Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials challenges on the path to gigatonne CO2 electrolysis

Abstract

CO2 electroreduction (CO2E) is one promising strategy towards decarbonization, offering a path to produce widely used chemicals such as fuels or manufacturing feedstocks using renewable energy and waste CO2 (as opposed to fossil fuels). CO2E performance at the laboratory scale is advancing quickly, including ongoing scale-up and industrialization efforts. To address global CO2 emissions (~37 Gt per year), CO2 electrolysers and components, as well as upstream and downstream associated technologies, must be deployed at the gigawatt scale. This entails considerable challenges beyond performance, such as resource availability, deployment readability and end-of-life system management, which are today overlooked. In this Review, we analyse the impending resource challenges as CO2E deployment approaches gigatonne scale, considering a life cycle assessment focused on the associated materials and their corresponding global warming impact. We identify scalability bottlenecks related to membranes, electrode supports and anode materials, among others, and discuss the need for more stable carbon-efficient systems and materials recycling strategies. We conclude with potential approaches to rationally design materials towards sustainable CO2 capture and electrolysis at the gigatonne scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CO2E alternative to conventional fuels and chemicals synthesis.
Fig. 2: Components of CO2 electrochemical cells and electrolyser stacks.
Fig. 3: Materials and resources breakdown for CO2E systems.
Fig. 4: Carbon capture mature technologies.
Fig. 5: Material requirements and corresponding GWIs for scaling up CO2 electroreduction technology to the gigatonne level.
Fig. 6: Open challenges and guidelines towards a more sustainable CO2E.

Similar content being viewed by others

References

  1. International Energy Agency. CO2 emissions in 2022 (IEA, 2023).

  2. Fisher, B. et al. in Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 3 (eds Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A.) 169–250 (Cambridge Univ. Press, 2007).

  3. CO2.Earth. 2100 projections. CO2.Earth https://www.co2.earth/2100-projections (2024).

  4. United Nations Framework Convention on Climate Change. The Paris Agreement. UNFCCC https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2022).

  5. United Nations Framework Convention on Climate Change. The Glasgow Climate Pact: key outcomes from COP26. UNFCCC https://unfccc.int/process-and-meetings/the-paris-agreement/the-glasgow-climate-pact-key-outcomes-from-cop26 (2021).

  6. Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2023).

  7. Pickering, B., Lombardi, F. & Pfenninger, S. Diversity of options to eliminate fossil fuels and reach carbon neutrality across the entire European energy system. Joule 6, 1253–1276 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nesbitt, E. R. Using waste carbon feedstocks to produce chemicals. Ind. Biotechnol. 16, 147–163 (2020).

    Article  Google Scholar 

  9. Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Centi, G. & Perathoner, S. in Handbook of Climate Change Mitigation and Adaptation (eds Lackner, M., Sajjadi, B. & Chen, W.-Y.) 1803–1852 (2022).

  11. Barecka, M. H., Ager, J. W. & Lapkin, A. A. Carbon neutral manufacturing via on-site CO2 recycling. iScience 24, 102514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Markewitz, P. et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5, 7281–7305 (2012).

    Article  CAS  Google Scholar 

  13. Drechsler, C. & Agar, D. W. Intensified integrated direct air capture — power-to-gas process based on H2O and CO2 from ambient air. Appl. Energy 273, 115076 (2020).

    Article  CAS  Google Scholar 

  14. Barzagli, F., Giorgi, C., Mani, F. & Peruzzini, M. Screening study of different amine-based solutions as sorbents for direct CO2 capture from air. ACS Sustain. Chem. Eng. 8, 14013–14021 (2020).

    Article  CAS  Google Scholar 

  15. Veselovskaya, J. V. et al. Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent. Int. J. Greenh. Gas Control 17, 332–340 (2013).

    Article  CAS  Google Scholar 

  16. European Parliament. Circular economy: definition, importance and benefits. European Parliament https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefits (2023).

  17. Kaiser, S., Gold, S. & Bringezu, S. Environmental and economic assessment of CO2-based value chains for a circular carbon use in consumer products. Resour. Conserv. Recycl. 184, 106422 (2022).

    Article  CAS  Google Scholar 

  18. Khoo, H. H., Halim, I. & Handoko, A. D. LCA of electrochemical reduction of CO2 to ethylene. J. CO2 Util. 41, 101229 (2020).

    Article  CAS  Google Scholar 

  19. Cheng, Y., Hou, P., Wang, X. & Kang, P. CO2 electrolysis system under industrially relevant conditions. Acc. Chem. Res. 55, 231–240 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Martindale, B. Electrifying start-up. Nat. Catal. 4, 924–925 (2021).

    Article  Google Scholar 

  21. Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. CERT Systems. Essential chemicals without fossil fuels. CERT https://co2cert.com/ (2024).

  23. eChemicles. Electrolysis for a better tomorrow! eChemicles https://echemicles.com/ (2024).

  24. Dioxycle. Technology. Dioxycle https://dioxycle.com/#technology (2024).

  25. Zhang, Z. et al. Membrane electrode assembly for electrocatalytic CO2 reduction: principle and application. Angew. Chem. Int. Ed. 62, e202302789 (2023).

    Article  CAS  Google Scholar 

  26. Nguyen, T. N. & Dinh, C. T. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 49, 7488–7504 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

    Article  Google Scholar 

  28. Park, J. et al. Strategies for CO2 electroreduction in cation exchange membrane electrode assembly. Chem. Eng. J. 453, 139826 (2023).

    Article  CAS  Google Scholar 

  29. Ma, M., Kim, S., Chorkendorff, I. & Seger, B. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wren, J. C. et al. Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J. Electrochem. Soc. 155, B42 (2007).

    Google Scholar 

  31. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Noh, S., Jeon, J. Y., Adhikari, S., Kim, Y. S. & Bae, C. Molecular engineering of hydroxide conducting polymers for anion exchange membranes in electrochemical energy conversion technology. Acc. Chem. Res. 52, 2745–2755 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Vermaas, D. A. & Smith, W. A. Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane. ACS Energy Lett. 1, 1143–1148 (2016).

    Article  CAS  Google Scholar 

  34. Salvatore, D. A. et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2018).

    Article  CAS  Google Scholar 

  35. Stephens, I. E. L. et al. Roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 4, 042003 (2022).

    Article  CAS  Google Scholar 

  36. Wakerley, D. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7, 130–143 (2022).

    Article  CAS  Google Scholar 

  37. Verma, S., Lu, X., Ma, S., Masel, R. I. & Kenis, P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).

    Article  CAS  Google Scholar 

  39. Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    Article  PubMed  Google Scholar 

  40. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 1–3 (2020).

    Article  Google Scholar 

  41. Fan, M. et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat. Catal. 6, 763–772 (2023).

    Article  CAS  Google Scholar 

  42. Xie, Y. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022).

    Article  CAS  Google Scholar 

  43. Li, H. et al. Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over a Ni–N–C catalyst in a membrane electrode assembly electrolyzer. Energy Environ. Sci. 16, 1502–1510 (2023).

    Article  CAS  Google Scholar 

  44. Li, L., Liu, Z., Yu, X. & Zhong, M. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem. Int. Ed. 62, e202300226 (2023).

    Article  CAS  Google Scholar 

  45. Zhao, Y. et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth. 2, 403–412 (2023).

    Article  Google Scholar 

  46. Xie, K. et al. Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nat. Commun. 13, 3609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nat. Energy 6, 203–213 (2021).

    Article  CAS  Google Scholar 

  48. Fernández-González, J., Rumayor, M., Domínguez-Ramos, A. & Irabien, Á. CO2 electroreduction: sustainability analysis of the renewable synthetic natural gas. Int. J. Greenh. Gas Control 114, 103549 (2022).

    Article  Google Scholar 

  49. Rheticus research project enters phase 2. Siemens https://www.siemens-energy.com/global/en/home/press-releases/research-project-rheticus.html (2019).

  50. International Renewable Energy Agency. Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5°C climate goal (IRENA, 2020).

  51. Raya-Imbernón, A. et al. Renewable syngas generation via low-temperature electrolysis: opportunities and challenges. ACS Energy Lett. 9, 288–297 (2024).

    Article  PubMed  Google Scholar 

  52. Schreiber, M. W. Industrial CO2 electroreduction to ethylene: main technical challenges. Curr. Opin. Electrochem. 44, 101438 (2023).

    Article  Google Scholar 

  53. Rizwan, M., Alstad, V. & Jäschke, J. Design considerations for industrial water electrolyzer plants. Int. J. Hydrog. Energy 46, 37120–37136 (2021).

    Article  CAS  Google Scholar 

  54. Edwards, J. P. et al. Pilot-scale CO2 electrolysis enables a semi-empirical electrolyzer model. ACS Energy Lett. 8, 2576–2584 (2023).

    Article  CAS  Google Scholar 

  55. Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    Article  CAS  Google Scholar 

  56. Đukić, T. et al. Understanding the crucial significance of the temperature and potential window on the stability of carbon supported Pt-alloy nanoparticles as oxygen reduction reaction electrocatalysts. ACS Catal. 12, 101–115 (2022).

    Article  PubMed  Google Scholar 

  57. European Commission. Critical raw materials. European Commission https://ec.europa.eu/growth/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (2023).

  58. US Geological Survey. Mineral commodity summaries 2021 (USGS, 2021).

  59. Garside, M. Demand for iridium worldwide from 2010 to 2024. Statista https://www.statista.com/statistics/585840/demand-for-iridium-worldwide/ (2024).

  60. Gunn, G. (ed.) Critical Metals Handbook (Wiley, 2014).

  61. Hegge, F. et al. Efficient and stable low iridium loaded anodes for PEM water electrolysis made possible by nanofiber interlayers. ACS Appl. Energy Mater. 3, 8276–8284 (2020).

    Article  CAS  Google Scholar 

  62. Babic, U., Suermann, M., Büchi, F. N., Gubler, L. & Schmidt, T. J. Identifying critical gaps for polymer electrolyte water electrolysis development. J. Electrochem. Soc. 164, F387 (2017).

    Article  CAS  Google Scholar 

  63. Nuss, P. & Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLoS ONE 9, e101298 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pan, S. et al. Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nat. Commun. 13, 2294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu, J. et al. Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with Earth abundant nanostructured Co3O4. Nat. Commun. 13, 4341 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reichl, C. & Schatz, M. World mining data 2021: volume 36 (Federal Ministry of Agriculture, Regions and Tourism, 2021).

  67. Jiang, W. et al. Composition-dependent morphology, structure, and catalytical performance of nickel–iron layered double hydroxide as highly-efficient and stable anode catalyst in anion exchange membrane water electrolysis. Adv. Funct. Mater. 32, 2203520 (2022).

    Article  CAS  Google Scholar 

  68. Xia, L. et al. Multistep sulfur leaching for the development of a highly efficient and stable NiSx/Ni(OH)2/NiOOH electrocatalyst for anion exchange membrane water electrolysis. ACS Appl. Mater. Interfaces 14, 19397–19408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, H. et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 1–8 (2020).

    CAS  Google Scholar 

  70. Zheng, T. et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019).

    Article  CAS  Google Scholar 

  71. Liu, X. & Dai, L. Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 1–12 (2016).

    Google Scholar 

  72. Hu, C., Gao, Y., Zhao, L. & Dai, L. Carbon-based metal-free electrocatalysts: recent progress and forward looking. Chem. Catal. 2, 2150–2156 (2022).

    Article  CAS  Google Scholar 

  73. Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18, 3266–3273 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994).

    Article  CAS  Google Scholar 

  75. Chen, S. et al. Engineering water molecules activation center on multisite electrocatalysts for enhanced CO2 methanation. J. Am. Chem. Soc. 144, 12807–12815 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Li, P. et al. In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nat. Commun. 13, 1965 (2022).

    Google Scholar 

  77. Kong, S. et al. Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2. Nat. Catal. 6, 6–15 (2022).

    Article  Google Scholar 

  78. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  PubMed  Google Scholar 

  79. Liu, W. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 13, 1877 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).

    Article  CAS  Google Scholar 

  81. OCOchem. Technology. OCOchem https://ocochem.com/technology/ (2023).

  82. Reller, C. et al. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 7, 1602114 (2017).

    Article  Google Scholar 

  83. Moss, R. L., Tzimas, E., Kara, H. & Kooroshy, J. Critical metals in strategic energy technologies: assessing rare metals as supply-chain bottlenecks in low-carbon energy technologies (Publications Office of the European Union, 2011).

  84. International Copper Association. Copper recycling. ICA https://copperalliance.org/resource/copper-recycling/ (2022).

  85. Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013).

    Article  CAS  Google Scholar 

  86. DuPont fuel cells’ safe handling and use of perfluorosulfonic acid products (2009).

  87. Feng, M. et al. Characterization of the thermolysis products of Nafion membrane: a potential source of perfluorinated compounds in the environment. Sci. Rep. 5, 1–8 (2015).

    CAS  Google Scholar 

  88. scia Systems. scia Multi 1500. scia Systems https://www.scia-systems.com/products/magnetron-sputtering/scia-multi-1500 (2021).

  89. US Environmental Protection Agency. How we use water. EPA https://www.epa.gov/watersense/how-we-use-water (2024).

  90. Ritchie, H. & Roser, M. Water use and stress. Our World in Data https://ourworldindata.org/water-use-stress (2018).

  91. International Renewable Energy Agency. World energy transitions outlook 2023: 1.5 °C pathway (IRENA, 2023).

  92. International Renewable Energy Agency. Global installed renewable energy capacity by technology. Our World in Data https://ourworldindata.org/grapher/installed-global-renewable-energy-capacity-by-technology (2024).

  93. Office of Energy Efficiency and Renewable Energy. Geothermal basics: Geothermal Technologies Office. EERE https://www.energy.gov/eere/geothermal/geothermal-basics (2024).

  94. International Atomic Energy Agency. Nuclear power capacity. IAEA https://pris.iaea.org/pris/worldstatistics/worldtrendnuclearpowercapacity.aspx (2024).

  95. Chowdhury, M. S. et al. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Rev. 27, 100431 (2020).

    Article  Google Scholar 

  96. Xu, Y., Li, J., Tan, Q., Peters, A. L. & Yang, C. Global status of recycling waste solar panels: a review. Waste Manag. 75, 450–458 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Farrell, C. et al. Assessment of the energy recovery potential of waste photovoltaic (PV) modules. Sci. Rep. 9, 1–13 (2019).

    Article  CAS  Google Scholar 

  98. International Renewable Energy Agency. End-of-life management: solar photovoltaic panels. IRENA https://www.irena.org/publications/2016/Jun/End-of-life-management-Solar-Photovoltaic-Panels (2016).

  99. Kadro, J. M. & Hagfeldt, A. The end-of-life of perovskite PV. Joule 1, 29–46 (2017).

    Article  Google Scholar 

  100. Tian, X., Stranks, S. D. & You, F. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nat. Sustain. 4, 821–829 (2021).

    Article  Google Scholar 

  101. Deng, R., Chang, N. L., Ouyang, Z. & Chong, C. M. A techno-economic review of silicon photovoltaic module recycling. Renew. Sust. Energ. Rev. 109, 532–550 (2019).

    Article  CAS  Google Scholar 

  102. Dubarry, M. et al. A combined hydro-mechanical and pyrometallurgical recycling approach to recover valuable metals from lithium-ion batteries avoiding lithium slagging. Batteries 9, 15 (2022).

    Article  Google Scholar 

  103. Divya, A., Adish, T., Kaustubh, P. & Zade, P. S. Review on recycling of solar modules/panels. Sol. Energy Mater. Sol. Cells 253, 112151 (2023).

    Article  CAS  Google Scholar 

  104. Chen, B. et al. Recycling lead and transparent conductors from perovskite solar modules. Nat. Commun. 12, 5859 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lauer, A. Electricity emissions around the world — 2023. Shrink That Footprint https://shrinkthatfootprint.com/electricity-emissions-around-the-world-2/ (2023).

  106. Ritchie, H. How does the land use of different electricity sources compare? Our World in Data https://ourworldindata.org/land-use-per-energy-source#article-citation (2022).

  107. Samu, A. A. et al. Intermittent operation of CO2 electrolyzers at industrially relevant current densities. ACS Energy Lett. 7, 1859–1861 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. National Renewable Energy Laboratory. PVWatts calculator: solar resource data. NREL https://pvwatts.nrel.gov/pvwatts.php (2023).

  109. Smith, W. A., Burdyny, T., Vermaas, D. A. & Geerlings, H. Pathways to industrial-scale fuel out of thin air from CO2 electrolysis. Joule 3, 1822–1834 (2019).

    Article  CAS  Google Scholar 

  110. International Energy Agency. Direct air capture: a key technology for net zero. IEA https://www.iea.org/events/direct-air-capture-a-key-technology-for-net-zero (2022).

  111. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Luis, P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: consequences and alternatives. Desalination 380, 93–99 (2016).

    Article  CAS  Google Scholar 

  113. Fasihi, M., Efimova, O. & Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 224, 957–980 (2019).

    Article  CAS  Google Scholar 

  114. Jing, X., Li, F. & Wang, Y. Assessing the economic potential of large-scale carbonate-formation-free CO2 electrolysis. Catal. Sci. Technol. 12, 2912–2919 (2022).

    Article  CAS  Google Scholar 

  115. Alerte, T. et al. Downstream of the CO2 electrolyzer: assessing the energy intensity of product separation. ACS Energy Lett. 6, 4405–4412 (2021).

    Article  CAS  Google Scholar 

  116. Brunetti, A., Scura, F., Barbieri, G. & Drioli, E. Membrane technologies for CO2 separation. J. Memb. Sci. 359, 115–125 (2010).

    Article  CAS  Google Scholar 

  117. Biermann, M., Normann, F., Johnsson, F., Hoballah, R. & Onarheim, K. Capture of CO2 from steam reformer flue gases using monoethanolamine: pilot plant validation and process design for partial capture. Ind. Eng. Chem. Res. 61, 14305–14323 (2022).

    Article  CAS  Google Scholar 

  118. Bos, M. J., Kroeze, V., Sutanto, S. & Brilman, D. W. F. Evaluating regeneration options of solid amine sorbent for CO2 removal. Ind. Eng. Chem. Res. 57, 11141–11153 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tuinier, M. J. & Van Sint Annaland, M. Biogas purification using cryogenic packed-bed technology. Ind. Eng. Chem. Res. 51, 5552–5558 (2012).

    Article  CAS  Google Scholar 

  120. Giordano, L., Roizard, D. & Favre, E. Life cycle assessment of post-combustion CO2 capture: a comparison between membrane separation and chemical absorption processes. Int. J. Greenh. Gas Control 68, 146–163 (2018).

    Article  CAS  Google Scholar 

  121. Chen, L., Xu, Q., Oener, S. Z., Fabrizio, K. & Boettcher, S. W. Design principles for water dissociation catalysts in high-performance bipolar membranes. Nat. Commun. 13, 3846 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Terlouw, T., Bauer, C., Rosa, L. & Mazzotti, M. Life cycle assessment of carbon dioxide removal technologies: a critical review. Energy Environ. Sci. 14, 1701–1721 (2021).

    Article  CAS  Google Scholar 

  123. Li, B., Gao, X., Li, J. & Yuan, C. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Environ. Sci. Technol. 48, 3047–3055 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Bareiß, K., de la Rua, C., Möckl, M. & Hamacher, T. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Appl. Energy 237, 862–872 (2019).

    Article  Google Scholar 

  125. Twigg, G. H. The catalytic oxidation of ethylene. Trans. Faraday Soc. 42, 284–290 (1946).

    Article  CAS  Google Scholar 

  126. Haber, F. & le Rossignol, R. Über die technische darstellung von ammoniak aus den elementen. Z. Elektrochem. Angew. Phys. Chem. 19, 53–72 (1913).

    CAS  Google Scholar 

  127. Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).

    Article  CAS  Google Scholar 

  128. Bachmann, M. et al. Renewable carbon feedstock for polymers: environmental benefits from synergistic use of biomass and CO2. Faraday Discuss. 230, 227–246 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Dziejarski, B., Serafin, J., Andersson, K. & Krzyżyńska, R. CO2 capture materials: a review of current trends and future challenges. Mater. Today Sustain. 24, 100483 (2023).

    Article  Google Scholar 

  130. The Royal Society. Ammonia: zero-carbon fertiliser, fuel and energy store (The Royal Society, 2020).

  131. Jackson, C. et al. Ammonia to green hydrogen project: feasibility study (Department for Business, Energy and Industrial Strategy, 2020).

  132. Liu, Y., Lucas, É., Sullivan, I., Li, X. & Xiang, C. Challenges and opportunities in continuous flow processes for electrochemically mediated carbon capture. iScience 25, 105153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li, X., Mathur, A., Liu, A. & Liu, Y. Electrifying carbon capture by developing nanomaterials at the interface of molecular and process engineering. Acc. Chem. Res. 56, 2763–2775 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Yamazaki, Y., Miyaji, M. & Ishitani, O. Utilization of low-concentration CO2 with molecular catalysts assisted by CO2-capturing ability of catalysts, additives, or reaction media. J. Am. Chem. Soc. 144, 6640–6660 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Kim, D. et al. Electrocatalytic reduction of low concentrations of CO2 gas in a membrane electrode assembly electrolyzer. ACS Energy Lett. 6, 3488–3495 (2021).

    Article  CAS  Google Scholar 

  137. O’Brien, C. P. et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021).

    Article  Google Scholar 

  138. Endrődi, B. et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 6, 439–448 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lin, R., Lu, Y., Xu, J., Huo, J. & Cai, X. Investigation on performance of proton exchange membrane electrolyzer with different flow field structures. Appl. Energy 326, 120011 (2022).

    Article  CAS  Google Scholar 

  140. Zhang, S., Liu, S., Xu, H., Liu, G. & Wang, K. Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design. Energy 239, 122102 (2022).

    Article  CAS  Google Scholar 

  141. Moreno Soriano, R., Rojas, N., Nieto, E., de Guadalupe González-Huerta, R. & Sandoval-Pineda, J. M. Influence of the gasket materials on the clamping pressure distribution in a PEM water electrolyzer: bolt torques and operation mode in pre-conditioning. Int. J. Hydrog. Energy 46, 25944–25953 (2021).

    Article  CAS  Google Scholar 

  142. Xu, Q. et al. Integrated reference electrodes in anion-exchange-membrane electrolyzers: impact of stainless-steel gas-diffusion layers and internal mechanical pressure. ACS Energy Lett. 6, 305–312 (2021).

    Article  CAS  Google Scholar 

  143. Dang, J. et al. Hydrogen crossover measurement and durability assessment of high-pressure proton exchange membrane electrolyzer. J. Power Sources 563, 232776 (2023).

    Article  CAS  Google Scholar 

  144. Niaz, A. K., Akhtar, A., Park, J. Y. & Lim, H. T. Effects of the operation mode on the degradation behavior of anion exchange membrane water electrolyzers. J. Power Sources 481, 229093 (2021).

    Article  CAS  Google Scholar 

  145. Tanudjaja, H. J., Hejase, C. A., Tarabara, V. V., Fane, A. G. & Chew, J. W. Membrane-based separation for oily wastewater: a practical perspective. Water Res. 156, 347–365 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. El-Bourawi, M. S., Ding, Z., Ma, R. & Khayet, M. A framework for better understanding membrane distillation separation process. J. Memb. Sci. 285, 4–29 (2006).

    Article  CAS  Google Scholar 

  147. Li, A. et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 5, 109–118 (2022).

    Article  CAS  Google Scholar 

  148. Wu, Z. Y. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 22, 100–108 (2022).

    Article  PubMed  Google Scholar 

  149. Shah, K. et al. Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER. Angew. Chem. Int. Ed. 134, e202114951 (2022).

    Article  Google Scholar 

  150. Wu, Y. J. et al. Evolution of cationic vacancy defects: a motif for surface restructuration of OER precatalyst. Angew. Chem. Int. Ed. 60, 26829–26836 (2021).

    Article  CAS  Google Scholar 

  151. Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2017).

    Article  PubMed  Google Scholar 

  152. Oh, N. K. et al. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nat. Commun. 12, 4606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Salvatore, D. A. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021).

    Article  CAS  Google Scholar 

  154. Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Dijkstra, H. P., Van Klink, G. P. M. & Van Koten, G. The use of ultra- and nanofiltration techniques in homogeneous catalyst recycling. Acc. Chem. Res. 35, 798–810 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Molnár, Á. & Papp, A. Catalyst recycling — a survey of recent progress and current status. Coord. Chem. Rev. 349, 1–65 (2017).

    Article  Google Scholar 

  157. Améduri, B. & Hori, H. Recycling and the end of life assessment of fluoropolymers: recent developments, challenges and future trends. Chem. Soc. Rev. 52, 4208–4247 (2023).

    Article  PubMed  Google Scholar 

  158. Lukić Bilela, L. et al. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. Mar. Pollut. Bull. 194, 115309 (2023).

    Article  PubMed  Google Scholar 

  159. Cordner, A. et al. The true cost of PFAS and the benefits of acting now. Environ. Sci. Technol. 55, 9630–9633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yang, B. & Cunman, Z. Progress in constructing high-performance anion exchange membrane: molecular design, microphase controllability and in-device property. Chem. Eng. J. 457, 141094 (2023).

    Article  CAS  Google Scholar 

  161. Lim, X. Z. Could the world go PFAS-free? Proposal to ban ‘forever chemicals’ fuels debate. Nature 620, 24–27 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Zhang, H. et al. Highly efficient decomposition of perfluorocarbons for over 1000 hours via active site regeneration. Angew. Chem. Int. Ed. 62, e202305651 (2023).

    Article  CAS  Google Scholar 

  163. Endrődi, B. et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13, 4098–4105 (2020).

    Article  Google Scholar 

  164. Wang, J. et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 4, 392–398 (2019).

    Article  CAS  Google Scholar 

  165. Arunkumar, I., Kim, A. R., Lee, S. H. & Yoo, D. J. Enhanced fumion nanocomposite membranes embedded with graphene oxide as a promising anion exchange membrane for fuel cell application. Int. J. Hydrog. Energy 52, 139–153 (2022).

    Article  Google Scholar 

  166. Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using Sustainion membranes. J. Electrochem. Soc. 165, J3371–J3377 (2018).

    Article  CAS  Google Scholar 

  167. Wright, A. G. et al. Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy Environ. Sci. 9, 2130–2142 (2016).

    Article  CAS  Google Scholar 

  168. Habibzadeh, F. et al. Ion exchange membranes in electrochemical CO2 reduction processes. Electrochem. Energy Rev. 6, 1–35 (2023).

    Article  Google Scholar 

  169. Lejarazu-Larrañaga, A., Molina, S., Ortiz, J. M., Navarro, R. & García-Calvo, E. Circular economy in membrane technology: using end-of-life reverse osmosis modules for preparation of recycled anion exchange membranes and validation in electrodialysis. J. Memb. Sci. 593, 117423 (2020).

    Article  Google Scholar 

  170. Hou, J. et al. Recyclable cross-linked anion exchange membrane for alkaline fuel cell application. J. Power Sources 375, 404–411 (2018).

    Article  CAS  Google Scholar 

  171. Fumatech. Fumion polymers and dispersions for electrochemical processes. Fumatech https://www.fumatech.com/en/products/fumion/ (2024).

  172. Arges, C. G. & Ramani, V. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. Proc. Natl Acad. Sci. USA 110, 2490–2495 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gawel, A. et al. Electrochemical CO2 reduction — the macroscopic world of electrode design, reactor concepts & economic aspects. iScience 25, 104011 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Uekert, T., Wikoff, H. M. & Badgett, A. Electrolyzer and fuel cell recycling for a circular hydrogen economy. Adv. Sustain. Syst. 8, 2300449 (2024).

    Article  CAS  Google Scholar 

  175. Chen, M. et al. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3, 2622–2646 (2019).

    Article  CAS  Google Scholar 

  176. Kang, Z. et al. Recycling technologies, policies, prospects, and challenges for spent batteries. iScience 26, 108072 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially funded by CEX2019-000910-S (MCIN/AEI/10.13039/501100011033), Fundació Cellex, Fundació Mir-Puig and Generalitat de Catalunya through CERCA and the La Caixa Foundation (100010434, EU Horizon 2020 Marie Skłodowska-Curie grant agreement 847648). B.B. acknowledges funding from MCIN/AEI/10.13039/501100011033 and FSE ‘El FSE invierte en tu futuro’ (PRE2019-088522). V.G. acknowledges the Severo Ochoa Excellence Post-doctoral Fellowship (CEX2019-000910-S). A.P.-S. acknowledges funding (PRE2021-098995) from MCIN/AEI/10.13039/501100011033 and FSE+. L.S.M. acknowledges funding from ICFO Student Research Fellowship — Spring 2021 programme.

Author information

Authors and Affiliations

Authors

Contributions

F.P.G.d.A. and B.B. conceptualized the article. B.B., L.X., V.G., B.P. and A.P.-S. researched data for the article. B.B. wrote the initial draft. All authors contributed to the discussion of content and writing of the manuscript, added substantial thoughts and revised the manuscript in a collaborative manner.

Corresponding author

Correspondence to F. Pelayo García de Arquer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belsa, B., Xia, L., Golovanova, V. et al. Materials challenges on the path to gigatonne CO2 electrolysis. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00696-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00696-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing