Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards edible robots and robotic food

Abstract

Edible robots and robotic food — edible systems that perceive, process and act upon stimulation — could open a new range of opportunities in health care, environmental management and the promotion of healthier eating habits. For example, they could enable precise drug delivery and in vivo health monitoring, deliver autonomously targeted nutrition in emergency situations, reduce waste in farming, facilitate wild animal vaccination and produce novel gastronomical experiences. Here, we take a robot designer perspective to identify edible materials that could serve as functional components of edible robots and robotic food, such as bodies, actuators, sensors, and computational components and energy sources, describe recent examples of integration, and discuss the open challenges in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanical properties of food materials compared with those of traditional materials.
Fig. 2: Adhesive strength of non-edible and edible glues.
Fig. 3: Examples of edible robots and robotic foods.
Fig. 4: Artistic rendering of a future edible robot.

Similar content being viewed by others

References

  1. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Sethi, S. S., Kovac, M., Wiesemüller, F., Miriyev, A. & Boutry, C. M. Biodegradable sensors are ready to transform autonomous ecological monitoring. Nat. Ecol. Evol. 6, 1245–1247 (2022).

    Article  PubMed  Google Scholar 

  3. Hartmann, F., Baumgartner, M. & Kaltenbrunner, M. Becoming sustainable, the new frontier in soft robotics. Adv. Mater. 33, 2004413 (2021).

    Article  CAS  Google Scholar 

  4. Lamanna, L., Cataldi, P., Friuli, M., Demitri, C. & Caironi, M. Monitoring of drug release via intra body communication with an edible pill. Adv. Mater. Technol. 8, 2200731 (2023).

    Article  CAS  Google Scholar 

  5. Marik, P. E. Aspiration pneumonitis and aspiration pneumonia. N. Engl. J. Med. 344, 665–671 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Amirkolaie, A. K. Reduction in the environmental impact of waste discharged by fish farms through feed and feeding: aquaculture and the environment. Rev. Aquac. 3, 19–26 (2011).

    Article  Google Scholar 

  7. Just Economics. Dead loss: the high cost of poor farming practices and mortalities on salmon farms. Changing Markets Foundation https://www.justeconomics.co.uk/uploads/reports/Aquaculture-Report-v5.pdf (2021).

  8. Pohlmann, K., Grasso, F. W. & Breithaupt, T. Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc. Natl Acad. Sci. USA 98, 7371–7374 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meng, X. J., Lindsay, D. S. & Sriranganathan, N. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. B Biol. Sci. 364, 2697–2707 (2009).

    Article  CAS  Google Scholar 

  10. Fraser, D. Toward a synthesis of conservation and animal welfare science. Anim. Welf. 19, 121–124 (2010).

    Article  CAS  Google Scholar 

  11. Fraser, D. Understanding animal welfare. Acta Vet. Scand. 50, S1 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ashby, M. F. Materials selection in mechanical design. MRS Bull. 30, 994–997 (1999).

    Google Scholar 

  13. Radhakrishnan, V. Locomotion: dealing with friction. Proc. Natl Acad. Sci. USA 95, 5448–5455 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Godshall, M. A., Eggleston, G., Thompson, J. & Kochergin, V. in Kirk-Othmer Encyclopedia of Chemical Technology 1–84 (Wiley, 2021).

  15. Ramos, K. J. & Bahr, D. F. Mechanical behavior assessment of sucrose using nanoindentation. J. Mater. Res. 22, 2037–2045 (2007).

    Article  CAS  Google Scholar 

  16. Eichhorn, S. J. & Young, R. J. The Young’s modulus of a microcrystalline cellulose. Cellulose 8, 197–207 (2001).

    Article  CAS  Google Scholar 

  17. Sun, C. True density of microcrystalline cellulose. J. Pharm. Sci. 94, 2132–2134 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Keetels, C. J. A. M., van Vliet, T. & Walstra, P. Relationship between the sponge structure of starch bread and its mechanical properties. J. Cereal Sci. 24, 27–31 (1996).

    Article  Google Scholar 

  19. Liu, Z. & Scanlon, M. G. Understanding and modeling the processing-mechanical property relationship of bread crumb assessed by indentation. Cereal Chem. 79, 763–767 (2002).

    Article  CAS  Google Scholar 

  20. Shintake, J., Sonar, H., Piskarev, E., Paik, J. & Floreano, D. Soft pneumatic gelatin actuator for edible robotics. in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 6221–6226 (IEEE, 2017).

  21. Kwak, B., Shintake, J., Zhang, L. & Floreano, D. Towards edible drones for rescue missions: design and flight of nutritional wings. in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1802–1809 (IEEE, 2022).

  22. Qi, Q., Keller, A., Tan, L., Kumaresan, Y. & Rossiter, J. Edible, optically modulating, shape memory oleogel composites for sustainable soft robotics. Mater. Des. 235, 112339 (2023).

    Article  CAS  Google Scholar 

  23. Bourlieu, C., Guillard, V., Vallès-Pàmies, B. & Gontard, N. in Food Materials Science: Principles and Practice Ch. 23 (Springer, 2008).

  24. Yuan, Y. et al. Shellac: a promising natural polymer in the food industry. Trends Food Sci. Technol. 109, 139–153 (2021).

    Article  CAS  Google Scholar 

  25. Zhang, Y. et al. Functional food packaging for reducing residual liquid food: thermo-resistant edible super-hydrophobic coating from coffee and beeswax. J. Colloid Interface Sci. 533, 742–749 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, D., Huang, J., Guo, Z. & Liu, W. Durable mixed edible wax coating with stretching superhydrophobicity. J. Mater. Chem. A 9, 1495–1499 (2021).

    Article  CAS  Google Scholar 

  27. Wösten, H. A. B. & Scholtmeijer, K. Applications of hydrophobins: current state and perspectives. Appl. Microbiol. Biotechnol. 99, 1587–1597 (2015).

    Article  PubMed  Google Scholar 

  28. Maulana, M. I. et al. Environmentally friendly starch-based adhesives for bonding high-performance wood composites: a review. Forests 13, 1614 (2022).

    Article  Google Scholar 

  29. Mukherjee, T., Lerma‐Reyes, R., Thompson, K. A. & Schrick, K. Making glue from seeds and gums: working with plant‐based polymers to introduce students to plant biochemistry. Biochem. Mol. Biol. Educ. 47, 468–475 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doll, K. M. & Erhan, S. Z. Evaluation of a sugar-based edible adhesive using a tensile strength tester. J. Lab. Autom. 16, 153–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Román, J. K. & Wilker, J. J. Cooking chemistry transforms proteins into high-strength adhesives. J. Am. Chem. Soc. 141, 1359–1365 (2019).

    Article  PubMed  Google Scholar 

  32. Schmidt, G. et al. Strong adhesives from corn protein and tannic acid. Adv. Sustain. Syst. 3, 1900077 (2019).

    Article  CAS  Google Scholar 

  33. Moubarik, A., Charrier, B., Allal, A., Charrier, F. & Pizzi, A. Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive. Eur. J. Wood Prod. 68, 167–177 (2010).

    Article  CAS  Google Scholar 

  34. North, M. A., Del Grosso, C. A. & Wilker, J. J. High strength underwater bonding with polymer mimics of mussel adhesive proteins. ACS Appl. Mater. Interfaces 9, 7866–7872 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Cataldi, P. et al. An electrically conductive oleogel paste for edible electronics. Adv. Funct. Mater. 32, 2113417 (2022).

    Article  CAS  Google Scholar 

  36. Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1, eaah3690 (2016).

    Article  PubMed  Google Scholar 

  37. Wei, M., Gao, Y., Li, X. & Serpe, M. J. Stimuli-responsive polymers and their applications. Polym. Chem. 8, 127–143 (2016).

    Article  Google Scholar 

  38. Mirvakili, S. M. & Hunter, I. W. Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30, 1704407 (2018).

    Article  Google Scholar 

  39. Aubin, C. A. et al. Powerful, soft combustion actuators for insect-scale robots. Science 381, 1212–1217 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Baumgartner, M. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Sardesai, A. N. et al. Design and characterization of edible soft robotic candy actuators. MRS Adv. 3, 3003–3009 (2018).

    Article  CAS  Google Scholar 

  42. Hughes, J. & Rus, D. Mechanically programmable, degradable & ingestible soft actuators. in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) 836–843 (IEEE, 2020).

  43. Ahn, S., Kasi, R. M., Kim, S.-C., Sharma, N. & Zhou, Y. Stimuli-responsive polymer gels. Soft Matter 4, 1151–1157 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, Z. et al. Stimulus-responsive hydrogels in food science: a review. Food Hydrocolloids 124, 107218 (2022).

    Article  CAS  Google Scholar 

  45. Djabourov, M., Nishinari, K. & Ross-Murphy, S. B. Physical Gels from Biological and Synthetic Polymers (Cambridge Univ. Press, 2013).

  46. Keller, A. G., Qi, Q., Kumaresan, Y., Conn, A. T. & Rossiter, J. Biodegradable humidity actuators for sustainable soft robotics using deliquescent hydrogels. in 2023 IEEE International Conference on Soft Robotics (RoboSoft) 1–6 (IEEE, 2023).

  47. Sarıyer, S., Duranoğlu, D., Doğan, Ö. & Küçük, İ. pH-responsive double network alginate/kappa-carrageenan hydrogel beads for controlled protein release: effect of pH and crosslinking agent. J. Drug Deliv. Sci. Technol. 56, 101551 (2020).

    Article  Google Scholar 

  48. Shigemitsu, H. et al. An adaptive supramolecular hydrogel comprising self-sorting double nanofibre networks. Nat. Nanotechnol. 13, 165–172 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Ali, A. & Ahmed, S. Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. J. Agric. Food Chem. 66, 6940–6967 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Fallingborg, J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 46, 183–196 (1999).

    CAS  PubMed  Google Scholar 

  51. Tiwari, A. et al. in Stimuli-responsive polysaccharides for colon-targeted drug delivery Vol. 2, 547–566 (Woodhead Publishing, 2019).

  52. Wang, W. et al. Transformative appetite: shape-changing food transforms from 2D to 3D by water interaction through cooking. in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems 6123–6132 (ACM, 2017).

  53. Tao, Y. et al. Morphlour: personalized flour-based morphing food induced by dehydration or hydration method. in Proc. 32nd Annual ACM Symposium on User Interface Software and Technology 329–340 (ACM, 2019).

  54. Tao, Y. et al. Morphing pasta and beyond. Sci. Adv. 7, eabf4098 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sessini, V., Arrieta, M. P., Fernández-Torres, A. & Peponi, L. Humidity-activated shape memory effect on plasticized starch-based biomaterials. Carbohydr. Polym. 179, 93–99 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Chambers, L. D., Winfield, J., Ieropoulos, I. & Rossiter, J. Biodegradable and edible gelatine actuators for use as artificial muscles. in Proc. SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD) (ed. Bar-Cohen, Y.) (SPIE, 2014).

  57. Zhu, X. et al. Ion-responsive chitosan hydrogel actuator inspired by carrotwood seed pod. Carbohydr. Polym. 276, 118759 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Yun, S., Kim, J. & Song, C. Performance of electro-active paper actuators with thickness variation. Sens. Actuators A Phys. 133, 225–230 (2007).

    Article  CAS  Google Scholar 

  59. Rehman, H. M. M. U. et al. Edible rice paper-based multifunctional humidity sensor powered by triboelectricity. Sustain. Mater. Technol. 36, e00596 (2023).

    CAS  Google Scholar 

  60. Hou, S. et al. Ingestible, biofriendly, and flexible flour-based humidity sensors with a wide sensing range. ACS Appl. Electron. Mater. 3, 2798–2806 (2021).

    Article  CAS  Google Scholar 

  61. Ilic, I. K. et al. Self-powered edible defrosting sensor. ACS Sens. 7, 2995–3005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuswandi, B., Asih, N. P. N., Pratoko, D. K., Kristiningrum, N. & Moradi, M. Edible pH sensor based on immobilized red cabbage anthocyanins into bacterial cellulose membrane for intelligent food packaging. Packag. Technol. Sci. 33, 321–332 (2020).

    Article  CAS  Google Scholar 

  63. Mallov, I., Jeeva, F. & Caputo, C. B. An edible genipin‐based sensor for biogenic amine detection. J. Chem. Tech. Biotech. 97, 830–836 (2022).

    Article  CAS  Google Scholar 

  64. Court, R. C. V., Giesbers, G., Ostroverkhova, O. & Robinson, S. C. Optimizing xylindein from Chlorociboria spp. for (opto)electronic applications. Processes 8, 1477 (2020).

    Article  Google Scholar 

  65. Costanza, V. et al. Effect of glycerol on the mechanical and temperature-sensing properties of pectin films. Appl. Phys. Lett. 115, 193702 (2019).

    Article  Google Scholar 

  66. Di Giacomo, R., Bonanomi, L., Costanza, V., Maresca, B. & Daraio, C. Biomimetic temperature-sensing layer for artificial skins. Sci. Robot. 2, eaai9251 (2017).

    Article  PubMed  Google Scholar 

  67. Hardman, D., George Thuruthel, T. & Iida, F. Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications. NPG Asia Mater. 14, 11 (2022).

    Article  CAS  Google Scholar 

  68. Keller, A., Benz, D. & In Het Panhuis, M. Strain and pressure gauges from tough, conducting and edible hydrogels. MRS Proc. 1795, 27–33 (2015).

    Article  Google Scholar 

  69. Annese, V. F., Galli, V., Coco, G. & Caironi, M. Eat, test, digest: towards diagnostic food for next-generation gastrointestinal tract monitoring. in 2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI) 236–240 (IEEE, 2023).

  70. Keller, A., Pham, J., Warren, H. & In Het Panhuis, M. Conducting hydrogels for edible electrodes. J. Mater. Chem. B 5, 5318–5328 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Xu, W. et al. Food-based edible and nutritive electronics. Adv. Mater. Technol. 2, 1700181 (2017).

    Article  Google Scholar 

  72. Annese, V. F. et al. An edible bistable tilt sensor enabling autonomous operation of a partially eatable rolling robot. Adv. Sensor Res. 2, 2300092 (2023).

    Article  Google Scholar 

  73. Ramadi, K. B. et al. Bioinspired, ingestible electroceutical capsules for hunger-regulating hormone modulation. Sci. Robot. 8, eade9676 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tian, S. et al. A degradable-renewable ionic skin based on edible glutinous rice gel. ACS Appl. Mater. Interfaces 14, 5122–5133 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Lee, D. & Chua, B. Soft candy as an electronic material suitable for salivary conductivity-based medical diagnostics in resource-scarce clinical settings. ACS Appl. Mater. Interfaces 13, 43984–43992 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Ruiz-Valdepeñas Montiel, V. et al. Direct electrochemical biosensing in gastrointestinal fluids. Anal. Bioanal. Chem. 411, 4597–4604 (2019).

    Article  PubMed  Google Scholar 

  77. Kim, J. et al. Edible electrochemistry: food materials based electrochemical sensors. Adv. Healthc. Mater. 6, 1700770 (2017).

    Article  Google Scholar 

  78. Fukada, K., Tajima, T. & Seyama, M. Food‐based capacitive sensors using a dynamic permittivity change with hydrogels responsive to hydrogen peroxide. Adv. Mater. Technol. 7, 2200830 (2022).

    Article  CAS  Google Scholar 

  79. Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2019).

    Article  CAS  Google Scholar 

  80. Seo, J. et al. Wireless electrical power delivery using light through soft skin tissues under misalignment and deformation. Adv. Mater. Interfaces 9, 2102586 (2022).

    Article  Google Scholar 

  81. Zayats, V. V., Sergeev, I. K. & Fedorov, D. A. Review of promising methods of supplying power to implantable medical devices. Biomed. Eng. 57, 39–44 (2023).

    Article  Google Scholar 

  82. Sharova, A. S., Melloni, F., Lanzani, G., Bettinger, C. J. & Caironi, M. Edible electronics: the vision and the challenge. Adv. Mater. Technol. 6, 2000757 (2021).

    Article  Google Scholar 

  83. Saravanavel, G. et al. Sweet-tooth: resonators on sugar. IEEE J. Flex. Electron. https://doi.org/10.1109/JFLEX.2023.3273183 (2023).

  84. Chen, K. et al. An edible and nutritive zinc-ion micro-supercapacitor in the stomach with ultrahigh energy density. ACS Nano 16, 15261–15272 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Hamilton, C. A., Alici, G. & In Het Panhuis, M. 3D printing vegemite and marmite: redefining “breadboards”. J. Food Eng. 220, 83–88 (2018).

    Article  Google Scholar 

  86. Burch, R. R., Dong, Y.-H., Fincher, C., Goldfinger, M. & Rouviere, P. E. Electrical properties of polyunsaturated natural products: field effect mobility of carotenoid polyenes. Synth. Met. 146, 43–46 (2004).

    Article  CAS  Google Scholar 

  87. Bouzidi, A. et al. Electronic conduction mechanism and optical spectroscopy of indigo carmine as novel organic semiconductors. Opt. Quant. Electron. 50, 176 (2018).

    Article  Google Scholar 

  88. Irimia-Vladu, M. et al. Indigo — a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. 24, 375–380 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Yakuphanoglu, F., Kandaz, M., Yaraşır, M. N. & Şenkal, F. B. Electrical transport and optical properties of an organic semiconductor based on phthalocyanine. Phys. B Condens. Matter 393, 235–238 (2007).

    Article  CAS  Google Scholar 

  90. Giesbers, G. et al. Xylindein: naturally produced fungal compound for sustainable (opto)electronics. ACS Omega 4, 13309–13318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Porrazzo, R. et al. Water-gated n-type organic field-effect transistors for complementary integrated circuits operating in an aqueous environment. ACS Omega 2, 1–10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sharova, A. S. & Caironi, M. Sweet electronics: honey‐gated complementary organic transistors and circuits operating in air. Adv. Mater. 33, 2103183 (2021).

    Article  CAS  Google Scholar 

  93. Mandal, S. et al. Low operating voltage organic field-effect transistors with gelatin as a moisture-induced ionic dielectric layer: the issues of high carrier mobility. ACS Appl. Mater. Interfaces 12, 19727–19736 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Dumitru, L. M. et al. A hydrogel capsule as gate dielectric in flexible organic field-effect transistors. Apl. Mater. 3, 014904 (2014).

    Article  Google Scholar 

  95. Preston, D. J. et al. Digital logic for soft devices. Proc. Natl Acad. Sci. USA 116, 7750–7759 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rothemund, P. et al. A soft, bistable valve for autonomous control of soft actuators. Sci. Robot. 3, eaar7986 (2018).

    Article  PubMed  Google Scholar 

  97. Song, S., Joshi, S. & Paik, J. CMOS‐inspired complementary fluidic circuits for soft robots. Adv. Sci. 8, 2100924 (2021).

    Article  Google Scholar 

  98. Deng, J. et al. Logic bonbon: exploring food as computational artifact. in CHI Conference on Human Factors in Computing Systems 1–21 (ACM, 2022).

  99. Zhang, S., Kwak, B. & Floreano, D. Design and manufacture of edible microfluidic logic gates. in 2023 IEEE International Conference on Soft Robotics (RoboSoft) 1–7 (2023).

  100. Ilic, I. K. et al. An edible rechargeable battery. Adv. Mater. 35, 2211400 (2023).

    Article  CAS  Google Scholar 

  101. Kim, Y. J., Chun, S.-E., Whitacre, J. & Bettinger, C. J. Self-deployable current sources fabricated from edible materials. J. Mater. Chem. B 1, 3781 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Kim, Y. J., Wu, W., Chun, S.-E., Whitacre, J. F. & Bettinger, C. J. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl Acad. Sci. USA 110, 20912–20917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lamanna, L. et al. Edible cellulose-based conductive composites for triboelectric nanogenerators and supercapacitors. Nano Energy 108, 108168 (2023).

    Article  CAS  Google Scholar 

  104. Wang, X. et al. Food-materials-based edible supercapacitors. Adv. Mater. Technol. 1, 1600059 (2016).

    Article  Google Scholar 

  105. Gao, C. et al. A directly swallowable and ingestible micro-supercapacitor. J. Mater. Chem. A 8, 4055–4061 (2020).

    Article  CAS  Google Scholar 

  106. Ieropoulos, I. A., Greenman, J., Melhuish, C. & Horsfield, I. Microbial fuel cells for robotics: energy autonomy through artificial symbiosis. ChemSusChem 5, 1020–1026 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Philamore, H., Rossiter, J., Stinchcombe, A. & Ieropoulos, I. Row-bot: an energetically autonomous artificial water boatman. in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 3888–3893 (IEEE, 2015).

  108. Wilkinson, S. “Gastrobots” — benefits and challenges of microbial fuel cells in foodpowered robot applications. Auton. Robot. 9, 99–111 (2000).

    Article  Google Scholar 

  109. Jeerapan, I. et al. Fully edible biofuel cells. J. Mater. Chem. B 6, 3571–3578 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Okui, M., Nagura, Y., Iikawa, S., Yamada, Y. & Nakamura, T. A pneumatic power source using a sodium bicarbonate and citric acid reaction with pressure booster for use in mobile devices. in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1040–1045 (IEEE, 2017).

  111. Ghosh, S. K., Park, J., Na, S., Kim, M. P. & Ko, H. A fully biodegradable ferroelectric skin sensor from edible porcine skin gelatine. Adv. Sci. 8, 2005010 (2021).

    Article  CAS  Google Scholar 

  112. Cuadros, T. R., Erices, A. A. & Aguilera, J. M. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J. Mech. Behav. Biomed. Mater. 46, 331–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Dekkers, B. L., Boom, R. M. & van der Goot, A. J. Structuring processes for meat analogues. Trends Food Sci. Technol. 81, 25–36 (2018).

    Article  CAS  Google Scholar 

  114. Dankar, I., Haddarah, A., Omar, F. E. L., Sepulcre, F. & Pujolà, M. 3D printing technology: the new era for food customization and elaboration. Trends Food Sci. Technol. 75, 231–242 (2018).

    Article  CAS  Google Scholar 

  115. Yang, H., Luo, D., Qian, K. & Yao, L. Freeform fabrication of fluidic edible materials. in Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–10 (ACM, 2021).

  116. Sun, J., Zhou, W., Huang, D., Fuh, J. Y. H. & Hong, G. S. An overview of 3D printing technologies for food fabrication. Food Bioprocess. Technol. 8, 1605–1615 (2015).

    Article  CAS  Google Scholar 

  117. Gervasoni, S. et al. CANDYBOTS: a new generation of 3D-printed sugar-based transient small-scale robots. Adv. Mater. 32, e2005652 (2020).

    Article  PubMed  Google Scholar 

  118. van der Sman, R. G. M. & Broeze, J. Structuring of indirectly expanded snacks based on potato ingredients: a review. J. Food Eng. 114, 413–425 (2013).

    Article  Google Scholar 

  119. Liu, Z., Zhang, M., Bhandari, B. & Wang, Y. 3D printing: printing precision and application in food sector. Trends Food Sci. Technol. 69, 83–94 (2017).

    Article  CAS  Google Scholar 

  120. Navaf, M. et al. 4D printing: a new approach for food printing; effect of various stimuli on 4D printed food properties. A comprehensive review. Appl. Food Res. 2, 100150 (2022).

    Article  Google Scholar 

  121. Teng, X., Zhang, M. & Mujumdar, A. S. 4D printing: recent advances and proposals in the food sector. Trends Food Sci. Technol. 110, 349–363 (2021).

    Article  CAS  Google Scholar 

  122. Amit, S. K., Uddin, Md, M., Rahman, R., Islam, S. M. R. & Khan, M. S. A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur. 6, 51 (2017).

    Article  Google Scholar 

  123. Khan, S., Lorenzelli, L. & Dahiya, R. S. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15, 3164–3185 (2015).

    Article  Google Scholar 

  124. Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Chyan, Y. et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12, 2176–2183 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon 2, 219–225 (2008).

    Article  CAS  Google Scholar 

  127. Leistner, L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55, 181–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Kim, M. in Food Futures: Sensory Explorations in Food Design (eds Sweetapple, K. & Warriner, G.) 214–217 (Promopress, 2017).

  129. Grover, W. H. CandyCodes: simple universally unique edible identifiers for confirming the authenticity of pharmaceuticals. Sci. Rep. 12, 7452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Miyatake, Y., Punpongsanon, P., Iwai, D. & Sato, K. interiqr: unobtrusive edible tags using food 3D printing. in Proc. 35th Annual ACM Symposium on User Interface Software and Technology 1–11 (ACM, 2022).

  131. Hitti, N. Erika Marthins uses edible robotics and digital data for sensory desserts. Dezeen https://www.dezeen.com/2018/01/20/erika-marthins-combines-edible-robotics-digital-data-and-food-to-create-sensory-desserts/ (2018).

  132. Sun, W. et al. Biodegradable, sustainable hydrogel actuators with shape and stiffness morphing capabilities via embedded 3D printing. Adv. Funct. Mater. 33, 2303659 (2023).

    Article  CAS  Google Scholar 

  133. Pratt, J., Radulescu, P. V., Guo, R. M. & Abrams, R. A. It’s alive!: animate motion captures visual attention. Psychol. Sci. 21, 1724–1730 (2010).

    Article  PubMed  Google Scholar 

  134. Spence, C. Why are animate dishes so disturbing? Int. J. Gastron. Food Sci. 13, 73–77 (2018).

    Article  Google Scholar 

  135. Spence, C. & Youssef, J. On the rise of shocking food. Int. J. Gastron. Food Sci. 30, 100615 (2022).

    Article  Google Scholar 

  136. Mochiyama, H., Ando, M., Misu, K. & Kuroyanagi, T. A study of potential social impacts of soft robots with organic and edible bodies by observation of an artwork. in 2019 IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO) 208–212 (IEEE, 2019).

  137. Ishii, A. & Siio, I. BubBowl: display vessel using electrolysis bubbles in drinkable beverages. in Proc. 32nd Annual ACM Symposium on User Interface Software and Technology 619–623 (ACM, 2019).

  138. Van Doleweerd, E., Altarriba Bertran, F. & Bruns, M. Incorporating shape-changing food materials into everyday culinary practices: guidelines informed by participatory sessions with chefs involving edible pH-responsive origami structures. in Proceedings of Sixteenth International Conference on Tangible, Embedded, and Embodied Interaction 1–14 (ACM, 2022).

  139. Burton, L. J., Cheng, N. & Bush, J. W. M. The cocktail boat. Integr. Comp. Biol. 54, 969–973 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Brodkorb, A. et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 14, 991–1014 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Van de Wiele, T. et al. in The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models (eds Verhoeckx, K. et al.) 305–317 (Springer, 2015).

  142. Smeets, P. A. M., Deng, R., van Eijnatten, E. J. M. & Mayar, M. Monitoring food digestion with magnetic resonance techniques. Proc. Nutr. Soc. 80, 148–158 (2021).

    Article  PubMed  Google Scholar 

  143. Buchner, T. J. K. et al. Vision-controlled jetting for composite systems and robots. Nature 623, 522–530 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Lee, H. et al. 3D-printed programmable tensegrity for soft robotics. Sci. Robot. 5, eaay9024 (2020).

    Article  PubMed  Google Scholar 

  146. Nakata, Y. et al. Exploring the eating experience of a pneumatically-driven edible robot: perception, taste, and texture. PLoS ONE 19, e0296697 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kotynia, R., Adamczewska, K., Strąkowska, A., Masłowski, M. & Strzelec, K. Effect of accelerated curing conditions on shear strength and glass transition temperature of epoxy adhesives. Procedia Eng. 193, 423–430 (2017).

    Article  CAS  Google Scholar 

  148. Frihart, C. R. Are epoxy-wood bonds durable enough? in Wood Adhesives 2005 241–246 (Forest Products Society, 2005).

  149. Henkel. LOCTITE®638TM technical data sheet. Henkel https://datasheets.tdx.henkel.com/LOCTITE-638-en_GL.pdf (2022).

  150. Henkel. Loctite PL Premium Fast Grab technical data sheet. Henkel https://dm.henkel-dam.com/is/content/henkel/tds-us-loctite-loc-pl-premium-8x-fast-grab-2019-12-12 (2019).

  151. Sikora, K. S., McPolin, D. O. & Harte, A. M. Shear strength and durability testing of adhesive bonds in cross-laminated timber. J. Adhes. 92, 758–777 (2016).

    Article  CAS  Google Scholar 

  152. Wang, Z., Li, Z., Gu, Z., Hong, Y. & Cheng, L. Preparation, characterization and properties of starch-based wood adhesive. Carbohydr. Polym. 88, 699–706 (2012).

    Article  CAS  Google Scholar 

  153. 3M. 3M Hot Melt Adhesive technical data sheet. 3M https://multimedia.3m.com/mws/media/1245165O/3m-hot-melt-adhesive-3792lm-3776lm-3738-3792-technical-data.pdf (2016).

  154. Wei, Y., Yao, J., Shao, Z. & Chen, X. Water-resistant zein-based adhesives. ACS Sustain. Chem. Eng. 8, 7668–7679 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Science Graphic Design for their artistic contributions. This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement 964596 ROBOFOOD.

Author information

Authors and Affiliations

Authors

Contributions

D.F., M.P., B.K., J.S., V.F.A. and Q.Q. researched data for the article. All authors contributed substantially to the discussion of the content and wrote the article. D.F., M.P., B.K., J.S. and V.F.A. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dario Floreano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Hanqing Jiang, Lining Yao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floreano, D., Kwak, B., Pankhurst, M. et al. Towards edible robots and robotic food. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00688-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00688-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing