Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pathobiology of human fungal infections

Abstract

Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Human pathogenic fungi designated as critical, high and medium risk by the WHO.
Fig. 2: Fungal virulence factors and virulence attributes.
Fig. 3: Fungal immune evasion mechanisms.

Similar content being viewed by others

References

  1. Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00692-8 (2024).

  2. WHO. WHO fungal priority pathogens list to guide research, development and public health action. https://www.who.int/publications/i/item/9789240060241 (2022).

  3. Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Rokas, A. Evolution of the human pathogenic lifestyle in fungi. Nat. Microbiol. 7, 607–619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chybowska, A. D., Childers, D. S. & Farrer, R. A. Nine things genomics can tell us about Candida auris. Front. Genet. 11, 351 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tao, L. et al. Discovery of a ‘white-gray-opaque’ tristable phenotypic switching system in Candida albicans: roles of non-genetic diversity in host adaptation. PLoS Biol. 12, e1001830 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Delavy, M. et al. Unveiling Candida albicans intestinal carriage in healthy volunteers: the role of micro- and mycobiota, diet, host genetics and immune response. Gut Microbes 15, 2287618 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Phan, Q. T. et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 5, e64 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thomson, D. D. et al. Contact-induced apical asymmetry drives the thigmotropic responses of Candida albicans hyphae. Cell Microbiol. 17, 342–354 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Dalle, F. et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 12, 248–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Lachat, J. et al. Trans-cellular tunnels induced by the fungal pathogen Candida albicans facilitate invasion through successive epithelial cells without host damage. Nat. Commun. 13, 3781 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Westman, J., Moran, G., Mogavero, S., Hube, B. & Grinstein, S. Candida albicans hyphal expansion causes phagosomal membrane damage and luminal alkalinization. mBio 9, e01226-18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoyer, L. L., Payne, T. L., Bell, M., Myers, A. M. & Scherer, S. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr. Genet. 33, 451–459 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Staab, J. F., Bradway, S. D., Fidel, P. L. & Sundstrom, P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283, 1535–1538 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Naglik, J. R., Challacombe, S. J. & Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 400–428 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martchenko, M., Alarco, A. M., Harcus, D. & Whiteway, M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol. Biol. Cell 15, 456–467 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fradin, C. et al. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microbiol. 56, 397–415 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dunker, C. et al. Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain. Nat. Commun. 12, 3899 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Meara, T. R. et al. High-throughput screening identifies genes required for Candida albicans induction of macrophage pyroptosis. mBio 9, e01581-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lemberg, C. et al. Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation. PLoS Pathog. 18, e1010012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Witchley, J. N. et al. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host Microbe 25, 432–443.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang, S. H. et al. The hyphal-specific toxin candidalysin promotes fungal gut commensalism. Nature 627, 620–627 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Prieto, D., Roman, E., Alonso-Monge, R. & Pla, J. Overexpression of the transcriptional regulator WOR1 increases susceptibility to bile salts and adhesion to the mouse gut mucosa in Candida albicans. Front. Cell. Infect. Microbiol. 7, 389 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beaussart, A., Brandhorst, T., Dufrene, Y. F. & Klein, B. S. Blastomyces virulence adhesin-1 protein binding to glycosaminoglycans is enhanced by protein disulfide isomerase. mBio 6, e01403–e01415 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hung, C. Y., Yu, J. J., Seshan, K. R., Reichard, U. & Cole, G. T. A parasitic phase-specific adhesin of Coccidioides immitis contributes to the virulence of this respiratory fungal pathogen. Infect. Immun. 70, 3443–3456 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Azimova, D. et al. Cbp1, a fungal virulence factor under positive selection, forms an effector complex that drives macrophage lysis. PLoS Pathog. 18, e1010417 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hommel, B. et al. Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathog. 14, e1006982 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Trevijano-Contador, N. et al. Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathog. 14, e1007007 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dambuza, I. M. et al. The Cryptococcus neoformans titan cell is an inducible and regulated morphotype underlying pathogenesis. PLoS Pathog. 14, e1006978 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reuwsaat, J. C. V. et al. The transcription factor Pdr802 regulates titan cell formation and pathogenicity of Cryptococcus neoformans. mBio 12, e03457-20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shende, R. et al. Aspergillus fumigatus conidial metalloprotease Mep1p cleaves host complement proteins. J. Biol. Chem. 293, 15538–15555 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vu, K. et al. Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease. mBio 5, e01101–e01114 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Butler, G. et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Basso, P. et al. Deep tissue infection by an invasive human fungal pathogen requires lipid-based suppression of the IL-17 response. Cell Host Microbe 30, 1589–1601.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burgel, P. H. et al. Cryptococcus neoformans secretes small molecules that inhibit IL-1beta inflammasome-dependent secretion. Mediators Inflamm. 2020, 3412763 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Scharf, D. H., Heinekamp, T. & Brakhage, A. A. Human and plant fungal pathogens: the role of secondary metabolites. PLoS Pathog. 10, e1003859 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lionakis, M. S., Drummond, R. A. & Hohl, T. M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 23, 433–452 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Garre, V. Recent advances and future directions in the understanding of mucormycosis. Front. Cell. Infect. Microbiol. 12, 850581 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Misslinger, M., Hortschansky, P., Brakhage, A. A. & Haas, H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118885 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Almeida, R. S. et al. The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 4, e1000217 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kuznets, G. et al. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin. PLoS Pathog. 10, e1004407 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dade, J. et al. HcZrt2, a zinc responsive gene, is indispensable for the survival of Histoplasma capsulatum in vivo. Med. Mycol. 54, 865–875 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Subramanian Vignesh, K., Landero Figueroa, J. A., Porollo, A., Caruso, J. A. & Deepe, G. S. Jr. Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity 39, 697–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Rodrigues, M. L. et al. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot. Cell 7, 58–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Brown Harding, H. et al. Candida albicans extracellular vesicles trigger type I IFN signalling via cGAS and STING. Nat. Microbiol. 9, 95–107 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. de Oliveira, H. C. et al. Biogenesis of fungal extracellular vesicles: what do we know? Curr. Top. Microbiol. Immunol. 432, 1–11 (2021).

    PubMed  Google Scholar 

  48. Coelho, C. & Casadevall, A. Answers to naysayers regarding microbial extracellular vesicles. Biochem. Soc. Trans. 47, 1005–1012 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Zarnowski, R. et al. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol. 16, e2006872 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Puerner, C., Vellanki, S., Strauch, J. L. & Cramer, R. A. Recent advances in understanding the human fungal pathogen hypoxia response in disease progression. Annu. Rev. Microbiol. 77, 403–425 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Fabri, J. et al. The heat shock transcription factor HsfA plays a role in membrane lipids biosynthesis connecting thermotolerance and unsaturated fatty acid metabolism in Aspergillus fumigatus. Microbiol. Spectr. 11, e0162723 (2023).

    Article  PubMed  Google Scholar 

  52. Childers, D. S. et al. The rewiring of ubiquitination targets in a pathogenic yeast promotes metabolic flexibility, host colonization and virulence. PLoS Pathog. 12, e1005566 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ames, R., Brown, A. J. P., Gudelj, I. & Nev, O. A. Analysis of pneumocystis transcription factor evolution and implications for biology and lifestyle. mBio 14, e0271122 (2023).

    Article  PubMed  Google Scholar 

  54. Phillips, A. J., Sudbery, I. & Ramsdale, M. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl Acad. Sci. USA 100, 14327–14332 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shlezinger, N. et al. Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science 357, 1037–1041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holland, S. M. Chronic granulomatous disease. Clin. Rev. Allergy Immunol. 38, 3–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Usher, J., Chaudhari, Y., Attah, V., Ho, H. L. & Haynes, K. Functional characterization of a novel oxidative stress protection protein in the pathogenic yeast Candida glabrata. Front. Genet. 11, 530915 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Farrer, R. A. & Fisher, M. C. Describing genomic and epigenomic traits underpinning emerging fungal pathogens. Adv. Genet. 100, 73–140 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Ma, L. J. et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464, 367–373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wacker, T. et al. Two-speed genome evolution drives pathogenicity in fungal pathogens of animals. Proc. Natl Acad. Sci. USA 120, e2212633120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Farrer, R. A. et al. Genome evolution and innovation across the four major lineages of Cryptococcus gattii. mBio 6, e00868-15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hirakawa, M. P., Chyou, D. E., Huang, D., Slan, A. R. & Bennett, R. J. Parasex generates phenotypic diversity de novo and impacts drug resistance and virulence in Candida albicans. Genetics 207, 1195–1211 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ene, I. V. et al. Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc. Natl Acad. Sci. USA 115, E8688–E8697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, Y. et al. Microevolution of serial clinical isolates of Cryptococcus neoformans var. grubii and C. gattii. mBio 8, e00166-17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thomson, G. J. et al. Metabolism-induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells. EMBO J. 38, e101597 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Smith, A. C. & Hickman, M. A. Host-induced genome instability rapidly generates phenotypic variation across Candida albicans strains and ploidy states. mSphere 5, e00433-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brimacombe, C. A. et al. A natural histone H2A variant lacking the Bub1 phosphorylation site and regulated depletion of centromeric histone CENP-A foster evolvability in Candida albicans. PLoS Biol. 17, e3000331 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, F. et al. The fitness costs and benefits of trisomy of each Candida albicans chromosome. Genetics 218, iyab056 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Todd, R. T. & Selmecki, A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. eLife 9, e58349 (2020).

    CAS  Google Scholar 

  70. Priest, S. J. et al. Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug resistance in clinical isolates of Cryptococcus neoformans. Nat. Microbiol. 7, 1239–1251 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gambhir, N., Harris, S. D. & Everhart, S. E. Evolutionary significance of fungal hypermutators: lessons learned from clinical strains and implications for fungal plant pathogens. mSphere 7, e0008722 (2022).

    Article  PubMed  Google Scholar 

  72. Gow, N. A. R., Latge, J. P. & Munro, C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016 (2017).

  73. Erwig, L. P. & Gow, N. A. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 14, 163–176 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Mukaremera, L. The Cryptococcus wall: a different wall for a unique lifestyle. PLoS Pathog. 19, e1011141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pradhan, A. et al. Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat. Commun. 10, 5315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cottier, F. et al. Remasking of Candida albicans beta-glucan in response to environmental pH is regulated by quorum sensing. mBio 10, e02347-19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lopes, J. P. et al. Evasion of immune surveillance in low oxygen environments enhances Candida albicans virulence. mBio 9, e02120-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Larcombe, D. E. et al. Glucose-enhanced oxidative stress resistance — a protective anticipatory response that enhances the fitness of Candida albicans during systemic infection. PLoS Pathog. 19, e1011505 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pradhan, A. et al. Hypoxia promotes immune evasion by triggering beta-glucan masking on the Candida albicans cell surface via mitochondrial and cAMP-protein kinase a signaling. mBio 9, e01318-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Silva, V. K. A. et al. Replicative aging remodels the cell wall and is associated with increased intracellular trafficking in human pathogenic yeasts. mBio 13, e0019022 (2021).

    Article  PubMed  Google Scholar 

  81. Garcia-Rubio, R., de Oliveira, H. C., Rivera, J. & Trevijano-Contador, N. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front. Microbiol. 10, 2993 (2019).

    Article  PubMed  Google Scholar 

  82. Mukaremera, L. et al. Titan cell production in Cryptococcus neoformans reshapes the cell wall and capsule composition during infection. Cell Surf. 1, 15–24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bain, J., Gow, N. A. & Erwig, L. P. Novel insights into host–fungal pathogen interactions derived from live-cell imaging. Semin. Immunopathol. 37, 131–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Avelar, G. M. et al. Impact of changes at the Candida albicans cell surface upon immunogenicity and colonisation in the gastrointestinal tract. Cell Surf. 8, 100084 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brown, G. D. & Gordon, S. Immune recognition. A new receptor for beta-glucans. Nature 413, 36–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Ross, G. D., Cain, J. A., Myones, B. L., Newman, S. L. & Lachmann, P. J. Specificity of membrane complement receptor type three (CR3) for beta-glucans. Complement 4, 61–74 (1987).

    Article  CAS  PubMed  Google Scholar 

  87. Mata-Martinez, P., Bergon-Gutierrez, M. & Del Fresno, C. Dectin-1 signaling update: new perspectives for trained immunity. Front. Immunol. 13, 812148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo, Y. et al. C-type lectin receptor CD23 is required for host defense against Candida albicans and Aspergillus fumigatus infection. J. Immunol. 201, 2427–2440 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Swidergall, M. et al. EphA2 is a neutrophil receptor for Candida albicans that stimulates antifungal activity during oropharyngeal infection. Cell Rep. 28, 423–433.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. He, X. et al. LYSMD3: a mammalian pattern recognition receptor for chitin. Cell Rep. 36, 109392 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Elieh Ali Komi, D., Sharma, L. & Dela Cruz, C. S. Chitin and its effects on inflammatory and immune responses. Clin. Rev. Allergy Immunol. 54, 213–223 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Yokoyama, C. C. et al. LysMD3 is a type II membrane protein without an in vivo role in the response to a range of pathogens. J. Biol. Chem. 293, 6022–6038 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Briard, B. et al. Galactosaminogalactan activates the inflammasome to provide host protection. Nature 588, 688–692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yadav, B. et al. Differences in fungal immune recognition by monocytes and macrophages: N-mannan can be a shield or activator of immune recognition. Cell Surf. 6, 100042 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Childers, D. S. et al. Epitope shaving promotes fungal immune evasion. mBio 11, e00984-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Garfoot, A. L., Shen, Q., Wuthrich, M., Klein, B. S. & Rappleye, C. A. The Eng1 beta-glucanase enhances histoplasma virulence by reducing beta-glucan exposure. mBio 7, e01388-15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hole, C. R., Lam, W. C., Upadhya, R. & Lodge, J. K. Cryptococcus neoformans chitin synthase 3 plays a critical role in dampening host inflammatory responses. mBio 11, e03373-19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Casadevall, A. et al. The capsule of Cryptococcus neoformans. Virulence 10, 822–831 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Yang, C. et al. Cryptococcus escapes host immunity: what do we know? Front. Cell. Infect. Microbiol. 12, 1041036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kwon-Chung, K. J. & Sugui, J. A. Aspergillus fumigatus — what makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 9, e1003743 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Li, C. H. et al. Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog. 7, e1002086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Malavia, D. et al. Zinc limitation induces a hyper-adherent goliath phenotype in Candida albicans. Front. Microbiol. 8, 2238 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Okagaki, L. H. & Nielsen, K. Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections. Eukaryot. Cell 11, 820–826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dang, E. V. et al. Secreted fungal virulence effector triggers allergic inflammation via TLR4. Nature 608, 161–167 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Deckman, J. M. et al. Pneumocystis infection alters the activation state of pulmonary macrophages. Immunobiology 222, 188–197 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Wilson, D., Naglik, J. R. & Hube, B. The missing link between Candida albicans hyphal morphogenesis and host cell damage. PLoS Pathog. 12, e1005867 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Krysan, D. J., Sutterwala, F. S. & Wellington, M. Catching fire: Candida albicans, macrophages, and pyroptosis. PLoS Pathog. 10, e1004139 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bain, J. M. et al. Immune cells fold and damage fungal hyphae. Proc. Natl Acad. Sci. USA 118, e202084118 (2021).

    Article  Google Scholar 

  110. Scherer, A. K. et al. Redundant Trojan horse and endothelial-circulatory mechanisms for host-mediated spread of Candida albicans yeast. PLoS Pathog. 16, e1008414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Denham, S. T. et al. A dissemination-prone morphotype enhances extrapulmonary organ entry by Cryptococcus neoformans. Cell Host Microbe 30, 1382–1400.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017–1025 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liang, C., Lian, N. & Li, M. The emerging role of neutrophil extracellular traps in fungal infection. Front. Cell. Infect. Microbiol. 12, 900895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fu, M. S. et al. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathog. 14, e1007144 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Alvarez, M. & Casadevall, A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16, 2161–2165 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Ma, H., Croudace, J. E., Lammas, D. A. & May, R. C. Expulsion of live pathogenic yeast by macrophages. Curr. Biol. 16, 2156–2160 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Bojarczuk, A. et al. Cryptococcus neoformans intracellular proliferation and capsule size determines early macrophage control of infection. Sci. Rep. 6, 21489 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pazhakh, V. et al. Beta-glucan-dependent shuttling of conidia from neutrophils to macrophages occurs during fungal infection establishment. PLoS Biol. 17, e3000113 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jia, L. J. et al. Aspergillus fumigatus hijacks human p11 to redirect fungal-containing phagosomes to non-degradative pathway. Cell Host Microbe 31, 373–388.e10 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Weerasinghe, H. et al. Candida auris uses metabolic strategies to escape and kill macrophages while avoiding robust activation of the NLRP3 inflammasome response. Cell Rep. 42, 112522 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, Y. et al. MUC1 mediates Pneumocystis murina binding to airway epithelial cells. Cell Microbiol. 22, e13182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Evans, H. M. & Garvy, B. A. The trophic life cycle stage of Pneumocystis species induces protective adaptive responses without inflammation-mediated progression to pneumonia. Med. Mycol. 56, 994–1005 (2018).

    CAS  PubMed  Google Scholar 

  123. Grebenciucova, E., Reder, A. T. & Bernard, J. T. Immunologic mechanisms of fingolimod and the role of immunosenescence in the risk of cryptococcal infection: a case report and review of literature. Mult. Scler. Relat. Disord. 9, 158–162 (2016).

    Article  PubMed  Google Scholar 

  124. Bryan, A. M. et al. FTY720 reactivates cryptococcal granulomas in mice through S1P receptor 3 on macrophages. J. Clin. Invest. 130, 4546–4560 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Itabangi, H. et al. A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Curr. Biol. 32, 1115–1130.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Soliman, S. S. M. et al. Mucoricin is a ricin-like toxin that is critical for the pathogenesis of mucormycosis. Nat. Microbiol. 6, 313–326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Decote-Ricardo, D. et al. Immunomodulatory role of capsular polysaccharides constituents of Cryptococcus neoformans. Front. Med. 6, 129 (2019).

    Article  Google Scholar 

  128. Citiulo, F. et al. Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog. 8, e1002777 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zipfel, P. F., Skerka, C., Kupka, D. & Luo, S. Immune escape of the human facultative pathogenic yeast Candida albicans: the many faces of the Candida Pra1 protein. Int. J. Med. Microbiol. 301, 423–430 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Bergfeld, A. et al. Direct binding of the pH-regulated protein 1 (Pra1) from Candida albicans inhibits cytokine secretion by mouse CD4(+) T cells. Front. Microbiol. 8, 844 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Dasari, P. et al. Aspf2 from Aspergillus fumigatus recruits human immune regulators for immune evasion and cell damage. Front. Immunol. 9, 1635 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Soloviev, D. A. et al. Identification of pH-regulated antigen 1 released from Candida albicans as the major ligand for leukocyte integrin alphaMbeta2. J. Immunol. 178, 2038–2046 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Roselletti, E. et al. Zinc prevents vaginal candidiasis by inhibiting expression of an inflammatory fungal protein. Sci. Transl. Med. 15, eadi3363 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tangye, S. G. & Puel, A. The Th17/IL-17 axis and host defense against fungal infections. J. Allergy Clin. Immunol. Pract. 11, 1624–1634 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Woodring, T., Deepe, G. S., Levitz, S. M., Wuethrich, M. & Klein, B. S. They shall not grow mold: soldiers of innate and adaptive immunity to fungi. Semin. Immunol. 65, 101673 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Drummond, R. A. & Lionakis, M. S. Organ-specific mechanisms linking innate and adaptive antifungal immunity. Semin. Cell Dev. Biol. 89, 78–90 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Heung, L. J., Wiesner, D. L., Wang, K., Rivera, A. & Hohl, T. M. Immunity to fungi in the lung. Semin. Immunol. 66, 101728 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li, D. D. et al. Fungal sensing enhances neutrophil metabolic fitness by regulating antifungal Glut1 activity. Cell Host Microbe 30, 530–544.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Doron, I. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat. Microbiol. 6, 1493–1504 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pierre, J. F. et al. Peptide YY: a paneth cell antimicrobial peptide that maintains Candida gut commensalism. Science 381, 502–508 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Myint, T., Leedy, N., Villacorta Cari, E. & Wheat, L. J. HIV-associated histoplasmosis: current perspectives. HIV AIDS 12, 113–125 (2020).

    CAS  Google Scholar 

  144. Wen, Y. et al. Immune reconstitution inflammatory syndrome associated with Pneumocystis pneumonia in a patient with AIDS. J. Int. Med. Res. 48, 300060520946544 (2020).

    Article  PubMed  Google Scholar 

  145. Ho, J. et al. Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat. Commun. 10, 2297 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wu, Y. et al. Toll-like receptor 4 and CD11b expressed on microglia coordinate eradication of Candida albicans cerebral mycosis. Cell Rep. 42, 113240 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wagener, J., MacCallum, D. M., Brown, G. D. & Gow, N. A. Candida albicans chitin increases arginase-1 activity in human macrophages, with an impact on macrophage antimicrobial functions. mBio 8, e01820-16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Allen, J. E. IL-4 and IL-13: regulators and effectors of wound repair. Annu. Rev. Immunol. 41, 229–254 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Shao, T. Y. et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25, 404–417.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355.e15 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Ost, K. S. & Round, J. L. Commensal fungi in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-023-00816-w (2023).

    Article  PubMed  Google Scholar 

  152. Fan, Y., Wu, L. & Zhai, B. The mycobiome: interactions with host and implications in diseases. Curr. Opin. Microbiol. 75, 102361 (2023).

    Article  PubMed  Google Scholar 

  153. Rolling, T. et al. Haematopoietic cell transplantation outcomes are linked to intestinal mycobiota dynamics and an expansion of Candida parapsilosis complex species. Nat. Microbiol. 6, 1505–1515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Knutsen, A. P. et al. Fungi and allergic lower respiratory tract diseases. J. Allergy Clin. Immunol. 129, 280–291 (2012).

    Article  PubMed  Google Scholar 

  155. Mirhakkak, M. H. et al. Genome-scale metabolic modeling of Aspergillus fumigatus strains reveals growth dependencies on the lung microbiome. Nat. Commun. 14, 4369 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lin, L. et al. The airway microbiome mediates the interaction between environmental exposure and respiratory health in humans. Nat. Med. 29, 1750–1759 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Mac Aogain, M. et al. Integrative microbiomics in bronchiectasis exacerbations. Nat. Med. 27, 688–699 (2021).

    Article  Google Scholar 

  158. Cayrol, C. et al. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nat. Immunol. 19, 375–385 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Wiesner, D. L. et al. Club cell TRPV4 serves as a damage sensor driving lung allergic inflammation. Cell Host Microbe 27, 614–628.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wu, Y. et al. Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity 54, 2595–2610.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Schwarz, C. et al. Antigen specificity and cross-reactivity drive functionally diverse anti-Aspergillus fumigatus T cell responses in cystic fibrosis. J. Clin. Invest. 133, e161593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hosseini, M., Shakerimoghaddam, A., Ghazalibina, M. & Khaledi, A. Aspergillus coinfection among patients with pulmonary tuberculosis in Asia and Africa countries; a systematic review and meta-analysis of cross-sectional studies. Microb. Pathog. 141, 104018 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Page, I. D. et al. Chronic pulmonary aspergillosis commonly complicates treated pulmonary tuberculosis with residual cavitation. Eur. Respir. J. 53, 1801184 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Chong, W. H., Saha, B. K. & Tan, C. K. Clinical characteristics and outcomes of influenza-associated pulmonary aspergillosis among critically ill patients: a systematic review and meta-analysis. J. Hosp. Infect. 120, 98–109 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Feys, S. et al. A visual and comprehensive review on COVID-19-associated pulmonary aspergillosis (CAPA). J. Fungi 7, 1067 (2021).

    Article  CAS  Google Scholar 

  166. Salazar, F., Bignell, E., Brown, G. D., Cook, P. C. & Warris, A. Pathogenesis of respiratory viral and fungal coinfections. Clin. Microbiol. Rev. 35, e0009421 (2022).

    Article  PubMed  Google Scholar 

  167. Donnelly, J. P. et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for research and treatment of cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 71, 1367–1376 (2020).

    Article  PubMed  Google Scholar 

  168. Thompson, G. R. III et al. Global guideline for the diagnosis and management of the endemic mycoses: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology. Lancet Infect. Dis. 21, e364–e374 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Gupta, I., Baranwal, P., Singh, G. & Gupta, V. Mucormycosis, past and present: a comprehensive review. Future Microbiol. 18, 217–234 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Latge, J. P. & Chamilos, G. Aspergillus fumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. 33, e00140-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Salzer, H. J. F. et al. Clinical, diagnostic, and treatment disparities between HIV-infected and non-HIV-infected immunocompromised patients with Pneumocystis jirovecii pneumonia. Respiration 96, 52–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Nucci, M., Barreiros, G., Akiti, T., Anaissie, E. & Nouer, S. A. Invasive fusariosis in patients with hematologic diseases. J. Fungi 7, 815 (2021).

    Article  CAS  Google Scholar 

  173. Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. & Kullberg, B. J. Invasive candidiasis. Nat. Rev. Dis. Prim. 4, 18026 (2018).

    Article  PubMed  Google Scholar 

  174. Williamson, P. R. et al. Cryptococcal meningitis: epidemiology, immunology, diagnosis and therapy. Nat. Rev. Neurol. 13, 13–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Chen, S. C. et al. Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM. Lancet Infect. Dis. 21, e375–e386 (2021).

    Article  PubMed  Google Scholar 

  176. Hoenigl, M. et al. Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. Lancet Infect. Dis. 21, e246–e257 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Cornely, O. A. et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect. Dis. 19, e405–e421 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ssebambulidde, K. et al. Treatment recommendations for non-HIV associated cryptococcal meningoencephalitis including management of post-infectious inflammatory response syndrome. Front. Neurol. 13, 994396 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Tolebeyan, A., Mohammadi, O., Vaezi, Z. & Amini, A. Mepolizumab as possible treatment for allergic bronchopulmonary aspergillosis: a review of eight cases. Cureus 12, e9684 (2020).

    PubMed  PubMed Central  Google Scholar 

  180. Ramonell, R. P., Lee, F. E., Swenson, C. & Kuruvilla, M. Dupilumab treatment for allergic bronchopulmonary aspergillosis: a case series. J. Allergy Clin. Immunol. Pract. 8, 742–743 (2020).

    Article  PubMed  Google Scholar 

  181. Koutsokera, A. et al. Omalizumab for asthma and allergic bronchopulmonary aspergillosis in adults with cystic fibrosis. J. Cyst. Fibros. 19, 119–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Wan, L. et al. Effect of granulocyte-macrophage colony-stimulating factor on prevention and treatment of invasive fungal disease in recipients of allogeneic stem-cell transplantation: a prospective multicenter randomized phase IV trial. J. Clin. Oncol. 33, 3999–4006 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Perruccio, K. et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood 106, 4397–4406 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Papadopoulou, A. et al. Clinical-scale production of Aspergillus-specific T cells for the treatment of invasive aspergillosis in the immunocompromised host. Bone Marrow Transpl. 54, 1963–1972 (2019).

    Article  CAS  Google Scholar 

  185. de Sousa Mda, G. et al. Topical application of imiquimod as a treatment for chromoblastomycosis. Clin. Infect. Dis. 58, 1734–1737 (2014).

    Article  PubMed  Google Scholar 

  186. Ambati, S. et al. Antifungal liposomes directed by dectin-2 offer a promising therapeutic option for pulmonary aspergillosis. mBio 12, e00030-21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kumaresan, P. R. et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc. Natl Acad. Sci. USA 111, 10660–10665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Edwards, J. E. Jr et al. A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis — a phase 2 randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 66, 1928–1936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Oliveira, L. V. N., Wang, R., Specht, C. A. & Levitz, S. M. Vaccines for human fungal diseases: close but still a long way to go. NPJ Vaccines 6, 33 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Fisher, M. C. et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 20, 557–571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gow, N. A. R. et al. The importance of antimicrobial resistance in medical mycology. Nat. Commun. 13, 5352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hoenigl, M. et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs 81, 1703–1729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Molloy, S. F. et al. Antifungal combinations for treatment of Cryptococcal meningitis in Africa. N. Engl. J. Med. 378, 1004–1017 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Hart, E., Nguyen, M., Allen, M., Clark, C. M. & Jacobs, D. M. A systematic review of the impact of antifungal stewardship interventions in the United States. Ann. Clin. Microbiol. Antimicrob. 18, 24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Chow, N. A. et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 11, e03364-19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Casadevall, A., Kontoyiannis, D. P. & Robert, V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 10, e01397-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Schwartz, I. S. et al. Emergomyces: the global rise of new dimorphic fungal pathogens. PLoS Pathog. 15, e1007977 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Kenyon, C. et al. A dimorphic fungus causing disseminated infection in South Africa. N. Engl. J. Med. 369, 1416–1424 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Morgado, D. S. et al. Global distribution of animal sporotrichosis: a systematic review of Sporothrix sp. identified using molecular tools. Curr. Res. Microb. Sci. 3, 100140 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Lockhart, S. R., Chowdhary, A. & Gold, J. A. W. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat. Rev. Microbiol. 21, 818–832 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv113 (2012).

    Article  Google Scholar 

  202. CDC. Infection control guidance: Candida auris. CDC https://www.cdc.gov/fungal/candida-auris/c-auris-infection-control.html (2024).

  203. Kenters, N. et al. Control of Candida auris in healthcare institutions: outcome of an International Society for Antimicrobial Chemotherapy expert meeting. Int. J. Antimicrob. Agents 54, 400–406 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Caceres, D. H. et al. Candida auris: a review of recommendations for detection and control in healthcare settings. J. Fungi 5, 111 (2019).

    Article  Google Scholar 

  205. Borman, A. M. & Johnson, E. M. Candida auris in the UK: introduction, dissemination, and control. PLoS Pathog. 16, e1008563 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gow, N. A. R. & Lenardon, M. D. Architecture of the dynamic fungal cell wall. Nat. Rev. Microbiol. 21, 248–259 (2023).

    Article  CAS  PubMed  Google Scholar 

  207. European Commission. EU action on antimicrobial resistance. European Commission https://health.ec.europa.eu/antimicrobial-resistance/eu-action-antimicrobial-resistance_en#stepping-up-eu-actions (2024).

  208. Rhodes, J. et al. Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat. Microbiol. 7, 663–674 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Verma, S. B. Emergence of recalcitrant dermatophytosis in India. Lancet Infect. Dis. 18, 718–719 (2018).

    Article  PubMed  Google Scholar 

  210. Casadevall, A. Fungal virulence, vertebrate endothermy, and dinosaur extinction: is there a connection? Fungal Genet. Biol. 42, 98–106 (2005).

    Article  PubMed  Google Scholar 

  211. de Crecy, E., Jaronski, S., Lyons, B., Lyons, T. J. & Keyhani, N. O. Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol. 9, 74 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  212. O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Forster, T. M. et al. Enemies and brothers in arms: Candida albicans and Gram-positive bacteria. Cell Microbiol. 18, 1709–1715 (2016).

    Article  PubMed  Google Scholar 

  214. Santus, W., Devlin, J. R. & Behnsen, J. Crossing kingdoms: how the mycobiota and fungal–bacterial interactions impact host health and disease. Infect. Immun. 89, e00468-20 (2021).

    Article  Google Scholar 

  215. Snelders, N. C., Rovenich, H. & Thomma, B. Microbiota manipulation through the secretion of effector proteins is fundamental to the wealth of lifestyles in the fungal kingdom. FEMS Microbiol. Rev. 46, fuac022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Graham, C. E., Cruz, M. R., Garsin, D. A. & Lorenz, M. C. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc. Natl Acad. Sci. USA 114, 4507–4512 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hwang, G. et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo. PLoS Pathog. 13, e1006407 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. MacAlpine, J. et al. A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nat. Commun. 12, 6151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Montelongo-Jauregui, D., Saville, S. P. & Lopez-Ribot, J. L. Contributions of Candida albicans dimorphism, adhesive interactions, and extracellular matrix to the formation of dual-species biofilms with Streptococcus gordonii. mBio 10, e01179-19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Alonso-Roman, R. et al. Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity. Nat. Commun. 13, 3192 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Ballou, E. R. et al. Lactate signalling regulates fungal beta-glucan masking and immune evasion. Nat. Microbiol. 2, 16238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Pedro, N. A., Fontebasso, G., Pinto, S. N., Alves, M. & Mira, N. P. Acetate modulates the inhibitory effect of Lactobacillus gasseri against the pathogenic yeasts Candida albicans and Candida glabrata. Microb. Cell 10, 88–102 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Bastos, R. W. et al. Secondary metabolites produced during Aspergillus fumigatus and Pseudomonas aeruginosa biofilm formation. mBio 13, e0185022 (2022).

    Article  PubMed  Google Scholar 

  224. Naseem, S. & Konopka, J. B. N-acetylglucosamine regulates virulence properties in microbial pathogens. PLoS Pathog. 11, e1004947 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Naseem, S., Min, K., Spitzer, D., Gardin, J. & Konopka, J. B. Regulation of hyphal growth and N-acetylglucosamine catabolism by two transcription factors in Candida albicans. Genetics 206, 299–314 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Tan, C. T., Xu, X., Qiao, Y. & Wang, Y. A peptidoglycan storm caused by beta-lactam antibiotic’s action on host microbiota drives Candida albicans infection. Nat. Commun. 12, 2560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ye, L. et al. Functional characterization of the GlcNAc catabolic pathway in Cryptococcus neoformans. Appl. Environ. Microbiol. 88, e0043722 (2022).

    Article  PubMed  Google Scholar 

  228. Briard, B. et al. Dirhamnolipids secreted from Pseudomonas aeruginosa modify anjpegungal susceptibility of Aspergillus fumigatus by inhibiting β1,3 glucan synthase activity. ISME J. 11, 1578–1591 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Storey, D. et al. Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog. 16, e1007969 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Allonsius, C. N. et al. Inhibition of Candida albicans morphogenesis by chitinase from Lactobacillus rhamnosus GG. Sci. Rep. 9, 2900 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Kousser, C., Clark, C., Sherrington, S., Voelz, K. & Hall, R. A. Pseudomonas aeruginosa inhibits Rhizopus microsporus germination through sequestration of free environmental iron. Sci. Rep. 9, 5714 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Hattab, S., Dagher, A. M. & Wheeler, R. T. Pseudomonas synergizes with fluconazole against Candida during treatment of polymicrobial infection. Infect. Immun. 90, e0062621 (2022).

    Article  PubMed  Google Scholar 

  233. Bonfante, P. & Desiro, A. Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J. 11, 1727–1735 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the MRC Centre for Medical Mycology at the University of Exeter (MR/N006364/2 and MR/V033417/1), the MRC and UKRI (MR/M026663/2, MR/V005731/1, MR/X014010/1 and MR/S001824/1), the Biotechnology and Biological Sciences Research Council (BB/V017004/1 and BB/W009625/1), the National Institute for Health and Care Research (NIHR) Exeter Biomedical Research Centre (BRC), the NIHR (NIHR134342 and NIHR303140), the Centers for Disease Control and Prevention (1NU51CK000315-01-00), the Royal Society (UF080611), the Wellcome Trust (217163, 102705, 225303, 101873, 200208, 215599, 224323, WT2049, 209293, 218550/Z/19/Z, 214317, 211241 and 206412), a Wellcome Trust Institutional Strategic Support Award (WT105618MA), the Lister Institute and an AMS Springboard Award SBF006/1024 (UK). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Gordon D. Brown.

Ethics declarations

Competing interests

W.H. has received research funding from the FDA; research funding and personal fees from F2G and Pfizer; and personal fees from GSK, Mundipharma and Pulmocide. T.S.H. has received an investigator award to institution from Gilead Sciences and speaker fees from Gilead and Pfizer and serves on Advisory or Data Monitoring Boards for F2G and Mundipharma. A.W. has received consultancy fees from Gilead and Mundipharma and payment for educational events from Gilead and F2G. The other authors declare no conflicts of interest.

Peer review

Peer review information

Nature Reviews Microbiology thanks Tobias Hohl, who co-reviewed with Mariano Aufiero; Bernhard Hube; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, G.D., Ballou, E.R., Bates, S. et al. The pathobiology of human fungal infections. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01062-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01062-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing