Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics

Abstract

The rise of antibiotic resistance and a dwindling antimicrobial pipeline have been recognized as emerging threats to public health. The ESKAPE pathogens — Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. — were initially identified as critical multidrug-resistant bacteria for which effective therapies were rapidly needed. Now, entering the third decade of the twenty-first century, and despite the introduction of several new antibiotics and antibiotic adjuvants, such as novel β-lactamase inhibitors, these organisms continue to represent major therapeutic challenges. These bacteria share several key biological features, including adaptations for survival in the modern health-care setting, diverse methods for acquiring resistance determinants and the dissemination of successful high-risk clones around the world. With the advent of next-generation sequencing, novel tools to track and combat the spread of these organisms have rapidly evolved, as well as renewed interest in non-traditional antibiotic approaches. In this Review, we explore the current epidemiology and clinical impact of this important group of bacterial pathogens and discuss relevant mechanisms of resistance to recently introduced antibiotics that affect their use in clinical settings. Furthermore, we discuss emerging therapeutic strategies needed for effective patient care in the era of widespread antimicrobial resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Burden of antimicrobial resistance in ESKAPE pathogens.
Fig. 2: Emerging mechanisms of resistance in Gram-positive pathogens.
Fig. 3: Emerging mechanisms of resistance in Gram-negative pathogens.
Fig. 4: Novel treatment approaches for ESKAPE pathogens.

Similar content being viewed by others

References

  1. Aminov, R. I. A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol. 1, 134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Boucher, H. W. et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12 (2009).

    Article  PubMed  Google Scholar 

  4. Rice, L. B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J. Infect. Dis. 197, 1079–1081 (2008).

    Article  PubMed  Google Scholar 

  5. De Oliveira, D. M. P. et al. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33, e00181–e00219 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Jr Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanssen, A. M., Kjeldsen, G. & Sollid, J. U. Local variants of staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci: evidence of horizontal gene transfer? Antimicrob. Agents Chemother. 48, 285–296 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nubel, U. et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 105, 14130–14135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chambers, H. F. & Deleo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Steinig, E. et al. Phylodynamic signatures in the emergence of community-associated MRSA. Proc. Natl Acad. Sci. USA 119, e2204993119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crisostomo, M. I. et al. The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. Proc. Natl Acad. Sci. USA 98, 9865–9870 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Panlilio, A. L. et al. Methicillin-resistant Staphylococcus aureus in US hospitals, 1975–1991. Infect. Control. Hosp. Epidemiol. 13, 582–586 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Ito, T. et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45, 1323–1336 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Udo, E. E., Pearman, J. W. & Grubb, W. B. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J. Hosp. Infect. 25, 97–108 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Herold, B. C. et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279, 593–598 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Coombs, G. W. et al. Genetic diversity among community methicillin-resistant Staphylococcus aureus strains causing outpatient infections in Australia. J. Clin. Microbiol. 42, 4735–4743 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Strauss, L. et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc. Natl Acad. Sci. USA 114, E10596–E10604 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Planet, P. J. et al. Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America. J. Infect. Dis. 212, 1874–1882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Otter, J. A. & French, G. L. Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Europe. Lancet Infect. Dis. 10, 227–239 (2010).

    Article  PubMed  Google Scholar 

  20. Stegger, M. et al. Origin and evolution of European community-acquired methicillin-resistant Staphylococcus aureus. mBio 5, e01044-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Larsen, J. et al. Evidence for human adaptation and foodborne transmission of livestock-associated methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 63, 1349–1352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uhlemann, A. C. et al. Evolutionary dynamics of pandemic methicillin-sensitive Staphylococcus aureus ST398 and its international spread via routes of human migration. mBio 8, e01375–e01416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He, L. et al. Detection and analysis of methicillin-resistant human-adapted sequence type 398 allows insight into community-associated methicillin-resistant Staphylococcus aureus evolution. Genome Med. 10, 5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pfizer. Antimicrobial Testing Leadership and Surveillance. ATLAS https://www.atlas-surveillance.com (2024).

  25. Diekema, D. J., Pfaller, M. A., Shortridge, D., Zervos, M. & Jones, R. N. Twenty-year trends in antimicrobial susceptibilities among Staphylococcus aureus from the SENTRY Antimicrobial Surveillance Program. Open Forum Infect. Dis. 6, S47–S53 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. US Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019 (CDC, 2019).

  27. Klein, E. Y. et al. National costs associated with methicillin-susceptible and methicillin-resistant Staphylococcus aureus hospitalizations in the United States, 2010–2014. Clin. Infect. Dis. 68, 22–28 (2019).

    PubMed  Google Scholar 

  28. Khan, A. et al. A multicenter study to evaluate ceftaroline breakpoints: performance in an area with high prevalence of methicillin-resistant Staphylococcus aureus sequence type 5 lineage. J. Clin. Microbiol. 57, e00798–e00819 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hryniewicz, M. M. & Garbacz, K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA) — a more common problem than expected? J. Med. Microbiol. 66, 1367–1373 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Becker, K., Ballhausen, B., Kock, R. & Kriegeskorte, A. Methicillin resistance in Staphylococcus isolates: the “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int. J. Med. Microbiol. 304, 794–804 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Shariati, A. et al. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci. Rep. 10, 12689 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tran, T. T. et al. New perspectives on antimicrobial agents: long-acting lipoglycopeptides. Antimicrob. Agents Chemother. 66, e0261420 (2022).

    Article  PubMed  Google Scholar 

  33. Raad, I. et al. Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by Gram-positive pathogens. Clin. Infect. Dis. 40, 374–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Grein, F. et al. Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat. Commun. 11, 1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller, W. R., Bayer, A. S. & Arias, C. A. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and enterococci. Cold Spring Harb. Perspect. Med. 6, a026997 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baek, K. T. et al. Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX gene. Antimicrob. Agents Chemother. 59, 6983–6991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schwarz, S. et al. Mobile oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria. Clin. Microbiol. Rev. 34, e0018820 (2021).

    Article  PubMed  Google Scholar 

  38. Holland, T. L. et al. Ceftobiprole for treatment of complicated Staphylococcus aureus bacteremia. N. Engl. J. Med. 389, 1390–1401 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Chan, L. C. et al. Ceftobiprole- and ceftaroline-resistant methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 59, 2960–2963 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Silva, K. P. T., Sundar, G. & Khare, A. Efflux pump gene amplifications bypass necessity of multiple target mutations for resistance against dual-targeting antibiotic. Nat. Commun. 14, 3402 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berti, A. D. et al. Penicillin binding protein 1 is important in the compensatory response of Staphylococcus aureus to daptomycin-induced membrane damage and is a potential target for β-lactam–daptomycin synergy. Antimicrob. Agents Chemother. 60, 451–458 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Geriak, M. et al. Clinical data on daptomycin plus ceftaroline versus standard of care monotherapy in the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 63, e02483–e02518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Murray, B. E. The life and times of the Enterococcus. Clin. Microbiol. Rev. 3, 46–65 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller, W. R., Murray, B. E., Rice, L. B. & Arias, C. A. Resistance in vancomycin-resistant enterococci. Infect. Dis. Clin. North Am. 34, 751–771 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. European Centre for Disease Prevention and Control. European Antimicrobial Resistance Surveillance Network (EARS-Net). ECDC www.ecdc.europa.eu/en/about-us/networks/disease-networks-and-laboratory-networks/ears-net-data (2023).

  46. Tao, S. et al. Association of CRISPR–Cas system with the antibiotic resistance and virulence genes in nosocomial isolates of Enterococcus. Infect. Drug Resist. 15, 6939–6949 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Galloway-Pena, J., Roh, J. H., Latorre, M., Qin, X. & Murray, B. E. Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS ONE 7, e30187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lebreton, F. et al. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. mBio 4, e00534–e00613 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rios, R. et al. Genomic epidemiology of vancomycin-resistant Enterococcus faecium (VREfm) in Latin America: revisiting the global VRE population structure. Sci. Rep. 10, 5636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Raven, K. E. et al. A decade of genomic history for healthcare-associated Enterococcus faecium in the United Kingdom and Ireland. Genome Res. 26, 1388–1396 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Hal, S. J. et al. The interplay between community and hospital Enterococcus faecium clones within health-care settings: a genomic analysis. Lancet Microbe 3, e133–e141 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. van Hal, S. J. et al. The global dissemination of hospital clones of Enterococcus faecium. Genome Med. 13, 52 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Arias, C. A. et al. Genetic basis for in vivo daptomycin resistance in enterococci. N. Engl. J. Med. 365, 892–900 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boumasmoud, M. et al. Genomic surveillance of vancomycin-resistant Enterococcus faecium reveals spread of a linear plasmid conferring a nutrient utilization advantage. mBio 13, e0377121 (2022).

    Article  PubMed  Google Scholar 

  55. Hashimoto, Y. et al. Enterococcal linear plasmids adapt to Enterococcus faecium and spread within multidrug-resistant clades. Antimicrob. Agents Chemother. 67, e0161922 (2023).

    Article  PubMed  Google Scholar 

  56. Arredondo-Alonso, S. et al. Plasmids shaped the recent emergence of the major nosocomial pathogen Enterococcus faecium. mBio 11, e03284–e03319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Olivier, C. N., Blake, R. K., Steed, L. L. & Salgado, C. D. Risk of vancomycin-resistant Enterococcus (VRE) bloodstream infection among patients colonized with VRE. Infect. Control. Hosp. Epidemiol. 29, 404–409 (2008).

    Article  PubMed  Google Scholar 

  58. Lee, R. A. et al. Daptomycin-resistant Enterococcus bacteremia is associated with prior daptomycin use and increased mortality after liver transplantation. Open Forum Infect. Dis. 9, ofab659 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kramer, T. S. et al. The importance of adjusting for Enterococcus species when assessing the burden of vancomycin resistance: a cohort study including over 1000 cases of enterococcal bloodstream infections. Antimicrob. Resist. Infect. Control. 7, 133 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Huh, K. et al. Impact of vancomycin resistance in Enterococcus faecium bloodstream infection on mortality: a retrospective analysis of nationwide surveillance data. Int. J. Infect. Dis. 134, 8–14 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Rottier, W. C. et al. Attributable mortality of vancomycin resistance in ampicillin-resistant Enterococcus faecium bacteremia in Denmark and the Netherlands: a matched cohort study. Infect. Control. Hosp. Epidemiol. 43, 719–727 (2022).

    Article  PubMed  Google Scholar 

  62. Eichel, V. M. et al. Epidemiology and outcomes of vancomycin-resistant Enterococcus infections: a systematic review and meta-analysis. J. Hosp. Infect. 141, 119–128 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Contreras, G. A. et al. Contemporary clinical and molecular epidemiology of vancomycin-resistant enterococcal bacteremia: a prospective multicenter cohort study (VENOUS I). Open Forum Infect. Dis. 9, ofab616 (2022).

    Article  PubMed  Google Scholar 

  64. Britt, N. S., Potter, E. M., Patel, N. & Steed, M. E. Comparative effectiveness and safety of standard-, medium-, and high-dose daptomycin strategies for the treatment of vancomycin-resistant enterococcal bacteremia among veterans affairs patients. Clin. Infect. Dis. 64, 605–613 (2017).

    CAS  PubMed  Google Scholar 

  65. Satlin, M. J. et al. Development of daptomycin susceptibility breakpoints for Enterococcus faecium and revision of the breakpoints for other enterococcal species by the Clinical and Laboratory Standards Institute. Clin. Infect. Dis. 70, 1240–1246 (2020).

    CAS  PubMed  Google Scholar 

  66. DiPippo, A. J. et al. Daptomycin non-susceptible Enterococcus faecium in leukemia patients: role of prior daptomycin exposure. J. Infect. 74, 243–247 (2017).

    Article  PubMed  Google Scholar 

  67. Wang, G. et al. Evolution and mutations predisposing to daptomycin resistance in vancomycin-resistant Enterococcus faecium ST736 strains. PLoS ONE 13, e0209785 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, L. et al. Daptomycin resistance occurs predominantly in vanA-type vancomycin-resistant Enterococcus faecium in Australasia and is associated with heterogeneous and novel mutations. Front. Microbiol. 12, 749935 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Billal, D. S., Feng, J., Leprohon, P., Legare, D. & Ouellette, M. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations. BMC Genomics 12, 512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marshall, S. H., Donskey, C. J., Hutton-Thomas, R., Salata, R. A. & Rice, L. B. Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother. 46, 3334–3336 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boumghar-Bourtchai, L., Dhalluin, A., Malbruny, B., Galopin, S. & Leclercq, R. Influence of recombination on development of mutational resistance to linezolid in Enterococcus faecalis JH2-2. Antimicrob. Agents Chemother. 53, 4007–4009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barber, K. E., Bell, A. M., Wingler, M. J. B., Wagner, J. L. & Stover, K. R. Omadacycline enters the ring: a new antimicrobial contender. Pharmacotherapy 38, 1194–1204 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Scott, L. J. Eravacycline: a review in complicated intra-abdominal infections. Drugs 79, 315–324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Beabout, K. et al. Rampant parasexuality evolves in a hospital pathogen during antibiotic selection. Mol. Biol. Evol. 32, 2585–2597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fiedler, S. et al. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J. Antimicrob. Chemother. 71, 871–881 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Boukthir, S. et al. In vitro activity of eravacycline and mechanisms of resistance in enterococci. Int. J. Antimicrob. Agents 56, 106215 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Tindall, B. J., Sutton, G. & Garrity, G. M. Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980). Int. J. Syst. Evol. Microbiol. 67, 502–504 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Poirel, L. et al. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017 (2018).

  79. Podschun, R. & Ullmann, U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11, 589–603 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rodriguez-Bano, J., Gutierrez-Gutierrez, B., Machuca, I. & Pascual, A. Treatment of infections caused by extended-spectrum-β-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Rev. 31, e00079-17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Holt, K. E. et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl Acad. Sci. USA 112, E3574–E3581 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Long, S. W. et al. Whole-genome sequencing of human clinical Klebsiella pneumoniae isolates reveals misidentification and misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. mSphere 2, e00290-17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Annavajhala, M. K., Gomez-Simmonds, A. & Uhlemann, A. C. Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front. Microbiol. 10, 44 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wyres, K. L., Lam, M. M. C. & Holt, K. E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 18, 344–359 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. van Duin, D. et al. Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): a prospective cohort study. Lancet Infect. Dis. 20, 731–741 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bowers, J. R. et al. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS ONE 10, e0133727 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chen, L., Mathema, B., Pitout, J. D., DeLeo, F. R. & Kreiswirth, B. N. Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. mBio 5, e01355-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. David, S. et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 4, 1919–1929 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, M. et al. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study. Lancet Infect. Dis. 22, 401–412 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Afolayan, A. O. et al. Clones and clusters of antimicrobial-resistant Klebsiella from southwestern Nigeria. Clin. Infect. Dis. 73, S308–S315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lowe, M. et al. Klebsiella pneumoniae ST307 with bla(OXA-181,) South Africa, 2014–2016. Emerg. Infect. Dis. 25, 739–747 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shropshire, W. C. et al. Accessory genomes drive independent spread of carbapenem-resistant Klebsiella pneumoniae clonal groups 258 and 307 in Houston, TX. mBio 13, e0049722 (2022).

    Article  PubMed  Google Scholar 

  93. Long, S. W. et al. Population genomic analysis of 1,777 extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates, Houston, Texas: unexpected abundance of clonal group 307. mBio 8, e00489–e00517 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liao, W., Liu, Y. & Zhang, W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: a review over the last 10 years. J. Glob. Antimicrob. Resist. 23, 174–180 (2020).

    Article  PubMed  Google Scholar 

  95. Zhang, Y. et al. Evolution of hypervirulence in carbapenem-resistant Klebsiella pneumoniae in China: a multicentre, molecular epidemiological analysis. J. Antimicrob. Chemother. 75, 327–336 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, T. et al. Recombination drives evolution of carbapenem-resistant Klebsiella pneumoniae sequence type 11 KL47 to KL64 in China. Microbiol. Spectr. 11, e0110722 (2023).

    Article  PubMed  Google Scholar 

  97. Roe, C. C., Vazquez, A. J., Esposito, E. P., Zarrilli, R. & Sahl, J. W. Diversity, virulence, and antimicrobial resistance in isolates from the newly emerging Klebsiella pneumoniae ST101 lineage. Front. Microbiol. 10, 542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Peirano, G., Chen, L., Kreiswirth, B. N. & Pitout, J. D. D. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147. Antimicrob. Agents Chemother. 64, e01148-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Turton, J. F. et al. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and ‘non-hypervirulent’ types ST147, ST15 and ST383. J. Med. Microbiol. 67, 118–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Karlsson, M. et al. Identification of a carbapenemase-producing hypervirulent Klebsiella pneumoniae isolate in the United States. Antimicrob. Agents Chemother. 63, e00519-19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Paauw, A. et al. Genomic diversity within the Enterobacter cloacae complex. PLoS ONE 3, e3018 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Moradigaravand, D., Reuter, S., Martin, V., Peacock, S. J. & Parkhill, J. The dissemination of multidrug-resistant Enterobacter cloacae throughout the UK and Ireland. Nat. Microbiol. 1, 16173 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Peirano, G. et al. Genomic epidemiology of global carbapenemase-producing enterobacter spp., 2008–2014. Emerg. Infect. Dis. 24, 1010–1019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gomez-Simmonds, A. et al. Genomic and geographic context for the evolution of high-risk carbapenem-resistant Enterobacter cloacae complex clones ST171 and ST78. mBio 9, e00542-18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chavda, K. D. et al. Comprehensive genome analysis of carbapenemase-producing Enterobacter spp.: new insights into phylogeny, population structure, and resistance mechanisms. mBio 7, e02093-16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Logan, L. K. & Weinstein, R. A. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J. Infect. Dis. 215, S28–S36 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. US Centers for Disease Control and Prevention. COVID-19: US impact on antimicrobial resistance, special report 2022 (CDC, 2022).

  108. Wilson, B. M. et al. Carbapenem-resistant Enterobacter cloacae in patients from the US Veterans Health Administration, 2006–2015. Emerg. Infect. Dis. 23, 878–880 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Castanheira, M. et al. Variations in the occurrence of resistance phenotypes and carbapenemase genes among enterobacteriaceae isolates in 20 years of the SENTRY Antimicrobial Surveillance Program. Open Forum Infect. Dis. 6, S23–S33 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Palacios-Baena, Z. R. et al. Risk factors for carbapenem-resistant Gram-negative bacterial infections: a systematic review. Clin. Microbiol. Infect. 27, 228–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. van Duin, D. et al. Colistin versus ceftazidime–avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin. Infect. Dis. 66, 163–171 (2018).

    Article  PubMed  Google Scholar 

  112. Perovic, O. et al. Carbapenem-resistant Enterobacteriaceae in patients with bacteraemia at tertiary hospitals in South Africa, 2015 to 2018. Eur. J. Clin. Microbiol. Infect. Dis. 39, 1287–1294 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Gutierrez-Gutierrez, B. et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect. Dis. 17, 726–734 (2017).

    Article  PubMed  Google Scholar 

  114. Falcone, M. et al. Time to appropriate antibiotic therapy is a predictor of outcome in patients with bloodstream infection caused by KPC-producing Klebsiella pneumoniae. Crit. Care 24, 29 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hoo, G. S. R. et al. Predictors and outcomes of healthcare-associated infections caused by carbapenem-nonsusceptible Enterobacterales: a parallel matched case–control study. Front. Cell Infect. Microbiol. 12, 719421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Haidar, G. et al. Mutations in blaKPC-3 that confer ceftazidime–avibactam resistance encode novel KPC-3 variants that function as extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 61, e02534-16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sun, D., Rubio-Aparicio, D., Nelson, K., Dudley, M. N. & Lomovskaya, O. Meropenem–vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 61, e01694-17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Findlay, J., Rens, C., Poirel, L. & Nordmann, P. In vitro mechanisms of resistance development to imipenem-relebactam in KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 66, e0091822 (2022).

    Article  PubMed  Google Scholar 

  119. Lan, P. et al. Emergence of high-level cefiderocol resistance in carbapenem-resistant Klebsiella pneumoniae from bloodstream infections in patients with hematologic malignancies in China. Microbiol. Spectr. 10, e0008422 (2022).

    Article  PubMed  Google Scholar 

  120. Kawai, A. et al. Structural basis of reduced susceptibility to ceftazidime–avibactam and cefiderocol in Enterobacter cloacae due to AmpC R2 loop deletion. Antimicrob. Agents Chemother. 64, e00198-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tamma, P. D. & Munita, J. M. The metallo-β-lactamases strike back: emergence of taniborbactam escape variants. Antimicrob. Agents Chemother. 68, e0151023 (2024).

    Article  PubMed  Google Scholar 

  122. Lister, P. D., Wolter, D. J. & Hanson, N. D. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22, 582–610 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Juan, C., Pena, C. & Oliver, A. Host and pathogen biomarkers for severe Pseudomonas aeruginosa infections. J. Infect. Dis. 215, S44–S51 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Del Barrio-Tofino, E., Lopez-Causape, C. & Oliver, A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int. J. Antimicrob. Agents 56, 106196 (2020).

    Article  PubMed  Google Scholar 

  125. Ozer, E. A., Nnah, E., Didelot, X., Whitaker, R. J. & Hauser, A. R. The population structure of Pseudomonas aeruginosa is characterized by genetic isolation of exoU+ and exoS+ lineages. Genome Biol. Evol. 11, 1780–1796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Freschi, L. et al. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol. Evol. 11, 109–120 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Gomila, M., Pena, A., Mulet, M., Lalucat, J. & Garcia-Valdes, E. Phylogenomics and systematics in Pseudomonas. Front. Microbiol. 6, 214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wiehlmann, L. et al. Population structure of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 104, 8101–8106 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rutherford, V. et al. Environmental reservoirs for exoS+ and exoU+ strains of Pseudomonas aeruginosa. Env. Microbiol. Rep. 10, 485–492 (2018).

    Article  CAS  Google Scholar 

  130. Wong-Beringer, A., Wiener-Kronish, J., Lynch, S. & Flanagan, J. Comparison of type III secretion system virulence among fluoroquinolone-susceptible and -resistant clinical isolates of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 14, 330–336 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Agnello, M., Finkel, S. E. & Wong-Beringer, A. Fitness cost of fluoroquinolone resistance in clinical isolates of Pseudomonas aeruginosa differs by type III secretion genotype. Front. Microbiol. 7, 1591 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Pena, C. et al. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin. Infect. Dis. 60, 539–548 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. El-Solh, A. A., Hattemer, A., Hauser, A. R., Alhajhusain, A. & Vora, H. Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit. Care Med. 40, 1157–1163 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Botelho, J. et al. Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa. EBioMedicine 90, 104532 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Oliver, A., Mulet, X., Lopez-Causape, C. & Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updat. 21–22, 41–59 (2015).

    Article  PubMed  Google Scholar 

  136. Treepong, P. et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin. Microbiol. Infect. 24, 258–266 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Thrane, S. W. et al. The widespread multidrug-resistant serotype O12 Pseudomonas aeruginosa clone emerged through concomitant horizontal transfer of serotype antigen and antibiotic resistance gene clusters. mBio 6, e01396–01315 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Reyes, J. et al. Global epidemiology and clinical outcomes of carbapenem-resistant Pseudomonas aeruginosa and associated carbapenemases (POP): a prospective cohort study. Lancet Microbe 4, e159–e170 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gales, A. C., Menezes, L. C., Silbert, S. & Sader, H. S. Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. J. Antimicrob. Chemother. 52, 699–702 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Khan, A. et al. Extensively drug-resistant Pseudomonas aeruginosa ST309 harboring tandem guiana extended spectrum β-lactamase enzymes: a newly emerging threat in the United States. Open Forum Infect. Dis. 6, ofz273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zhao, Y. et al. Epidemiological and genetic characteristics of clinical carbapenem-resistant Pseudomonas aeruginosa strains in Guangdong province, China. Microbiol. Spectr. 11, e0426122 (2023).

    Article  PubMed  Google Scholar 

  142. Wang, M. G. et al. Retrospective data insight into the global distribution of carbapenemase-producing Pseudomonas aeruginosa. Antibiotics 10, 548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pirzadian, J. et al. National surveillance pilot study unveils a multicenter, clonal outbreak of VIM-2-producing Pseudomonas aeruginosa ST111 in the Netherlands between 2015 and 2017. Sci. Rep. 11, 21015 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kadri, S. S. et al. Difficult-to-treat resistance in Gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin. Infect. Dis. 67, 1803–1814 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Falcone, M. et al. Mortality attributable to bloodstream infections caused by different carbapenem-resistant Gram-negative bacilli: results from a nationwide study in Italy (ALARICO Network). Clin. Infect. Dis. 76, 2059–2069 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Zhanel, G. G. et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant Gram-negative bacilli. Drugs 74, 31–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Berrazeg, M. et al. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob. Agents Chemother. 59, 6248–6255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Young, K. et al. In vitro studies evaluating the activity of imipenem in combination with relebactam against Pseudomonas aeruginosa. BMC Microbiol. 19, 150 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Rubio, A. M. et al. In vitro susceptibility of multidrug-resistant Pseudomonas aeruginosa following treatment-emergent resistance to ceftolozane–tazobactam. Antimicrob. Agents Chemother. 65, e00084-21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shields, R. K., Stellfox, M. E., Kline, E. G., Samanta, P. & Van Tyne, D. Evolution of imipenem–relebactam resistance following treatment of multidrug-resistant Pseudomonas aeruginosa pneumonia. Clin. Infect. Dis. 75, 710–714 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Streling, A. P. et al. Evolution of cefiderocol non-susceptibility in Pseudomonas aeruginosa in a patient without previous exposure to the antibiotic. Clin. Infect. Dis. 73, e4472–e4474 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Karakonstantis, S., Rousaki, M. & Kritsotakis, E. I. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and in vivo emergence of resistance. Antibiotics 11, 723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gill, C. M. et al. The ERACE-PA global surveillance program: ceftolozane/tazobactam and ceftazidime/avibactam in vitro activity against a global collection of carbapenem-resistant Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 40, 2533–2541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nemec, A. et al. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticusAcinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res. Microbiol. 162, 393–404 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Maragakis, L. L. & Perl, T. M. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis. 46, 1254–1263 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Bonomo, R. A. & Szabo, D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis. 43, S49–S56 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Diancourt, L., Passet, V., Nemec, A., Dijkshoorn, L. & Brisse, S. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS ONE 5, e10034 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bartual, S. G. et al. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J. Clin. Microbiol. 43, 4382–4390 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gaiarsa, S. et al. Comparative analysis of the two Acinetobacter baumannii multilocus sequence typing (MLST) schemes. Front. Microbiol. 10, 930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Iovleva, A. et al. Carbapenem-resistant Acinetobacter baumannii in US hospitals: diversification of circulating lineages and antimicrobial resistance. mBio 13, e0275921 (2022).

    Article  PubMed  Google Scholar 

  162. Hamidian, M. & Nigro, S. J. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb. Genom. 5, e000306 (2019).

    PubMed  PubMed Central  Google Scholar 

  163. Adams-Haduch, J. M. et al. Molecular epidemiology of carbapenem-nonsusceptible Acinetobacter baumannii in the United States. J. Clin. Microbiol. 49, 3849–3854 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu, C. et al. Epidemiological and genetic characteristics of clinical carbapenem-resistant Acinetobacter baumannii strains collected countrywide from hospital intensive care units (ICUs) in China. Emerg. Microbes Infect. 11, 1730–1741 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Brito, B. P. et al. Genomic analysis of carbapenem-resistant Acinetobacter baumannii strains recovered from Chilean hospitals reveals lineages specific to South America and multiple routes for acquisition of antibiotic resistance genes. Microbiol. Spectr. 10, e0246322 (2022).

    Article  PubMed  Google Scholar 

  166. Cheikh, H. B. et al. Molecular characterization of carbapenemases of clinical Acinetobacter baumanniicalcoaceticus complex isolates from a university hospital in Tunisia. 3 Biotech 8, 297 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Kumburu, H. H. et al. Using WGS to identify antibiotic resistance genes and predict antimicrobial resistance phenotypes in MDR Acinetobacter baumannii in Tanzania. J. Antimicrob. Chemother. 74, 1484–1493 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Matsui, M. et al. Distribution and molecular characterization of Acinetobacter baumannii international clone II lineage in Japan. Antimicrob. Agents Chemother. 62, e02190-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Holt, K. et al. Five decades of genome evolution in the globally distributed, extensively antibiotic-resistant Acinetobacter baumannii global clone 1. Microb. Genom. 2, e000052 (2016).

    PubMed  PubMed Central  Google Scholar 

  170. Krizova, L. & Nemec, A. A 63 kb genomic resistance island found in a multidrug-resistant Acinetobacter baumannii isolate of European clone I from 1977. J. Antimicrob. Chemother. 65, 1915–1918 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Blackwell, G. A., Hamidian, M. & Hall, R. M. IncM plasmid R1215 is the source of chromosomally located regions containing multiple antibiotic resistance genes in the globally disseminated Acinetobacter baumannii GC1 and GC2 clones. mSphere 1, e00117-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Heritier, C., Poirel, L. & Nordmann, P. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin. Microbiol. Infect. 12, 123–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Lee, Y. L., Ko, W. C. & Hsueh, P. R. Geographic patterns of Acinetobacter baumannii and carbapenem resistance in the Asia–Pacific Region: results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2012–2019. Int. J. Infect. Dis. 127, 48–55 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Potron, A., Poirel, L. & Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int. J. Antimicrob. Agents 45, 568–585 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Zarrilli, R., Pournaras, S., Giannouli, M. & Tsakris, A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int. J. Antimicrob. Agents 41, 11–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Lee, H. Y., Chen, C. L., Wu, S. R., Huang, C. W. & Chiu, C. H. Risk factors and outcome analysis of Acinetobacter baumannii complex bacteremia in critical patients. Crit. Care Med. 42, 1081–1088 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Weiner-Lastinger, L. M. et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control. Hosp. Epidemiol. 41, 1–18 (2020).

    Article  PubMed  Google Scholar 

  178. Zilberberg, M. D., Nathanson, B. H., Sulham, K., Fan, W. & Shorr, A. F. Multidrug resistance, inappropriate empiric therapy, and hospital mortality in Acinetobacter baumannii pneumonia and sepsis. Crit. Care 20, 221 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Shields, R. K., Paterson, D. L. & Tamma, P. D. Navigating available treatment options for carbapenem-resistant Acinetobacter baumanniicalcoaceticus complex infections. Clin. Infect. Dis. 76, S179–S193 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Tamma, P. D. et al. Infectious Diseases Society of America 2023 guidance on the treatment of antimicrobial resistant Gram-negative infections. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciad428 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Hackel, M. A. et al. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant Gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 study). Antimicrob. Agents Chemother. 61, e00093-17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Malik, S., Kaminski, M., Landman, D. & Quale, J. Cefiderocol resistance in Acinetobacter baumannii: roles of β-lactamases, siderophore receptors, and penicillin binding protein 3. Antimicrob. Agents Chemother. 64, e01221-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Poirel, L., Sadek, M. & Nordmann, P. Contribution of PER-type and NDM-type β-lactamases to cefiderocol resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 65, e0087721 (2021).

    Article  PubMed  Google Scholar 

  184. Bassetti, M. et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 21, 226–240 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Durand-Reville, T. F. et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2, 17104 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Kaye, K. S. et al. Efficacy and safety of sulbactam–durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumanniicalcoaceticus complex: a multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 23, 1072–1084 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Penwell, W. F. et al. Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 59, 1680–1689 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Cahill, S. T. et al. Cyclic boronates inhibit all classes of β-lactamases. Antimicrob. Agents Chemother. 61, e02260-16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Marshall, S. et al. Can ceftazidime–avibactam and aztreonam overcome β-lactam resistance conferred by metallo-β-lactamases in enterobacteriaceae? Antimicrob. Agents Chemother. 61, e02243-16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Y, C. et al. 2893 A. efficacy and safety of aztreonam–avibactam for the treatment of serious infections due to Gram-negative bacteria, including metallo-β-lactamase-producing pathogens: phase 3 REVISIT study. Open Forum Infect Dis 10, ofad500.2476 (2023).

  191. Moya, B. et al. WCK 5107 (zidebactam) and WCK 5153 are novel inhibitors of PBP2 showing potent “β-lactam enhancer” activity against Pseudomonas aeruginosa, including multidrug-resistant metallo-β-lactamase-producing high-risk clones. Antimicrob. Agents Chemother. 61, e02529-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Hamrick, J. C. et al. VNRX-5133 (taniborbactam), a broad-spectrum inhibitor of serine- and metallo-β-lactamases, restores activity of cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 64, e01963-19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lomovskaya, O. et al. QPX7728, an ultra-broad-spectrum β-lactamase inhibitor for intravenous and oral therapy: overview of biochemical and microbiological characteristics. Front. Microbiol. 12, 697180 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Watkins, R. R., Thapaliya, D., Lemonovich, T. L. & Bonomo, R. A. Gepotidacin: a novel, oral, ‘first-in-class’ triazaacenaphthylene antibiotic for the treatment of uncomplicated urinary tract infections and urogenital gonorrhoea. J. Antimicrob. Chemother. 78, 1137–1142 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Wagenlehner, F. et al. Oral gepotidacin versus nitrofurantoin in patients with uncomplicated urinary tract infection (EAGLE-2 and EAGLE-3): two randomised, controlled, double-blind, double-dummy, phase 3, non-inferiority trials. Lancet 403, 741–755 (2024).

    Article  CAS  PubMed  Google Scholar 

  196. Prasad, N. K., Seiple, I. B., Cirz, R. T. & Rosenberg, O. S. Leaks in the pipeline: a failure analysis of Gram-negative antibiotic development from 2010 to 2020. Antimicrob. Agents Chemother. 66, e0005422 (2022).

    Article  PubMed  Google Scholar 

  197. Kaul, M. et al. TXA709, an FtsZ-targeting benzamide prodrug with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 59, 4845–4855 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wittke, F. et al. Afabicin, a first-in-class antistaphylococcal antibiotic, in the treatment of acute bacterial skin and skin structure infections: clinical noninferiority to vancomycin/linezolid. Antimicrob. Agents Chemother. 64, e00250-20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Butler, M. S., Henderson, I. R., Capon, R. J. & Blaskovich, M. A. T. Antibiotics in the clinical pipeline as of December 2022. J. Antibiot. 76, 431–473 (2023).

    Article  CAS  Google Scholar 

  200. Song, Y. et al. Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. J. Med. Chem. 52, 3869–3880 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Cusumano, C. K. et al. Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci. Transl Med. 3, ra115 (2011).

    Article  Google Scholar 

  202. Bulger, E. M. et al. A novel immune modulator for patients with necrotizing soft tissue infections (NSTI): results of a multicenter, phase 3 randomized controlled trial of reltecimod (AB 103). Ann. Surg. 272, 469–478 (2020).

    Article  PubMed  Google Scholar 

  203. Sulakvelidze, A., Alavidze, Z. & Morris, J. G. Jr Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649–659 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Fowler, V. G. Jr et al. Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis. J. Clin. Invest. 130, 3750–3760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Suh, G. A. et al. Considerations for the use of phage therapy in clinical practice. Antimicrob. Agents Chemother. 66, e0207121 (2022).

    Article  PubMed  Google Scholar 

  206. Micoli, F., Bagnoli, F., Rappuoli, R. & Serruto, D. The role of vaccines in combatting antimicrobial resistance. Nat. Rev. Microbiol. 19, 287–302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Amandine, G. B., Gagnaire, J., Pelissier, C., Philippe, B. & Elisabeth, B. N. Vaccines for healthcare associated infections without vaccine prevention to date. Vaccin. X 11, 100168 (2022).

    Article  CAS  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04959344 (2022).

  209. Frost, I. et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe 4, e113–e125 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  Google Scholar 

  211. Browne, A. J. et al. Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study. Lancet Planet. Health 5, e893–e904 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl Acad. Sci. USA 112, 5649–5654 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Wegener, H. C. Historical yearly usage of glycopeptides for animals and humans: the American–European paradox revisited. Antimicrob. Agents Chemother. 42, 3049 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03687255 (2020).

  215. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03840148 (2024).

  216. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04979806 (2023).

  217. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03931876 (2019).

  218. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04243863 (2022).

  219. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03491748 (2020).

  220. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05204368 (2023).

  221. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03182504 (2018).

  222. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04380207 (2022).

  223. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05072444 (2022).

  224. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05590728 (2024).

  225. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03747497 (2022).

  226. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05369052 (2024).

  227. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04532957 (2024).

  228. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05507463 (2024).

  229. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05685615 (2023).

  230. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04020341 (2023).

  231. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05630833 (2023).

  232. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04649541 (2023).

  233. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05137314 (2022).

  234. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04808414 (2022).

  235. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04865393 (2024).

  236. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03723551 (2023).

  237. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04160468 (2023).

  238. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04596319 (2024).

  239. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04684641 (2023).

  240. S National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05010577 (2023).

  241. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05776004 (2024).

  242. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03638830 (2021).

  243. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05331885 (2023).

  244. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03816956 (2023).

  245. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04763759 (2024).

  246. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05274802 (2022).

  247. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05138822 (2023).

  248. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02469857 (2021).

  249. Gales, A. C. et al. Antimicrobial susceptibility of Acinetobacter calcoaceticusAcinetobacter baumannii complex and Stenotrophomonas maltophilia clinical isolates: results from the SENTRY Antimicrobial Surveillance Program (1997–2016). Open Forum Infect. Dis. 6, S34–S46 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Pfaller, M. A., Cormican, M., Flamm, R. K., Mendes, R. E. & Jones, R. N. Temporal and geographic variation in antimicrobial susceptibility and resistance patterns of enterococci: results from the SENTRY Aantimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 6, S54–S62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Shortridge, D. et al. Geographic and temporal patterns of antimicrobial resistance in Pseudomonas aeruginosa over 20 years from the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 6, S63–S68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Carr, V. R., Shkoporov, A., Hill, C., Mullany, P. & Moyes, D. L. Probing the mobilome: discoveries in the dynamic microbiome. Trends Microbiol. 29, 158–170 (2021).

    Article  CAS  PubMed  Google Scholar 

  253. Domingues, S., da Silva, G. J. & Nielsen, K. M. Integrons: vehicles and pathways for horizontal dissemination in bacteria. Mob. Genet Elem. 2, 211–223 (2012).

    Article  Google Scholar 

  254. Chen, Z., Erickson, D. L. & Meng, J. Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing. BMC Genomics 21, 631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Brito, I. L. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol 19, 442–453 (2021).

    Article  CAS  PubMed  Google Scholar 

  256. Saak, C. C., Dinh, C. B. & Dutton, R. J. Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiol Rev. 44, 606–630 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Review is dedicated to the memory of Mireya Hernandez de Arias, an extraordinary woman, mother and, above all, warrior in life.

Author information

Authors and Affiliations

Authors

Contributions

W.R.M. researched data for the article. All authors contributed substantially to discussion of the content, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Cesar A. Arias.

Ethics declarations

Competing interests

W.R.M. has received grant support from Merck and royalties from UpToDate. C.A.A. has received royalties from UpToDate.

Peer review

Peer review information

Nature Reviews Microbiology thanks Gian Maria Rossolini, Guido Werner and Vincent Cattoir for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, W.R., Arias, C.A. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01054-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01054-w

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology