravity by holding atoms for 20 seconds. Science 366, 745–749 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhang, X., del Aguila, R. P., Mazzoni, T., Poli, N. & Tino, G. M. Trapped-atom interferometer with ultracold Sr atoms. Phys. Rev. A 94, 043608 (2016).

    Article  ADS  Google Scholar 

  13. Charrière, R., Cadoret, M., Zahzam, N., Bidel, Y. & Bresson, A. Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Phys. Rev. A 85, 013639 (2012).

    Article  ADS  Google Scholar 

  14. Cladé, P. et al. A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave. Europhys. Lett. 71, 730–736 (2005).

    Article  ADS  Google Scholar 

  15. Wang, J., Hui, L. & Khoury, J. No-go theorems for generalized chameleon field theories. Phys. Rev. Lett. 109, 241301 (2012).

    Article  ADS  PubMed  Google Scholar 

  16. Elder, B. et al. Chameleon dark energy and atom interferometry. Phys. Rev. D 94, 044051 (2016).

    Article  ADS  Google Scholar 

  17. Tino, G. M. Testing gravity with cold atom interferometry: results and prospects. Quantum Sci. Technol. 6, 024014 (2021).

    Article  ADS  Google Scholar 

  18. Westphal, T., Hepach, H., Pfaff, J. & Aspelmeyer, M. Measurement of gravitational coupling between millimetre-sized masses. Nature 591, 225–228 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Geiger, R., Landragin, A., Merlet, S. & Pereira Dos Santos, F. High-accuracy inertial measurements with cold-atom sensors. AVS Quantum Sci. 2, 024702 (2020).

    Article  ADS  Google Scholar 

  20. Stray, B. et al. Quantum sensing for gravity cartography. Nature 602, 590–594 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Janvier, C. et al. Compact differential gravimeter at the quantum projection-noise limit. Phys. Rev. A 105, 022801 (2022).

    Article  ADS  CAS  Google Scholar 

  22. Vovrosh, J., Dragomir, A., Stray, B. & Boddice, D. Advances in portable atom interferometry-based gravity sensing. Sensors 23, 7651 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hohensee, M. A., Estey, B., Hamilton, P., Zeilinger, A. & Müller, H. Force-free gravitational redshift: proposed gravitational Aharonov-Bohm experiment. Phys. Rev. Lett. 108, 230404 (2012).

    Article  ADS  PubMed  Google Scholar 

  24. Carney, D., Müller, H. & Taylor, J. M. Using an atom interferometer to infer gravitational entanglement generation. PRX Quantum 2, 030330 (2021).

    Article  ADS  Google Scholar 

  25. Brax, P., van de Bruck, C., Davis, A.-C., Khoury, J. & Weltman, A. Detecting dark energy in orbit: the cosmological chameleon. Phys. Rev. D 70, 123518 (2004).

    Article  ADS  Google Scholar 

  26. Khoury, J. & Weltman, A. Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004).

    Article  ADS  PubMed  Google Scholar 

  27. Olive, K. A. & Pospelov, M. Environmental dependence of masses and coupling constants. Phys. Rev. D 77, 43524 (2008).

    Article  ADS  Google Scholar 

  28. Hinterbichler, K., Khoury, J., Levy, A. & Matas, A. Symmetron cosmology. Phys. Rev. D 84, 103521 (2011).

    Article  ADS  Google Scholar 

  29. Li, K. et al. Neutron limit on the strongly-coupled chameleon field. Phys. Rev. D 93, 062001 (2016).

    Article  ADS  Google Scholar 

  30. Cronenberg, G. et al. A gravity of Earth measurement with a qBOUNCE experiment. In European Physical Society Conference on High Energy Physics 408 (Proceedings of Science, 2015).

  31. Yin, P. et al. Experiments with levitated force sensor challenge theories of dark energy. Nat. Phys. 18, 1181–1185 (2022).

    Article  CAS  Google Scholar 

  32. Upadhye, A. Dark energy fifth forces in torsion pendulum experiments. Phys. Rev. D 86, 102003 (2012).

    Article  ADS  Google Scholar 

  33. Betz, J., Manley, J., Wright, E. M., Grin, D. & Singh, S. Searching for chameleon dark energy with mechanical systems. Phys. Rev. Lett. 129, 131302 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Kapner, D. J. et al. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 98, 021101 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Geraci, A. A., Smullin, S. J., Weld, D. M., Chiaverini, J. & Kapitulnik, A. Improved constraints on non-Newtonian forces at 10 microns. Phys. Rev. D 78, 022002 (2008).

    Article  ADS  Google Scholar 

  36. Tan, W. H. et al. New test of the gravitational inverse-square law at the submillimeter range with dual modulation and compensation. Phys. Rev. Lett. 116, 131101 (2016).

    Article  ADS  PubMed  Google Scholar 

  37. Chen, Y. J. et al. Stronger limits on hypothetical Yukawa interactions in the 30–8000 nm range. Phys. Rev. Lett. 116, 221102 (2016).

    Article  ADS  PubMed  Google Scholar 

  38. Tan, W. H. et al. Improvement for testing the gravitational inverse-square law at the submillimeter range. Phys. Rev, Lett. 124, 051301 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Lee, J. G., Adelberger, E. G., Cook, T. S., Fleischer, S. M. & Heckel, B. R. New test of the gravitational 1/r2 law at separations down to 52 μm. Phys. Rev. Lett. 124, 101101 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Ke, J. et al. Combined test of the gravitational inverse-square law at the centimeter range. Phys. Rev. Lett. 126, 211101 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weidner, C. A. & Anderson, D. Z. Experimental demonstration of shaken-lattice interferometry. Phys. Rev. Lett. 120, 263201 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. McAlpine, K. E., Gochnauer, D. & Gupta, S. Excited-band Bloch oscillations for precision atom interferometry. Phys. Rev. A 101, 023614 (2020).

    Article  ADS  CAS  Google Scholar 

  44. Andreev, V. et al. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    Article  ADS  CAS  Google Scholar 

  45. Eckel, S., Hamilton, P., Kirilov, E., Smith, H. W. & DeMille, D. Search for the electron electric dipole moment using Ω-doublet levels in PbO. Phys. Rev. A 87, 052130 (2013).

    Article  ADS  Google Scholar 

  46. Haslinger, P. et al. Attractive force on atoms due to blackbody radiation. Nat. Phys. 14, 257–260 (2018).

    Article  CAS  Google Scholar 

  47. Gregoire, M. D., Hromada, I., Holmgren, W. F., Trubko, R. & Cronin, A. D. Measurements of the ground-state polarizabilities of Cs, Rb, and K using atom interferometry. Phys. Rev. A 92, 052513 (2015).

    Article  ADS  Google Scholar 

  48. Scheel, S. & Buhmann, S. Y. Casimir-Polder forces on moving atoms. Phys. Rev. A 80, 042902 (2009).

    Article  ADS  Google Scholar 

  49. Hung, C. L., Zhang, X., Gemelke, N. & Chin, C. Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps. Phys. Rev. A 78, 011604 (2008).

    Article  ADS  Google Scholar 

  50. Hensley, J. M., Peters, A. & Chu, S. Active low frequency vertical vibration isolation. Rev. Sci. Instrum. 70, 2735–2741 (1999).

    Article  ADS  CAS  Google Scholar 

  51. Zhang, T. et al. Ultrahigh-sensitivity Bragg atom gravimeter and its application in testing Lorentz violation. Phys. Rev. Appl. 20, 14067 (2023).

    Article  CAS  Google Scholar 

  52. Panda, C. D., Tao, M., Ceja, M., Reynoso, A. & Müller, H. Atomic gravimeter robust to environmental effects. Appl. Phys. Lett. 123, 064001 (2023).

    Article  ADS  CAS  Google Scholar 

  53. Bongs, K. et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 1, 731–739 (2019).

    Article  Google Scholar 

  54. Goossens, S. et al. High-resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon’s crust. J. Geophys. Res. Planets 125, e2019JE006086 (2020).

    Article  ADS  Google Scholar 

  55. Matichard, F. et al. Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: design and production overview. Precis. Eng. 40, 273–286 (2015).

    Article  Google Scholar 

  56. Hammad, F., Landry, A. & Mathieu, K. Prospects for testing the inverse-square law and gravitomagnetism using quantum interference. Int. J. Mod. Phys. D 30, 2150004 (2020).

    Article  ADS  Google Scholar 

  57. Harber, D. M., Obrecht, J. M., McGuirk, J. M. & Cornell, E. A. Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate. Phys. Rev. A 72, 033610 (2005).

    Article  ADS  Google Scholar 

  58. Sorrentino, F. et al. Quantum sensor for atom-surface interactions below 10 μm. Phys. Rev. A 79, 013409 (2009).

    Article  ADS  Google Scholar 

  59. Balland, Y., Absil, L. & Pereira dos Santos, F. Quectonewton local force sensor. Preprint at https://arxiv.org/abs/2310.14717 (2023).

  60. Billingsley, G., Yamamoto, H. & Zhang, L. Characterization of advanced LIGO core optics. Am. Soc. Precis. Eng. 66, 78–83 (2017).

    Google Scholar 

  61. Turnbaugh, C. et al. High-power near-concentric Fabry–Perot cavity for phase contrast electron microscopy. Rev. Sci. Instrum. 92, 053005 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wolf, P. et al. From optical lattice clocks to the measurement of forces in the Casimir regime. Phys. Rev. A 75, 063608 (2007).

    Article  ADS  Google Scholar 

  63. Panda, C. D. et al. Measuring gravitational attraction with a lattice atom interferometer. Zenodo https://doi.org/10.5281/zenodo.10995225 (2024).

Download references

Acknowledgements

We thank A. Reynoso and J. Egelhoff for experimental assistance; J. Lopez, T. Gutierrez and G. Long for technical support; G. Louie and P. Bhattacharyya for discussions and comments on the manuscript; J. Axelrod, B. Elder, M. Jaffe, P. Haslinger, Y. Murakami, A. Singh and V. Xu and the entire Müller group for valuable discussions. This material is based on work supported by: National Science Foundation grants 1708160 and 2208029 (H.M.); Department of Defense Office of Naval Research grant N00014-20-1-2656 (H.M.); and Jet Propulsion Laboratory (JPL) grants 1659506 and 1669913 (H.M.).

Author information

Authors and Affiliations

Authors

Contributions

C.D.P., M.J.T. and M.C. built the apparatus and implemented experimental upgrades. C.D.P. designed the data-acquisition sequence and analysed data. C.D.P. and M.J.T. collected data. H.M. conceptualized and supervised the experiment. C.D.P. and H.M. wrote the original draft. J.K. and G.M.T. participated in the writing of the introduction and conclusion, highlighting the implications of the results for the fields of fundamental physics and atom interferometry. All authors contributed to the review and editing of the manuscript.

Corresponding authors

Correspondence to Cristian D. Panda or Holger Müller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Atom sample entering source mass.

Sequence of images showing the Cs atom sample at various positions along its atomic elevator trajectory. Acquiring this sequence from three different perspectives triangulates the position of the atom sample with respect to the source mass with an accuracy better than 1 mm.

Extended Data Fig. 2 Map of source-mass gravity.

A 2D slice of the z component of the gravitational field calculated using finite element analysis in COMSOL is shown. The black square shows the extent of the hollow cylinder. Gravity is stronger on the left side of the map because of the presence of the rectangular slot on the right side.

Extended Data Fig. 3 Acceleration shift owing to lattice divergence als.

In an auxiliary measurement, we observe a linear change in measured acceleration als as a function of vertical position z. This is because of the differential AC Stark shift from the changing trap potential, ΔU(z), as the atoms are held in various positions along the diverging lattice potential. We observe good agreement between the analytic equation derived above, simulation and experiment. The bands correspond to 95% (2σ) confidence intervals.

Extended Data Fig. 4 Atom interferometer decoherence rate as a function of scatter.

Projected lattice atom interferometer decoherence (contrast decay κ) versus level of scatter of the surface of the mirror. The atoms are held 100 μm from the mirror at three different offset distances between the atom cloud and scatterer positions: 0, 0.3 and 1.0 mm. We observe marked decoherence when the scattered intensity is more than 100 ppm of the incident laser power.

Extended Data Table 1 Parameters varied in the search for unexpected systematic errors
Extended Data Table 2 Parameters varied in the search for unexpected systematic errors—continued

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, C.D., Tao, M.J., Ceja, M. et al. Measuring gravitational attraction with a lattice atom interferometer. Nature (2024). https://doi.org/10.1038/s41586-024-07561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07561-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing