Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics

Abstract

The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E.faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E.faecium and vancomycin-resistant E.faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E.faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VREfm transmission and evolution.
Fig. 2: Roles of plasmids in antimicrobial resistance spread in E. faecium.
Fig. 3: Adaptive strategies of VREfm that promote survival and resistance to antimicrobials.
Fig. 4: Colonization and pathogenicity of E. faecium.

Similar content being viewed by others

References

  1. Leclercq, R., Derlot, E., Duval, J. & Courvalin, P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 319, 157–161 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Frieden, T. R. et al. Emergence of vancomycin-resistant enterococci in New York City. Lancet 342, 76–79 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. García-Solache, M. & Rice, L. B. The Enterococcus: a model of adaptability to its environment. Clin. Microbiol. Rev. 32, e00058–18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhou, X., Willems, R. J. L., Friedrich, A. W., Rossen, J. W. A. & Bathoorn, E. Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics. Antimicrob. Resist. Infect. Control. 9, 130 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Uttley, A. H. C., Collins, C. H., Naidoo, J. & George, R. C. Vancomycin-resistant enterococci. Lancet 331, 57–58 (1988).

    Article  Google Scholar 

  6. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters (version 14.0). EUCAST http://www.eucast.org/clinical_breakpoints (2024).

  7. Clinical and Laboratory Standards Institute. M100 performance standards for antimicrobial susceptibility testing 34th edn (CLSI, 2024).

  8. Weiner-Lastinger, L. M. et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control. Hosp. Epidemiol. 41, 1–18 (2020).

    Article  PubMed  Google Scholar 

  9. Panesso, D. et al. Molecular epidemiology of vancomycin-resistant Enterococcus faecium: a prospective, multicenter study in South American hospitals. J. Clin. Microbiol. 48, 1562–1569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shrestha, S., Kharel, S., Homagain, S., Aryal, R. & Mishra, S. K. Prevalence of vancomycin-resistant enterococci in Asia—a systematic review and meta-analysis. J. Clin. Pharm. Ther. 46, 1226–1237 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. European Centre for Disease Prevention and Control & World Health Organization. Antimicrobial resistance surveillance in Europe — 2023: 2021 data. ECDC https://ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2023-2021-data (2023).

  12. Alemayehu, T. & Hailemariam, M. Prevalence of vancomycin-resistant Enterococcus in Africa in One Health approach: a systematic review and meta-analysis. Sci. Rep. 10, 20542 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Contreras, G. A. et al. Contemporary clinical and molecular epidemiology of vancomycin-resistant enterococcal bacteremia: a prospective multicenter cohort study (VENOUS I). Open Forum Infect. Dis. 9, ofab616 (2022).

    Article  PubMed  Google Scholar 

  14. Hemapanpairoa, J., Changpradub, D., Thunyaharn, S. & Santimaleeworagun, W. Does vancomycin resistance increase mortality? Clinical outcomes and predictive factors for mortality in patients with Enterococcus faecium infections. Antibiotics 10, 105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fox, E. et al. Risk factors and outcomes associated with persistent vancomycin resistant enterococcal bacteremia. BMC Infect. Dis. 22, 855 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  Google Scholar 

  17. O’Driscoll, T. & Crank, C. W. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect. Drug Resist. 8, 217–230 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Joshi, S., Shallal, A. & Zervos, M. Vancomycin-resistant enterococci: epidemiology, infection prevention, and control. Infect. Dis. Clin. North. Am. 35, 953–968 (2021).

    Article  PubMed  Google Scholar 

  19. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    Article  PubMed  Google Scholar 

  20. World Health Organization. AWaRe classification of antibiotics for evaluation and monitoring of use, 2023. WHO https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2023.04 (2023).

  21. Mlaga, K. D. et al. Extensive comparative genomic analysis of Enterococcus faecalis and Enterococcus faecium reveals a direct association between the absence of CRISPR–Cas systems, the presence of anti-endonuclease (ardA) and the acquisition of vancomycin resistance in E. faecium. Microorganisms 9, 1118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pidot, S. J. et al. Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci. Transl Med. 10, eaar6115 (2018).

    Article  PubMed  Google Scholar 

  23. Werner, G. et al. Thirty years of VRE in Germany — “expect the unexpected”: the view from the National Reference Centre for Staphylococci and Enterococci. Drug Resist. Updates 53, 100732 (2020).

    Article  Google Scholar 

  24. Raven, K. E. et al. A decade of genomic history for healthcare-associated Enterococcus faecium in the United Kingdom and Ireland. Genome Res. 26, 1388–1396 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rios, R. et al. Genomic epidemiology of vancomycin-resistant Enterococcus faecium (VREfm) in Latin America: revisiting the global VRE population structure. Sci. Rep. 10, 5636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arias, C. A. & Murray, B. E. The rise of the Enterococcus: beyond vancomycin resistance. Nat. Rev. Microbiol. 10, 266–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lebreton, F. et al. Tracing the enterococci from paleozoic origins to the hospital. Cell 169, 849–861 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  28. Lebreton, F., Willems, R. J. L. & Gilmore, M. S. in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection (eds Gilmore, M. S., Clewell, D. B., Ike, Y. & Shankar, N.) 5–64 (Massachusetts Eye and Ear Infirmary, 2014).

  29. Werner, G. et al. Antibiotic resistant enterococci—tales of a drug resistance gene trafficker. Int. J. Med. Microbiol. 303, 360–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Xavier, B. B. et al. Novel vancomycin resistance gene cluster in Enterococcus faecium ST1486, Belgium, June 2021. Eurosurveillance 26, 2100767 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanderson, H. et al. Exploring the mobilome and resistome of Enterococcus faecium in a One Health context across two continents. Microb. Genom. 8, mgen000880 (2022).

    PubMed  PubMed Central  Google Scholar 

  32. Guardabassi, L., Perichon, B., Van Heijenoort, J., Blanot, D. & Courvalin, P. Glycopeptide resistance vanA operons in Paenibacillus strains isolated from soil. Antimicrob. Agents Chemother. 49, 4227–4233 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmer, K. L., van Schaik, W., Willems, R. J. L. & Gilmore, M. S. in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection (eds Gilmore, M. S., Clewell, D. B., Ike, Y. & Shankar, N.) 259–308 (Massachusetts Eye and Ear Infirmary, 2014).

  34. Guzman Prieto, A. M. et al. Global emergence and dissemination of enterococci as nosocomial pathogens: attack of the clones? Front. Microbiol. 7, 788 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Homan, W. L. et al. Multilocus sequence typing scheme for Enterococcus faecium. J. Clin. Microbiol. 40, 1963–1971 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Willems, R. J. L. et al. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg. Infect. Dis. 11, 821–828 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lebreton, F. et al. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. mBio 4, e00534-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Van Hal, S. J. et al. The interplay between community and hospital Enterococcus faecium clones within health-care settings: a genomic analysis. Lancet Microbe 3, e133–e141 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Palmer, K. L. et al. Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. mBio 3, e00318-11 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Richter, M. & Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl Acad. Sci. USA 106, 19126–19131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Belloso Daza, M. V., Cortimiglia, C., Bassi, D. & Cocconcelli, P. S. Genome-based studies indicate that the Enterococcus faecium Clade B strains belong to Enterococcus lactis species and lack of the hospital infection associated markers. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijsem.0.004948 (2021).

  42. Choi, D. G., Baek, J. H., Han, D. M., Khan, S. A. & Jeon, C. O. Comparative pangenome analysis of Enterococcus faecium and Enterococcus lactis provides new insights into the adaptive evolution by horizontal gene acquisitions. BMC Genomics 25, 28 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gouliouris, T. et al. Genomic surveillance of Enterococcus faecium reveals limited sharing of strains and resistance genes between livestock and humans in the United Kingdom. mBio 9, e01780-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. De Been, M. et al. Core genome multilocus sequence typing scheme for high-resolution typing of Enterococcus faecium. J. Clin. Microbiol. 53, 3788–3797 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Arredondo-Alonso, S. et al. Plasmids shaped the recent emergence of the major nosocomial pathogen Enterococcus faecium. mBio 11, e03284-19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zaidi, S.-Z. et al. Comparative genomic analysis of Enterococci across sectors of the One Health continuum. Microorganisms 11, 727 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bezdicek, M. et al. New multilocus sequence typing scheme for Enterococcus faecium based on whole genome sequencing data. Microbiol. Spectr. 11, e0510722 (2023).

    Article  PubMed  Google Scholar 

  48. Carter, G. P. et al. Emergence of endemic MLST non-typeable vancomycin-resistant Enterococcus faecium. J. Antimicrob. Chemother. 71, 3367–3371 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. McCracken, M. et al. Emergence of pstS-null vancomycin-resistant Enterococcus faecium clone ST1478, Canada, 2013–2018. Emerg. Infect. Dis. 26, 2247–2250 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lemonidis, K., Salih, T. S., Dancer, S. J., Hunter, I. S. & Tucker, N. P. Emergence of an Australian-like pstS-null vancomycin resistant Enterococcus faecium clone in Scotland. PLoS ONE 14, e0218185 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hammerum, A. M. Enterococci of animal origin and their significance for public health. Clin. Microbiol. Infect. 18, 619–625 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Top, J. et al. Genomic rearrangements uncovered by genome-wide co-evolution analysis of a major nosocomial pathogen, Enterococcus faecium. Microb. Genom. 6, mgen000488 (2020).

    PubMed  PubMed Central  Google Scholar 

  53. Sacramento, A. G. et al. Healthcare-associated vanA-positive Enterococcus faecium clone ST612 emerging as pathogen of companion animals in Brazil. J. Antimicrob. Chemother. 11, dkae010 (2024).

    Google Scholar 

  54. Oravcová, V. et al. Wild corvid birds colonized with vancomycin-resistant Enterococcus faecium of human origin harbor epidemic vanA plasmids. Environ. Int. 118, 125–133 (2018).

    Article  PubMed  Google Scholar 

  55. Zaheer, R. et al. Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci. Rep. 10, 3937 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, E. B. & Marco, M. L. Nonclinical and clinical Enterococcus faecium strains, but not Enterococcus faecalis strains, have distinct structural and functional genomic features. Appl. Environ. Microbiol. 80, 154–165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grayson, M. L. et al. Increasing resistance to β-lactam antibiotics among clinical isolates of Enterococcus faecium: a 22-year review at one institution. Antimicrob. Agents Chemother. 35, 2180–2184 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Novais, C. et al. Co-diversification of Enterococcus faecium core genomes and PBP5: evidences of pbp5 horizontal transfer. Front. Microbiol. 7, 1581 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Prater, A. G. et al. Environment shapes the accessible daptomycin resistance mechanisms in Enterococcus faecium. Antimicrob. Agents Chemother. 63, e00790-19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miller, W. R., Murray, B. E., Rice, L. B. & Arias, C. A. Resistance in vancomycin-resistant Enterococci. Infect. Dis. Clin. North Am. 34, 751–771 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chacko, K. I. et al. Genetic basis of emerging vancomycin, linezolid, and daptomycin heteroresistance in a case of persistent Enterococcus faecium bacteremia. Antimicrob. Agents Chemother. 62, e02007-17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chilambi, G. S. et al. Evolution of vancomycin-resistant Enterococcus faecium during colonization and infection in immunocompromised pediatric patients. Proc. Natl Acad. Sci. USA 117, 11703–11714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Honsa, E. S. et al. RelA mutant Enterococcus faecium with multiantibiotic tolerance arising in an immunocompromised host. mBio 8, e02124-16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leavis, H. et al. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J. Bacteriol. 186, 672–682 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rice, L. B. et al. A potential virulence gene, hylEfm, predominates in Enterococcus faecium of clinical origin. J. Infect. Dis. 187, 508–512 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Howden, B. P. et al. Genomic insights to control the emergence of vancomycin-resistant enterococci. mBio 4, e00412-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lebreton, F. et al. Transferable vancomycin resistance in clade B commensal-type Enterococcus faecium. J. Antimicrob. Chemother. 73, 1479–1486 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Turner, A. M., Lee, J. Y. H., Gorrie, C. L., Howden, B. P. & Carter, G. P. Genomic insights into last-line antimicrobial resistance in multidrug-resistant Staphylococcus and vancomycin-resistant Enterococcus. Front. Microbiol. 12, 637656 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schwarz, S. et al. Mobile oxazolidinone resistance genes in gram-positive and gram-negative bacteria. Clin. Microbiol. Rev. 34, 0188-20 (2021).

    Article  Google Scholar 

  70. Boumasmoud, M. et al. Genomic surveillance of vancomycin-resistant Enterococcus faecium reveals spread of a linear plasmid conferring a nutrient utilization advantage. mBio 13, e0377121 (2022).

    Article  PubMed  Google Scholar 

  71. Werner, G. et al. Host range of enterococcal vanA plasmids among Gram-positive intestinal bacteria. J. Antimicrob. Chemother. 66, 273–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Sun, L. et al. Identification of novel conjugative plasmids with multiple copies of fosB that confer high-level fosfomycin resistance to vancomycin-resistant enterococci. Front. Microbiol. 8, 1541 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hashimoto, Y. et al. First report of the local spread of vancomycin-resistant enterococci ascribed to the interspecies transmission of a vanA gene cluster-carrying linear plasmid. mSphere 5, e00102-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Islam, M. et al. Vancomycin resistance in Enterococcus faecium from the Dallas, Texas, area is conferred predominantly on pRUM-Like plasmids. mSphere 8, e0002423 (2023).

    Article  PubMed  Google Scholar 

  75. Johnson, C. N., Sheriff, E. K., Duerkop, B. A. & Chatterjee, A. Let me upgrade you: impact of mobile genetic elements on enterococcal adaptation and evolution. J. Bacteriol. 203, e0017721 (2021).

    Article  PubMed  Google Scholar 

  76. Huo, W., Adams, H. M., Trejo, C., Badia, R. & Palmer, K. L. A type I restriction-modification system associated with Enterococcus faecium subspecies separation. Appl. Environ. Microbiol. 85, e02174-18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tock, M. R. & Dryden, D. T. F. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Correa-Martinez, C. L., Tönnies, H., Froböse, N. J., Mellmann, A. & Kampmeier, S. Transmission of vancomycin-resistant enterococci in the hospital setting: uncovering the patient–environment interplay. Microorganisms 8, 203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gouliouris, T. et al. Quantifying acquisition and transmission of Enterococcus faecium using genomic surveillance. Nat. Microbiol. 6, 103–111 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Falgenhauer, L. et al. Changing epidemiology of vancomycin-resistant Enterococcus faecium: results of a genome-based study at a regional neurological acute hospital with intensive care and early rehabilitation treatment. Infect. Prev. Pract. 3, 100138 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hashimoto, Y. et al. Novel multidrug-resistant enterococcal mobile linear plasmid pELF1 encoding vanA and vanM gene clusters from a Japanese vancomycin-resistant enterococci isolate. Front. Microbiol. 10, 2568 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fujiya, Y. et al. Transmission dynamics of a linear vanA-plasmid during a nosocomial multiclonal outbreak of vancomycin-resistant enterococci in a non-endemic area, Japan. Sci. Rep. 11, 14780 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lam, M. M. et al. Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin-resistant Enterococcus faecium. BMC Genomics 14, 595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Byappanahalli, M. N., Nevers, M. B., Korajkic, A., Staley, Z. R. & Harwood, V. J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 76, 685–706 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fiore, E., Van Tyne, D. & Gilmore, M. S. Pathogenicity of enterococci. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.GPP3-0053-2018 (2019).

  86. Gaca, A. O. & Lemos, J. A. Adaptation to adversity: the intermingling of stress tolerance and pathogenesis in enterococci. Microbiol. Mol. Biol. Rev. 83, e00008-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sherman, J. M., Mauer, J. C. & Stark, P. Streptococcus fecalis. J. Bacteriol. 33, 275–282 (1937).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ramsey, M., Hartke, A. & Huycke, M. in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection (eds Gilmore, M. S., Clewell, D. B., Ike, Y. & Shankar, N.) 581–636 (Massachusetts Eye and Ear Infirmary, 2014).

  89. Wagenvoort, J. H. T. et al. Environmental survival of vancomycin-resistant Enterococcus faecium. J. Hosp. Infect. 77, 274–283 (2011).

    Article  Google Scholar 

  90. Lleò, M. D. M., Bonato, B., Benedetti, D. & Canepari, P. Survival of enterococcal species in aquatic environments. FEMS Microbiol. Ecol. 54, 189–196 (2005).

    Article  PubMed  Google Scholar 

  91. Michiels, J. E., Van Den Bergh, B., Verstraeten, N., Fauvart, M. & Michiels, J. In vitro emergence of high persistence upon periodic aminoglycoside challenge in the ESKAPE pathogens. Antimicrob. Agents Chemother. 60, 4630–4637 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lleò, M. M. et al. Resuscitation rate in different enterococcal species in the viable but non-culturable state. J. Appl. Microbiol. 91, 1095–1102 (2001).

    Article  PubMed  Google Scholar 

  93. Almohamad, S., Somarajan, S. R., Singh, K. V., Nallapareddy, S. R. & Murray, B. E. Influence of isolate origin and presence of various genes on biofilm formation by Enterococcus faecium. FEMS Microbiol. Lett. 353, 151–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Ayrapetyan, M., Williams, T. & Oliver, J. D. Relationship between the viable but nonculturable state and antibiotic persister cells. J. Bacteriol. 200, e00249-18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bakkeren, E., Diard, M. & Hardt, W.-D. Evolutionary causes and consequences of bacterial antibiotic persistence. Nat. Rev. Microbiol. 18, 479–490 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Fauvart, M., de Groote, V. N. & Michiels, J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J. Med. Microbiol. 60, 699–709 (2011).

    Article  PubMed  Google Scholar 

  97. Pruzzo, C. et al. In vitro adhesion to human cells by viable but nonculturable Enterococcus faecalis. Curr. Microbiol. 45, 105–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Hartke, A., Giard, J. C., Laplace, J. M. & Auffray, Y. Survival of Enterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl. Environ. Microbiol. 64, 4238–4245 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Choudhury, T., Singh, K. V., Sillanpää, J., Nallapareddy, S. R. & Murray, B. E. Importance of two Enterococcus faecium loci encoding Gls-like proteins for in vitro bile salts stress response and virulence. J. Infect. Dis. 203, 1147–1154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. De Maat, V., Arredondo-Alonso, S., Willems, R. J. L. & Van Schaik, W. Conditionally essential genes for survival during starvation in Enterococcus faecium E745. BMC Genomics 21, 568 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Irving, S. E., Choudhury, N. R. & Corrigan, R. M. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat. Rev. Microbiol. 19, 256–271 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Young, S., Rohr, J. R. & Harwood, V. J. Vancomycin resistance plasmids affect persistence of Enterococcus faecium in water. Water Res. 166, 115069 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Wendt, C., Wiesenthal, B., Dietz, E. & Rüden, H. Survival of vancomycin-resistant and vancomycin-susceptible enterococci on dry surfaces. J. Clin. Microbiol. 36, 3734–3736 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tedim, A. P. et al. Fitness cost of vancomycin-resistant Enterococcus faecium plasmids associated with hospital infection outbreaks. J. Antimicrob. Chemother. 76, 2757–2764 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Robbins, W. C. & Tompsett, R. Treatment of enterococcal endocarditis and bacteremia; results of combined therapy with penicillin and streptomycin. Am. J. Med. 10, 278–299 (1951).

    Article  CAS  PubMed  Google Scholar 

  106. García-Solache, M. et al. Homologous recombination within large chromosomal regions facilitates acquisition of β-lactam and vancomycin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 60, 5777–5786 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Rahim, S. et al. Linezolid-resistant, vancomycin-resistant Enterococcus faecium infection in patients without prior exposure to linezolid. Clin. Infect. Dis. 36, e146–e148 (2003).

    Article  PubMed  Google Scholar 

  108. Kinnear, C. L. et al. Daptomycin treatment impacts resistance in off-target populations of vancomycin-resistant Enterococcus faecium. PLoS Biol. 18, e3000987 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sobhanipoor, M. H., Ahmadrajabi, R., Nave, H. H. & Saffari, F. Reduced susceptibility to biocides among enterococci from clinical and non-clinical sources. Infect. Chemother. 53, 696–704 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Suwantarat, N. et al. High prevalence of reduced chlorhexidine susceptibility in organisms causing central line-associated bloodstream infections. Infect. Control. Hosp. Epidemiol. 35, 1183–1186 (2014).

    Article  PubMed  Google Scholar 

  111. Bhardwaj, P., Hans, A., Ruikar, K., Guan, Z. & Palmer, K. L. Reduced chlorhexidine and daptomycin susceptibility in vancomycin-resistant Enterococcus faecium after serial chlorhexidine exposure. Antimicrob. Agents Chemother. 62, e01235-17 (2018).

    Article  PubMed  Google Scholar 

  112. Prieto, A. M. G. et al. The two-component system ChtRS contributes to chlorhexidine tolerance in Enterococcus faecium. Antimicrob. Agents Chemother. 61, e02122-16 (2017).

    CAS  Google Scholar 

  113. Li, F. J. & Palmer, K. L. EfrEF and the transcription regulator ChlR are required for chlorhexidine stress response in Enterococcus faecalis V583. Antimicrob. Agents Chemother. 62, e00267-18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Prater, A. G. et al. Daptomycin resistance in Enterococcus faecium can be delayed by disruption of the LiaFSR stress response pathway. Antimicrob. Agents Chemother. 65, e01317-20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kellogg, S. L., Little, J. L., Hoff, J. S. & Kristich, C. J. Requirement of the CroRS two-component system for resistance to cell wall-targeting antimicrobials in Enterococcus faecium. Antimicrob. Agents Chemother. 61, e02461-16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Diaz, L. et al. Whole-genome analyses of Enterococcus faecium isolates with diverse daptomycin MICs. Antimicrob. Agents Chemother. 58, 4527–4534 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zhou, L. et al. The LiaFSR and BsrXRS systems contribute to bile salt resistance in Enterococcus faecium isolates. Front. Microbiol. 10, 1048 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Fiedler, S. et al. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J. Antimicrob. Chemother. 71, 871–881 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Turner, A. M. et al. Rifaximin prophylaxis causes resistance to the last-resort antibiotic daptomycin. Preprint at medRxiv https://doi.org/10.1101/2023.03.01.23286614 (2023).

  120. Brinster, S. et al. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature 458, 83–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Saito, H. E., Harp, J. R. & Fozo, E. M. Incorporation of exogenous fatty acids protects Enterococcus faecalis from membrane-damaging agents. Appl. Environ. Microbiol. 80, 6527–6538 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hays, C. et al. Type II fatty acid synthesis pathway and cyclopropane ring formation are dispensable during Enterococcus faecalis systemic infection. J. Bacteriol. 203, e00221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brewer, W., Harrison, J., Saito, H. E. & Fozoa, E. M. Induction of daptomycin tolerance in Enterococcus faecalis by fatty acid combinations. Appl. Environ. Microbiol. 86, e01178-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Archambaud, C., Derré-Bobillot, A., Lapaque, N., Rigottier-Gois, L. & Serror, P. Intestinal translocation of enterococci requires a threshold level of enterococcal overgrowth in the lumen. Sci. Rep. 9, 8926 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. US Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019 (CDC, 2019).

  127. Goh, S., Yong, M. H. A., Chong, K. K. L. & Kline, K. A. Model systems for the study of Enterococcal colonization and infection. Virulence 8, 1525–1562 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gao, W., Howden, B. P. & Stinear, T. P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr. Opin. Microbiol. 41, 76–82 (2018).

    Article  PubMed  Google Scholar 

  129. Freitas, A. R., Tedim, A. P., Novais, C., Coque, T. M. & Peixe, L. Distribution of putative virulence markers in Enterococcus faecium: towards a safety profile review. J. Antimicrob. Chemother. 73, 306–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Saier, M. H. The bacterial phosphotransferase system: new frontiers 50 years after its discovery. J. Mol. Microbiol. Biotechnol. 25, 73–78 (2015).

    CAS  PubMed  Google Scholar 

  131. Zhang, X. et al. Identification of a genetic determinant in clinical Enterococcus faecium strains that contributes to intestinal colonization during antibiotic treatment. J. Infect. Dis. 207, 1780–1786 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, X. et al. RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum. BMC Genomics 18, 893 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Montealegre, M. C., Singh, K. V. & Murray, B. E. Gastrointestinal tract colonization dynamics by different Enterococcus faecium clades. J. Infect. Dis. 213, 1914–1922 (2016).

    Article  PubMed  Google Scholar 

  134. Heikens, E., Bonten, M. J. M. & Willems, R. J. L. Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J. Bacteriol. 189, 8233–8240 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nallapareddy, S. R., Singh, K. V. & Murray, B. E. Contribution of the collagen adhesin Acm to pathogenesis of Enterococcus faecium in experimental endocarditis. Infect. Immun. 76, 4120–4128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nallapareddy, S. R., Singh, K. V., Okhuysen, P. C. & Murray, B. E. A functional collagen adhesin gene, acm, in clinical isolates of Enterococcus faecium, correlates with the recent success of this emerging nosocomial pathogen. Infect. Immun. 76, 4110–4119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Somarajan, S. R. et al. The fibronectin-binding protein Fnm contributes to adherence to extracellular matrix components and virulence of Enterococcus faecium. Infect. Immun. 83, 4653–4661 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sillanpää, J. et al. Characterization of the ebpfm pilus-encoding operon of Enterococcus faecium and its role in biofilm formation and virulence in a murine model of urinary tract infection. Virulence 1, 236–246 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ramos, Y., Sansone, S. & Morales, D. K. Sugarcoating it: enterococcal polysaccharides as key modulators of host–pathogen interactions. PLoS Pathog. 17, e1009822 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hendrickx, A. P., Van Schaik, W. & Willems, R. J. L. The cell wall architecture of Enterococcus faecium: from resistance to pathogenesis. Future Microbiol. 8, 993–1010 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Dunny, G. M., Hancock, L. E. & Shankar, N. in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection (eds Gilmore, M. S., Clewell, D. B., Ike, Y. & Shankar, N.) 547–579 (Massachusetts Eye and Ear Infirmary, 2014).

  142. Barnes, A. M. T., Frank, K. L. & Dunny, G. M. Enterococcal endocarditis: hiding in plain sight. Front. Cell. Infect. Microbiol. 11, 722482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hendrickx, A. P. A. et al. SgrA, a nidogen-binding LPXTG surface adhesin implicated in biofilm formation, and EcbA, a collagen binding MSCRAMM, are two novel adhesins of hospital-acquired Enterococcus faecium. Infect. Immun. 77, 5097–5106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Paganelli, F. L. et al. Genome-wide screening identifies phosphotransferase system permease BepA to be involved in Enterococcus faecium endocarditis and biofilm formation. J. Infect. Dis. 214, 189–195 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. McKenney, P. T. et al. Intestinal bile acids induce a morphotype switch in vancomycin-resistant Enterococcus that facilitates intestinal colonization. Cell Host Microbe 25, 695–705 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Conwell, M., Dooley, J. S. G. & Naughton, P. J. Enterococcal biofilm—a nidus for antibiotic resistance transfer? J. Appl. Microbiol. 132, 3444–3460 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Paone, P. & Cani, P. D. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69, 2232–2243 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Fine, R. L., Manfredo Vieira, S., Gilmore, M. S. & Kriegel, M. A. Mechanisms and consequences of gut commensal translocation in chronic diseases. Gut Microbes 11, 217–230 (2020).

    Article  PubMed  Google Scholar 

  149. Wagner, T. M. et al. Enterococcus faecium TIR-domain genes are part of a gene cluster which promotes bacterial survival in blood. Int. J. Microbiol. 2018, 1435820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Paganelli, F. L. et al. Group IIA-secreted phospholipase A2 in human serum kills commensal but not clinical Enterococcus faecium isolates. Infect. Immun. 86, e00180-18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Garsin, D. A. et al. in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection (eds Gilmore, M. S., Clewell, D. B., Ike, Y. & Shankar, N.) 185–257 (Massachusetts Eye and Ear Infirmary, 2014).

  152. Zhang, S. et al. Identification of a botulinum neurotoxin-like toxin in a commensal strain of Enterococcus faecium. Cell Host Microbe 23, 169–176 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xiong, X. et al. Emerging enterococcus pore-forming toxins with MHC/HLA-I as receptors. Cell 185, 1157–1171.e22 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kalfopoulou, E. & Huebner, J. Advances and prospects in vaccine development against enterococci. Cells 9, 2397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Crouzet, L., Rigottier-Gois, L. & Serror, P. Potential use of probiotic and commensal bacteria as non-antibiotic strategies against vancomycin-resistant enterococci. FEMS Microbiol. Lett. 362, fnv012 (2015).

    Article  PubMed  Google Scholar 

  156. Kim, S. G. et al. Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus. Nature 572, 665–669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Isaac, S. et al. Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus. Nat. Commun. 13, 7718 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Contreras, G. A., Munita, J. M. & Arias, C. A. Novel strategies for the management of vancomycin-resistant enterococcal infections. Curr. Infect. Dis. Rep. 21, 22 (2019).

    Article  PubMed  Google Scholar 

  159. Li, X. et al. Two strains of lactobacilli effectively decrease the colonization of VRE in a mouse model. Front. Cell. Infect. Microbiol. 9, 6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Choi, E. et al. Comprehensive, multisystem, mechanical decolonization of vancomycin-resistant enterococcus and carbapenem-resistant enterobacteriacease without the use of antibiotics. Medicine 100, e23686 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Caballero, S. et al. Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 21, 592–602.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05835206 (2024).

  163. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/study/NCT05632315 (2024).

  164. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/study/NCT04583098 (2023).

  165. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04014413 (2023).

  166. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/study/NCT06001333 (2023).

  167. Ubeda, C. et al. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect. Immun. 81, 965–973 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Millette, M. et al. Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl. Environ. Microbiol. 74, 1997–2003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mu, A. et al. Microbe-metabolite associations linked to the rebounding murine gut microbiome postcolonization with vancomycin-resistant Enterococcus faecium. mSystems 5, e00452-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Deleu, S., Machiels, K., Raes, J., Verbeke, K. & Vermeire, S. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? EBioMedicine 66, 103293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Machado, M. G., Sencio, V. & Trottein, F. Short-chain fatty acids as a potential treatment for infections: a closer look at the lungs. Infect. Immun. 89, e00188-21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jeong, S., Lee, Y., Yun, C. H., Park, O. J. & Han, S. H. Propionate, together with triple antibiotics, inhibits the growth of enterococci. J. Microbiol. 57, 1019–1024 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Sun, W. S., Lee, Y. J., Tsai, K. N., Ho, Y. H. & Fang, S. Probiotic cocktail identified by microbial network analysis inhibits growth, virulence gene expression, and host cell colonization of vancomycin-resistant enterococci. Microorganisms 8, 816 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Markowiak-Kopeć, P. & Śliżewska, K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12, 1107 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03822819 (2020).

  176. Riley, M. A. & Wertz, J. E. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Ness, I. F., Diep, D. B. & Ike, Y. in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection (eds Gilmore, M. S., Clewell, D. B., Ike, Y. & Shankar, N.) 637–668 (Massachusetts Eye and Ear Infirmary, 2014).

  178. Almeida-Santos, A. C., Novais, C., Peixe, L. & Freitas, A. R. Enterococcus spp. as a producer and target of bacteriocins: a double-edged sword in the antimicrobial resistance crisis context. Antibiotics 10, 1215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kommineni, S. et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526, 719–722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jabés, D. et al. Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant Gram-positive pathogens. Antimicrob. Agents Chemother. 55, 1671–1676 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Soltani, S. et al. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol. Rev. 45, fuaa039 (2021).

    Article  PubMed  Google Scholar 

  182. Stein-Thoeringer, C. K. et al. Lactose drives Enterococcus expansion to promote graft-versus-host disease. Science 366, 1143–1149 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chanishvili, N. Phage therapy — history from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus Res. 83, 3–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Rakhuba, D. V., Kolomiets, E. I., Szwajcer Dey, E. & Novik, G. I. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol. J. Microbiol. 59, 145–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Zhang, W. et al. Characterization of Enterococcus faecalis phage IME-EF1 and its endolysin. PLoS ONE 8, e80435 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Gong, P. et al. Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5. Virology 492, 11–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Melo, L. D. R., Ferreira, R., Costa, A. R., Oliveira, H. & Azeredo, J. Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Sci. Rep. 9, 6643 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Goodarzi, F. et al. Anti-biofilm activity of a lytic phage against vancomycin-resistant Enterococcus faecalis. Iran. J. Pathol. 17, 285–294 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Rigvava, S. et al. Novel lytic bacteriophage vB_GEC_EfS_9 against Enterococcus faecium. Virus Res. 307, 198599 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Haddad et al. Genomic and functional characterization of vancomycin-resistant enterococci-specific bacteriophages in the Galleria mellonella wax moth larvae model. Pharmaceutics 14, 1591 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Jarvis, A. W., Collins, L. J. & Ackermann, H. W. A study of five bacteriophages of the Myoviridae family which replicate on different Gram-positive bacteria. Arch. Virol. 133, 75–84 (1993).

    Article  CAS  PubMed  Google Scholar 

  192. Canfield, G. S. et al. Lytic bacteriophages facilitate antibiotic sensitization of Enterococcus faecium. Antimicrob. Agents Chemother. 65, e00143-21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yoong, P., Schuch, R., Nelson, D. & Fischetti, V. A. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J. Bacteriol. 186, 4808–4812 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Morrisette, T. et al. Bacteriophage-antibiotic combinations for Enterococcus faecium with varying bacteriophage and daptomycin susceptibilities. Antimicrob. Agents Chemother. 64, e00993-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wandro, S. et al. Phage cocktails constrain the growth of Enterococcus. mSystems 7, e00019-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05715619 (2023).

  197. Abt, M. C. et al. TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus. Sci. Transl Med. 8, 327ra25 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Huebner, J., Quaas, A., Krueger, W. A., Goldmann, D. A. & Pier, G. B. Prophylactic and therapeutic efficacy of antibodies to a capsular polysaccharide shared among vancomycin-sensitive and -resistant enterococci. Infect. Immun. 68, 4631–4636 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Theilacker, C. et al. Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect. Immun. 74, 5703–5712 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kodali, S. et al. A vaccine approach for the prevention of infections by multidrug-resistant Enterococcus faecium. J. Biol. Chem. 290, 19512–19526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Dey, J. et al. Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathog. 14, 21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Romero-Saavedra, F. et al. Conjugation of different immunogenic enterococcal vaccine target antigens leads to extended strain coverage. J. Infect. Dis. 220, 1589–1598 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kalfopoulou, E. et al. Development of opsonic mouse monoclonal antibodies against multidrug-resistant enterococci. Infect. Immun. 87, e00276-19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hancock, R. E. W. & Sahl, H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006).

    Article  CAS  PubMed  Google Scholar 

  205. Santos-Filho, N. A. et al. Antibacterial activity of the non-cytotoxic peptide (p-BthTX-I)2 and its serum degradation product against multidrug-resistant bacteria. Molecules 22, 1898 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Hwang, I. S. et al. Synergistic effect and antibiofilm activity between the antimicrobial peptide coprisin and conventional antibiotics against opportunistic bacteria. Curr. Microbiol. 66, 56–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Rodrigues, M., McBride, S. W., Hullahalli, K., Palmer, K. L. & Duerkop, B. A. Conjugative delivery of CRISPR–Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrob. Agents Chemother. 63, e01454-19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Chua, M. J. & Collins, J. Rapid, efficient, and cost-effective gene editing of Enterococcus faecium with CRISPR-Cas12a. Microbiol. Spectr. 10, e0242721 (2022).

    Article  PubMed  Google Scholar 

  209. Chen, V. et al. RecT recombinase expression enables efficient gene editing in Enterococcus spp. Appl. Environ. Microbiol. 87, e0084421 (2021).

    Article  PubMed  Google Scholar 

  210. van Hal, S. J. et al. Relentless spread and adaptation of non-typeable vanA vancomycin-resistant Enterococcus faecium: a genome-wide investigation. J. Antimicrob. Chemother. 73, 1487–1491 (2018).

    Article  PubMed  Google Scholar 

  211. Premetis, G. E., Stathi, A., Papageorgiou, A. C. & Labrou, N. E. Structural and functional features of a broad-spectrum prophage-encoded enzybiotic from Enterococcus faecium. Sci. Rep. 13, 7450 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Clewell, D. B. et al. in Enterococci: From Commensals to Leading Causes of Drug Resistant Infection (eds Gilmore, M. S., Clewell, D. B., Ike, Y. & Shankar, N.) 309–420 (Massachusetts Eye and Ear Infirmary, 2014).

  213. Sterling, A. J., Snelling, W. J., Naughton, P. J., Ternan, N. G. & Dooley, J. S. G. Competent but complex communication: the phenomena of pheromone-responsive plasmids. PLoS Pathog. 16, e1008310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Nagarajan, R., Hendrickx, A. P. A. & Ponnuraj, K. The crystal structure of the ligand-binding region of serine-glutamate repeat containing protein A (SgrA) of Enterococcus faecium reveals a new protein fold: functional characterization and insights into its adhesion function. FEBS J. 283, 3039–3055 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Orlek, A. et al. Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology. Front. Microbiol. 8, 182 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Kohler, V., Vaishampayan, A. & Grohmann, E. Broad-host-range Inc18 plasmids: occurrence, spread and transfer mechanisms. Plasmid 99, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Sivertsen, A. et al. The enterococcus cassette chromosome, a genomic variation enabler in enterococci. mSphere 3, e00402-18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Mazaheri Nezhad Fard, R., Barton, M. D. & Heuzenroeder, M. W. Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett. Appl. Microbiol. 52, 559–564 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Institutes of Health for their funding support through grants R56AI139105 and R01AI148366 to K.L.P.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and K.L.P. researched data for the article. Y.W. and K.L.P. contributed substantially to the discussion of the content. Y.W. and K.L.P. wrote the article. D.P.A. contributed to the editing to the first draft of the manuscript. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kelli L. Palmer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Benjamin Howden, Daria Van Tyne and Vincent Cattoir for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Biofilms

Microbial communities resulting from adherence of planktonic organisms to a surface followed by growth.

Complement proteins

Part of innate immunity, a group of proteins circulating in serum that are activated by the presence of pathogens, which leads to either destruction of pathogens by inducing cell lysis or recognition and clearance of pathogens by immune cells.

Core genome multilocus sequence typing

(cgMLST). A method that compares the sequences of the core genes among a certain set of genomes for discrimination of strains of different sequence types.

Persister cells

A small population of cells that are killed more slowly than the majority of the population during the exposure to bactericidal factors, such as antibiotics.

Phosphotransferase system

(PTS). An active sugar-transport system that phosphorylates the imported sugar using phosphoenolpyruvate as the phosphoryl group donor.

Resuscitation

A process for viable but nonculturable cells to regain the ability to perform cell division (that is, culturability) under favourable conditions.

Sequence type

A unique combination of variations in the sequences of seven E.faecium housekeeping genes, atpA, ddl, gdh, purK, gyd, pstS and adk.

Viable but nonculturable

(VBNC). A small population of cells that are unable to grow on culture media but are functionally viable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Palacios Araya, D. & Palmer, K.L. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01058-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01058-6

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology