Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physicochemical reactions in e-waste recycling 

Abstract

Electronic waste (e-waste) recycling is becoming a global concern owing to its immense quantity, hazardous character and the potential loss of valuable metals. The many processes involved in e-waste recycling stem from a mixture of physicochemical reactions, and understanding the principles of these reactions can lead to more efficient recycling methods. In this Review, we discuss the principles behind photochemistry, thermochemistry, mechanochemistry, electrochemistry and sonochemistry for metal recovery, polymer decomposition and pollutant elimination from e-waste. We also discuss how these processes induce or improve reaction rates, selectivity and controllability of e-waste recycling based on thermodynamics and kinetics, free radicals, chemical bond energy, electrical potential regulation and more. Lastly, key factors, limitations and suggestions for improvements of these physicochemical reactions for e-waste recycling are highlighted, wherein we also indicate possible research directions for the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The compositions of e-waste and benefits of e-waste recycling.
Fig. 2: Photocatalytic recycling of e-waste.
Fig. 3: Typical thermochemical reactions for e-waste recycling.
Fig. 4: Thermochemical debromination mechanisms of polymers in e-waste.
Fig. 5: Mechanochemistry in e-waste recycling.
Fig. 6: Electrochemical recovery of metals from e-waste.
Fig. 7: Ultrasound-enhanced mechanisms for metal recovery and removal of organic species.

Similar content being viewed by others

References

  1. Awasthi, A. K., Li, J., Koh, L. & Ogunseitan, O. A. Circular economy and electronic waste. Nat. Electron. 2, 86–89 (2019).

    Article  Google Scholar 

  2. Althaf, S. New pathways for e-waste recycling. Nat. Sustain. 6, 15–16 (2023).

    Article  Google Scholar 

  3. Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Shahabuddin, M. et al. A review of the recent development, challenges, and opportunities of electronic waste (e-waste). Int. J. Environ. Sci. Technol. 20, 4513–4520 (2023).

    Article  Google Scholar 

  5. Seif, R., Salem, F. Z. & Allam, N. K. E-waste recycled materials as efficient catalysts for renewable energy technologies and better environmental sustainability. Environ. Dev. Sustain. 26, 5473–5508 (2024).

    Article  Google Scholar 

  6. Ahirwar, R. & Tripathi, A. K. E-waste management: a review of recycling process, environmental and occupational health hazards, and potential solutions. Environ. Nanotechnol. Monit. Manag. Technol. 15, 100409 (2021).

    CAS  Google Scholar 

  7. Xia, J. & Ghahreman, A. Sustainable technologies for the recycling and upcycling of precious metals from e-waste. Sci. Total Environ. 916, 170154 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Peng, P. & Shehabi, A. Regional economic potential for recycling consumer waste electronics in the United States. Nat. Sustain. 6, 93–102 (2023).

    Article  Google Scholar 

  9. Liu, K., Tan, Q., Yu, J. & Wang, M. A global perspective on e-waste recycling. Circular Econ. 2, 100028 (2023).

    Article  Google Scholar 

  10. Dutta, D. et al. A review on recovery processes of metals from e-waste: a green perspective. Sci. Total Environ. 859, 160391 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Zupanc, A., Install, J., Jereb, M. & Repo, T. Sustainable and selective modern methods of noble metal recycling. Angew. Chem. Int. Ed. 62, e202214453 (2023).

    Article  CAS  Google Scholar 

  12. Qin, Y., Dong, L., Lu, H., Zhan, L. & Xu, Z. Debromination process of Br-containing PS of e-wastes and reuse with virgin PS. J. Hazard. Mater. 431, 128526 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Kaliyavaradhan, S. K., Prem, P. R., Ambily, P. & Mo, K. H. Effective utilization of e-waste plastics and glasses in construction products — a review and future research directions. Resour. Conserv. Recycl. 176, 105936 (2022).

    Article  CAS  Google Scholar 

  14. Wu, M. et al. Natural sphalerite photocatalyst for treatment of oily wastewater produced by solvent extraction from spent lithium-ion battery recycling. Appl. Catal. B Environ. 313, 121460 (2022).

    Article  CAS  Google Scholar 

  15. He, H., Schwartz, E., Ogunseitan, O. A. & Schoenung, J. M. Nanopowders from waste printed circuit boards: review and evaluation from an alternatives assessment perspective. Resour. Conserv. Recycl. 201, 107327 (2024).

    Article  CAS  Google Scholar 

  16. Das, P., Gabriel, J.-C. P., Tay, C. Y. & Lee, J.-M. Value-added products from thermochemical treatments of contaminated e-waste plastics. Chemosphere 269, 129409 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Song, Q., Xia, Q., Yuan, X. & Xu, Z. Multi-metal electrochemical response mechanism for direct copper recovery from waste printed circuit boards via sulfate-and chloride-system electrolysis. Resour. Conserv. Recycl. 190, 106804 (2023).

    Article  CAS  Google Scholar 

  18. Liu, J., Zhan, L. & Xu, Z. Debromination with bromine recovery from pyrolysis of waste printed circuit boards offers economic and environmental benefits. Environ. Sci. Technol. 57, 3496–3504 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Yao, Z. et al. Thermochemical conversion of waste printed circuit boards: thermal behavior, reaction kinetics, pollutant evolution and corresponding controlling strategies. Prog. Energy Combust. Sci. 97, 101086 (2023).

    Article  Google Scholar 

  20. Andooz, A., Eqbalpour, M., Kowsari, E., Ramakrishna, S. & Cheshmeh, Z. A. A comprehensive review on pyrolysis of e-waste and its sustainability. J. Clean. Prod. 333, 130191 (2022).

    Article  CAS  Google Scholar 

  21. Shittu, O. S., Williams, I. D. & Shaw, P. J. Global e-waste management: can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges. Waste Manag. 120, 549–563 (2021).

    Article  PubMed  Google Scholar 

  22. Chen, Y. et al. Selective recovery of precious metals through photocatalysis. Nat. Sustain. 4, 618–626 (2021).

    Article  Google Scholar 

  23. Chen, Y. et al. Photocatalytic dissolution of precious metals by TiO2 through photogenerated free radicals. Angew. Chem. Int. Ed. 61, e202213640 (2022).

    Article  CAS  Google Scholar 

  24. Qiao, Q. et al. Surface modification of phosphate ion to promote photocatalytic recovery of precious metals. Chin. Chem. Lett. 34, 107394 (2023).

    Article  CAS  Google Scholar 

  25. Esposito, D. Radical dissolution. Nat. Catal. 5, 1076 (2022).

    Article  Google Scholar 

  26. Yu, J. et al. Mechanochemical upcycling of spent LiCoO2 to new LiNi0. 80Co0. 15Al0. 05O2 battery: an atom economy strategy. Proc. Natl Acad. Sci. USA 120, e2217698120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang, Y., Chen, X., Yan, S., Ou, Y. & Zhou, T. Mechanochemistry-induced recycling of spent lithium-ion batteries for synergistic treatment of mixed cathode powders. Green Chem. 24, 5987–5997 (2022).

    Article  CAS  Google Scholar 

  28. Wang, R., Zhu, Z., Tan, S., Guo, J. & Xu, Z. Mechanochemical degradation of brominated flame retardants in waste printed circuit boards by ball milling. J. Hazard. Mater. 385, 121509 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Rai, V., Liu, D., Xia, D., Jayaraman, Y. & Gabriel, J.-C. P. Electrochemical approaches for the recovery of metals from electronic waste: a critical review. Recycling 6, 53 (2021).

    Article  Google Scholar 

  30. Li, X. et al. Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries. Energy Storage Mater. 55, 606–630 (2023).

    Article  Google Scholar 

  31. Chen, C., Li, Q., Chen, R., Ruan, D. & Qiu, Y. Study on degradation of COD in discharge wastewater of waste lithium battery by electric Fenton method. Technol. Water Treat. 47, 49–51 (2021).

    CAS  Google Scholar 

  32. Do, M. H., Nguyen, G. T., Thach, U. D., Lee, Y. & Bui, T. H. Advances in hydrometallurgical approaches for gold recovery from e-waste: a comprehensive review and perspectives. Miner. Eng. 191, 107977 (2023).

    Article  Google Scholar 

  33. Kaim, V., Rintala, J. & He, C. Selective recovery of rare earth elements from e-waste via ionic liquid extraction: a review. Sep. Purif. Technol. 306, 122699 (2022).

    Article  Google Scholar 

  34. Cao, J. et al. Aqueous photocatalytic recycling of gold and palladium from waste electronics and catalysts. ACS Est. Eng. 2, 1445–1453 (2022).

    Article  CAS  Google Scholar 

  35. Li, H., Oraby, E. & Eksteen, J. Cyanide consumption minimisation and concomitant toxic effluent minimisation during precious metals extraction from waste printed circuit boards. Waste Manag. 125, 87–97 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Rezaee, M. et al. A cleaner approach for high-efficiency regeneration of base and precious metals from waste printed circuit boards through stepwise oxido-acidic and thiocyanate leaching. Chemosphere 298, 134283 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Ma, D., Zhang, Z., Zou, Y., Chen, J. & Shi, J.-W. The progress of g-C3N4 in photocatalytic H2 evolution: from fabrication to modification. Coord. Chem. Rev. 500, 215489 (2024).

    Article  CAS  Google Scholar 

  38. Ahmad, I. et al. Semiconductor photocatalysts: a critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Adv. Colloid Interface Sci. 311, 102830 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Niu, B., Shanshan, E., Xu, Z. & Guo, J. How to efficient and high-value recycling of electronic components mounted on waste printed circuit boards: recent progress, challenge, and future perspectives. J. Clean. Prod. 415, 137815 (2023).

    Article  Google Scholar 

  40. Li, W. & Achal, V. Environmental and health impacts due to e-waste disposal in China — a review. Sci. Total Environ. 737, 139745 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, R., Chen, J., Li, G., Wang, X. & An, T. Cutting down on the ozone and SOA formation as well as health risks of VOCs emitted from e-waste dismantlement by integration technique. J. Environ. Manag. 249, 107755 (2019).

    Article  CAS  Google Scholar 

  42. Liu, R., Chen, J., Li, G. & An, T. Using an integrated decontamination technique to remove VOCs and attenuate health risks from an e-waste dismantling workshop. Chem. Eng. J. 318, 57–63 (2017).

    Article  CAS  Google Scholar 

  43. Chen, J. et al. VOCs elimination and health risk reduction in e-waste dismantling workshop using integrated techniques of electrostatic precipitation with advanced oxidation technologies. J. Hazard. Mater. 302, 395–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Niu, B., Chen, Z. & Xu, Z. Method for recycling tantalum from waste tantalum capacitors by chloride metallurgy. ACS Sustain. Chem. Eng. 5, 1376–1381 (2017).

    Article  CAS  Google Scholar 

  45. Niu, B., Chen, Z. & Xu, Z. An integrated and environmental-friendly technology for recovering valuable materials from waste tantalum capacitors. J. Clean. Prod. 166, 512–518 (2017).

    Article  CAS  Google Scholar 

  46. Xiao, J., Li, J. & Xu, Z. Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy. Environ. Sci. Technol. 51, 11960–11966 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Gao, R. et al. In-situ debromination mechanism based on self-activation and catalysis of Ca(OH)2 during pyrolysis of waste printed circuit boards. J. Hazard. Mater. 392, 122447 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Gao, R. et al. Catalytic effect and mechanism of coexisting copper on conversion of organics during pyrolysis of waste printed circuit boards. J. Hazard. Mater. 403, 123465 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Lin, T. et al. An enhanced strategy based on the pyrolysis of bean dregs for efficient selective recovery of lithium from spent lithium-ion batteries. Green Chem. 24, 9552–9564 (2022).

    Article  CAS  Google Scholar 

  50. Chen, X. et al. Microthermal catalytic aerogenesis of renewable biomass waste using cathode materials from spent lithium-ion batteries towards reversed regulated conversion and recycling of valuable metals. Green Chem. 25, 1559–1570 (2023).

    Article  CAS  Google Scholar 

  51. Zhao, Y., Liu, B., Zhang, L. & Guo, S. Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries. J. Hazard. Mater. 396, 122740 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, X. et al. Selective recycling of valuable metals from waste LiCoO2 cathode material of spent lithium-ion batteries through low-temperature thermochemistry. Chem. Eng. J. 434, 134542 (2022).

    Article  CAS  Google Scholar 

  53. Zhou, F. et al. Vacuum pyrolysis of pine sawdust to recover spent lithium ion batteries: the synergistic effect of carbothermic reduction and pyrolysis gas reduction. ACS Sustain. Chem. Eng. 10, 1287–1297 (2022).

    Article  CAS  Google Scholar 

  54. Meng, Z. et al. Green and energy-saving recycling of LiCoO2 by synergetic pyrolysis with polyvinyl chloride plastics. ACS Sustain. Chem. Eng. 10, 12329–12341 (2022).

    Article  CAS  Google Scholar 

  55. Qiu, B. et al. Recycling spent lithium-ion batteries using waste benzene-containing plastics: synergetic thermal reduction and benzene decomposition. Environ. Sci. Technol. 57, 7599–7611 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Xiao, J., Niu, B. & Xu, Z. Highly efficient selective recovery of lithium from spent lithium-ion batteries by thermal reduction with cheap ammonia reagent. J. Hazard. Mater. 418, 126319 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Xiao, J., Gao, R., Niu, B. & Xu, Z. Study of reaction characteristics and controlling mechanism of chlorinating conversion of cathode materials from spent lithium-ion batteries. J. Hazard. Mater. 407, 124704 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Xiao, J., Niu, B., Song, Q., Zhan, L. & Xu, Z. Novel targetedly extracting lithium: an environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries recovery. J. Hazard. Mater. 404, 123947 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Xiao, J., Niu, B. & Xu, Z. Novel approach for metal separation from spent lithium ion batteries based on dry-phase conversion. J. Clean. Prod. 277, 122718 (2020).

    Article  CAS  Google Scholar 

  60. Zhan, L., Xia, F., Ye, Q., Xiang, X. & Xie, B. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes. J. Hazard. Mater. 299, 388–394 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Zhan, L., Xia, F., Xia, Y. & Xie, B. Recycle gallium and arsenic from GaAs-based e-wastes via pyrolysis–vacuum metallurgy separation: theory and feasibility. ACS Sustain. Chem. Eng. 6, 1336–1342 (2018).

    Article  CAS  Google Scholar 

  62. Liu, K. et al. An emission-free vacuum chlorinating process for simultaneous sulfur fixation and lead recovery from spent lead-acid batteries. Environ. Sci. Technol. 52, 2235–2241 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Ebin, B., Petranikova, M., Steenari, B.-M. & Ekberg, C. Investigation of zinc recovery by hydrogen reduction assisted pyrolysis of alkaline and zinc-carbon battery waste. Waste Manag. 68, 508–517 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, L., Song, Q. & Xu, Z. Thermodynamics, kinetics model, and reaction mechanism of low-vacuum phosphate reduction process for germanium recovery from optical fiber scraps. ACS Sustain. Chem. Eng. 7, 2176–2218 (2019).

    Article  CAS  Google Scholar 

  65. Hua, Z. et al. Selective extraction of rare earth elements from NdFeB scrap by molten chlorides. ACS Sustain. Chem. Eng. 2, 2536–2543 (2014).

    Article  CAS  Google Scholar 

  66. Jia, C. et al. Applications, treatments, and reuse of plastics from electrical and electronic equipment. J. Ind. Eng. Chem. 110, 84–99 (2022).

    Article  CAS  Google Scholar 

  67. Sahajwalla, V. & Gaikwad, V. The present and future of e-waste plastics recycling. Curr. Opin. Green Sust. Chem. 13, 102–107 (2018).

    Google Scholar 

  68. Zhao, L. et al. Electronic-waste-associated pollution of per- and polyfluoroalkyl substances: environmental occurrence and human exposure. J. Hazard. Mater. 451, 131204 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Huang, H., Liu, C. & Sun, Z. Transformation and migration mechanism of fluorine-containing pollutants in the pyrolysis process of spent lithium-ion battery. J. Hazard. Mater. 435, 128974 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Preetam, A., Jadhao, P. R., Naik, S. N., Pant, K. K. & Kumar, V. Supercritical fluid technology — an eco-friendly approach for resource recovery from e-waste and plastic waste: a review. Sep. Purif. Technol. 304, 122314 (2023).

    Article  CAS  Google Scholar 

  71. Li, K. & Xu, Z. Decomposition of high-impact polystyrene resin in e-waste by supercritical water oxidation process with debromination of decabromodiphenyl ethane and recovery of antimony trioxide simultaneously. J. Hazard. Mater. 402, 123684 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Li, K. & Xu, Z. Decomposition of polycarbonate/acrylonitrile-butadiene-styrene blends in e-waste packaging resin and recovery of debrominated carbon materials by supercritical water oxidation process. J. Hazard. Mater. 404, 124056 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Ma, C. et al. The behavior of heteroatom compounds during the pyrolysis of waste computer casing plastic under various heating conditions. J. Clean. Prod. 219, 461–470 (2019).

    Article  CAS  Google Scholar 

  74. Liu, J. et al. Mechanistic insights into catalysis of in-situ iron on pyrolysis of waste printed circuit boards: comparative study of kinetics, products, and reaction mechanism. J. Hazard. Mater. 431, 128612 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Huang, Z., Zhu, J. & Ruan, J. A novel technology of vacuum low-temperature pyrolysis with NVZI for the high-efficiency debromination of resin particles from waste printed circuit boards. Resour. Conserv. Recycl. 188, 106711 (2023).

    Article  CAS  Google Scholar 

  76. Ma, C. et al. Production of BTX via catalytic fast pyrolysis of printed circuit boards and waste tires using hierarchical ZSM-5 zeolites and biochar. ACS Sustain. Chem. Eng. 10, 14775–14782 (2022).

    Article  CAS  Google Scholar 

  77. Pyo, S. et al. The production of debrominated aromatics via the catalytic pyrolysis of flexible printed circuit boards. Chem. Eng. J. 472, 144783 (2023).

    Article  CAS  Google Scholar 

  78. Guo, R. et al. The environmental fate of biomass associated polybrominated diphenyl ethers. Chemosphere 299, 134397 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Altarawneh, M. et al. Co-pyrolysis of polyethylene with products from thermal decomposition of brominated flame retardants. Chemosphere 254, 126766 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, Y. et al. New insights into the debromination mechanism of non-metallic fractions of waste printed circuit boards via alkaline-enhanced subcritical water route. Resour. Conserv. Recycl. 165, 105227 (2021).

    Article  CAS  Google Scholar 

  81. Driscoll, L. L. et al. Under pressure: offering fundamental insight into structural changes on ball milling battery materials. Energy Environ. Sci. 16, 5196–5209 (2023).

    Article  CAS  Google Scholar 

  82. O’Neill, R. T. & Boulatov, R. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat. Rev. Chem. 5, 148–167 (2021).

    Article  PubMed  Google Scholar 

  83. Wang, M., Tan, Q. & Li, J. Unveiling the role and mechanism of mechanochemical activation on lithium cobalt oxide powders from spent lithium-ion batteries. Environ. Sci. Technol. 52, 13136–13143 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Yang, Y. et al. A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation. ACS Sustain. Chem. Eng. 5, 9972–9980 (2017).

    Article  CAS  Google Scholar 

  85. Meng, X. et al. Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Manag. 84, 54–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Xie, J. et al. An effective process for the recovery of valuable metals from cathode material of lithium-ion batteries by mechanochemical reduction. Resour. Conserv. Recycl. 168, 105261 (2021).

    Article  CAS  Google Scholar 

  87. Liu, K. et al. Facile path for copper recovery from waste printed circuit boards via mechanochemical approach. J. Hazard. Mater. 440, 129638 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, K., Tan, Q., Liu, L. & Li, J. From lead paste to high-value nanolead sulfide products: a new application of mechanochemistry in the recycling of spent lead–acid batteries. ACS Sustain. Chem. Eng. 8, 3547–3552 (2020).

    Article  CAS  Google Scholar 

  89. Fan, E. et al. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach. ACS Sustain. Chem. Eng. 6, 11029–11035 (2018).

    Article  CAS  Google Scholar 

  90. Liu, K., Tan, Q., Liu, L. & Li, J. Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution. Environ. Sci. Technol. 53, 9781–9788 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Yang, Y. et al. Direct preparation of efficient catalyst for oxygen evolution reaction and high-purity Li2CO3 from spent LiNi0. 5Mn0. 3Co0. 2O2 batteries. J. Clean. Prod. 236, 117576 (2019).

    Article  CAS  Google Scholar 

  92. Liu, K., Liu, L., Tan, Q. & Li, J. Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation. Green Chem. 23, 1344–1352 (2021).

    Article  CAS  Google Scholar 

  93. Liu, G. et al. A facile new process for the efficient conversion of spent LiFePO4 batteries via (NH4) 2S2O8-assisted mechanochemical activation coupled with water leaching. Chem. Eng. J. 471, 144265 (2023).

    Article  CAS  Google Scholar 

  94. Liu, K. et al. A perspective on the recovery mechanisms of spent lithium iron phosphate cathode materials in different oxidation environments. J. Hazard. Mater. 445, 130502 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Wu, L., Zhang, F.-S., Zhang, Z.-Y. & Zhang, C.-C. An environmentally friendly process for selective recovery of lithium and simultaneous synthesis of LiFe5O8 from spent LiFePO4 battery by mechanochemical. J. Clean. Prod. 396, 136504 (2023).

    Article  CAS  Google Scholar 

  96. Liang, Z. et al. Mechanochemically assisted persulfate activation for the facile recovery of metals from spent lithium ion batteries. Waste Manag. 150, 290–300 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, M. et al. Converting spent lithium cobalt oxide battery cathode materials into high-value products via a mechanochemical extraction and thermal reduction route. J. Hazard. Mater. 413, 125222 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Tiwary, C. S. et al. Electronic waste recycling via cryo-milling and nanoparticle beneficiation. Mater. Today 20, 67–73 (2017).

    Article  CAS  Google Scholar 

  99. Lu, S. et al. Mechanochemical dehalogenation of brominated flame retardants and preliminary application for recycling BFR-containing plastic waste. J. Environ. Chem. Eng. 11, 109916 (2023).

    Article  CAS  Google Scholar 

  100. Cagnetta, G., Robertson, J., Huang, J., Zhang, K. & Yu, G. Mechanochemical destruction of halogenated organic pollutants: a critical review. J. Hazard. Mater. 313, 85–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Cagnetta, G., Zhang, K., Zhang, Q., Huang, J. & Yu, G. Mechanochemical pre-treatment for viable recycling of plastic waste containing haloorganics. Waste Manag. 75, 181–186 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Qin, B. et al. A novel approach for determining the accurate debromination time in the ball-milling process of nonmetallic particles from waste printed circuit boards by computation. J. Hazard. Mater. 410, 124611 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Kong, J., Zhou, S., He, T., Gu, S. & Yu, J. A novel electrochemical redox method for the simultaneous recovery of spent lithium-ion battery cathodes and anodes. Green Chem. 25, 3956–3965 (2023).

    Article  CAS  Google Scholar 

  104. Yang, L. et al. Direct electrochemical leaching method for high-purity lithium recovery from spent lithium batteries. Environ. Sci. Technol. 57, 4591–4597 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Lei, S. et al. Strengthening valuable metal recovery from spent lithium-ion batteries by environmentally friendly reductive thermal treatment and electrochemical leaching. ACS Sustain. Chem. Eng. 9, 7053–7062 (2021).

    Article  CAS  Google Scholar 

  106. Diaz, L. A. et al. Electrochemical-assisted leaching of active materials from lithium ion batteries. Resour. Conserv. Recycl. 161, 104900 (2020).

    Article  Google Scholar 

  107. Liu, Y., Song, Q., Zhang, L. & Xu, Z. Targeted recovery of Ag-Pd alloy from polymetallic electronic waste leaching solution via green electrodeposition technology and its mechanism. Sep. Purif. Technol. 280, 118944 (2022).

    Article  CAS  Google Scholar 

  108. Liu, Y., Zhang, L., Song, Q. & Xu, Z. Recovery of palladium as nanoparticles from waste multilayer ceramic capacitors by potential-controlled electrodeposition. J. Clean. Prod. 257, 120370 (2020).

    Article  CAS  Google Scholar 

  109. Song, Q., Zhang, L., Yang, C. & Xu, Z. Novel electrodeposition method for Cu-In-Cd-Ga sequential separation from waste solar cell: mechanism, application, and environmental impact assessment. Environ. Sci. Technol. 55, 10724–10733 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Zhou, J., Meng, X., Zhang, R., Liu, H. & Liu, Z. Progress on electrodeposition of rare earth metals and their alloys. Electrocatalysis 12, 628–640 (2021).

    Article  CAS  Google Scholar 

  111. dos Reis da Costa, J. G., Costa, J. M. & de Almeida Neto, A. F. Progress on electrodeposition of metals and alloys using ionic liquids as electrolytes. Metals 12, 2095 (2022).

    Article  Google Scholar 

  112. Liu, Y., Song, Q. & Xu, Z. Selective extraction of silver and palladium in leachate based on EDTA complexation: electrodeposition, nucleation mechanism, and kinetic analysis. ACS Sustain. Chem. Eng. 10, 16647–16656 (2022).

    Article  CAS  Google Scholar 

  113. Song, Q., Liu, Y., Zhang, L. & Xu, Z. Facile indium recovery from waste liquid crystal displays: chloride-facilitated indium electroreduction and stepwise Cu/MoO2 and indium electrodeposition. J. Hazard. Mater. 415, 125599 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Song, Q., Liu, Y., Zhang, L. & Xu, Z. Selective electrochemical extraction of copper from multi-metal e-waste leaching solution and its enhanced recovery mechanism. J. Hazard. Mater. 407, 124799 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, Y., Song, Q., Zhang, L. & Xu, Z. Separation of metals from Ni-Cu-Ag-Pd-Bi-Sn multi-metal system of e-waste by leaching and stepwise potential-controlled electrodeposition. J. Hazard. Mater. 408, 124772 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Du, J., Waite, T. D., Biesheuvel, P. & Tang, W. Recent advances and prospects in electrochemical coupling technologies for metal recovery from water. J. Hazard. Mater. 442, 130023 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Dong, B. et al. Sono-electrochemical recovery of metal ions from their aqueous solutions. J. Hazard. Mater. 318, 379–387 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Fathima, A., Tang, J. Y. B., Giannis, A., Ilankoon, I. & Chong, M. N. Catalysing electrowinning of copper from e-waste: a critical review. Chemosphere 298, 134340 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Li, Z., He, L., Zhao, Z. W., Wang, D. & Xu, W. Recovery of lithium and manganese from scrap LiMn2O4 by slurry electrolysis. ACS Sustain. Chem. Eng. 7, 16738–16746 (2019).

    Article  CAS  Google Scholar 

  120. Liang, Q. et al. Electrolyte circulation: metal recovery from waste printed circuit boards of mobile phones by alkaline slurry electrolysis. J. Clean. Prod. 409, 137223 (2023).

    Article  CAS  Google Scholar 

  121. Liu, K. et al. A green slurry electrolysis to recover valuable metals from waste printed circuit board (WPCB) in recyclable pH-neutral ethylene glycol. J. Hazard. Mater. 433, 128702 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Li, Z. et al. Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode material by anionic membrane slurry electrolysis. Waste Manag. 107, 1–8 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Yang, N., Li, Z. & He, L. Recovery of battery-grade products from mixed spent LiFePO4/LiMn2O4 cathodes via slurry electrolysis. Sep. Purif. Technol. 317, 123859 (2023).

    Article  CAS  Google Scholar 

  124. Li, F. et al. Recovery of Au and Cu from waste memory modules by electrolysis with hydrochloric acid-hydrogen peroxide system. Sep. Purif. Technol. 308, 122872 (2023).

    Article  CAS  Google Scholar 

  125. Xiao, J., Guo, J., Zhan, L. & Xu, Z. A cleaner approach to the discharge process of spent lithium ion batteries in different solutions. J. Clean. Prod. 255, 120064 (2020).

    Article  CAS  Google Scholar 

  126. Yao, L. P., Zeng, Q., Qi, T. & Li, J. An environmentally friendly discharge technology to pretreat spent lithium-ion batteries. J. Clean. Prod. 245, 118820 (2020).

    Article  CAS  Google Scholar 

  127. Martínez, R. F., Cravotto, G. & Cintas, P. Organic sonochemistry: a chemist’s timely perspective on mechanisms and reactivity. J. Org. Chem. 86, 13833–13856 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yasui, K. Numerical simulations for sonochemistry. Ultrason. Sonochem. 78, 105728 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, X. et al. Recycling of LiFePO4 cathode materials from spent lithium-ion batteries through ultrasound-assisted Fenton reaction and lithium compensation. Waste Manag. 136, 67–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Pokhrel, N., Vabbina, P. K. & Pala, N. Sonochemistry: science and engineering. Ultrason. Sonochem. 29, 104–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Jiang, H., Lu, H., Zhou, Y., Liu, Y. & Hao, C. High-efficiency degradation catalytic performance of a novel Angelica sinensis polysaccharide-silver nanomaterial for dyes by ultrasonic cavitation. Ultrason. Sonochem. 93, 106289 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bian, C. et al. Enhancement of waste activated sludge dewaterability by ultrasound-activated persulfate oxidation: operation condition, sludge properties, and mechanisms. Chemosphere 262, 128385 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Chen, L. et al. Efficient recovery of valuable metals from waste printed circuit boards via ultrasound-enhanced flotation. Process Saf. Environ. Prot. 169, 869–878 (2023).

    Article  CAS  Google Scholar 

  134. Dos Santos, D., Buzzi, D., Botelho Junior, A. & Espinosa, D. Recycling of printed circuit boards: ultrasound-assisted comminution and leaching for metals recovery. J. Mater. Cycles Waste Manag. 24, 1991–2001 (2022).

    Article  Google Scholar 

  135. Ning, P. et al. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system. Waste Manag. 103, 52–60 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Ding, W. et al. Stepwise recycling of valuable metals from spent lithium-ion batteries based on in situ thermal reduction and ultrasonic-assisted water leaching. Green Chem. 25, 6652–6665 (2023).

    Article  CAS  Google Scholar 

  137. Huang, Y.-F., Hsia, W.-N. & Lo, S.-L. Ultrasound-assisted leaching and supported liquid membrane extraction of waste liquid crystal displays for indium recovery. Sustain. Chem. Pharm. 35, 101227 (2023).

    Article  CAS  Google Scholar 

  138. Bao, S. et al. A comprehensive review on the ultrasound-enhanced leaching recovery of valuable metals: applications, mechanisms and prospects. Ultrason. Sonochem. 98, 106525 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bu, X., Danstan, J. K., Hassanzadeh, A., Behrad Vakylabad, A. & Chelgani, S. C. Metal extraction from ores and waste materials by ultrasound-assisted leaching — an overview. Miner. Process. Extr. Metall. Rev. 45, 28–45 (2024).

    Article  CAS  Google Scholar 

  140. Huang, Z., Lin, K., Li, G. & Ruan, J. A novel combined technology of rich reactive oxygen species and ultrasound for the decapsulation of waste Cu(InGa)Se2 solar cells. ACS Sustain. Chem. Eng. 11, 11613–11624 (2023).

    Article  CAS  Google Scholar 

  141. Juretic, H., Montalbo-Lomboy, M., van Leeuwen, J. H., Cooper, W. J. & Grewell, D. Hydroxyl radical formation in batch and continuous flow ultrasonic systems. Ultrason. Sonochem. 22, 600–606 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Ma, A. et al. Photodeposition of Pt nanoparticles on Co3O4 nanocubes for detection of acetone at part-per-billion levels. ACS Appl. Nano Mater. 4, 2752–2759 (2021).

    Article  CAS  Google Scholar 

  143. Li, Y. et al. In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production. Nat. Commun. 13, 1355 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Martinez, V., Stolar, T., Karadeniz, B., Brekalo, I. & Užarević, K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat. Rev. Chem. 7, 51–65 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Niu, B. & Xu, Z. Innovating e-waste recycling: from waste multi-layer ceramic capacitors to Nb-Pb codoped and Ag-Pd-Sn-Ni loaded BaTiO3 nano-photocatalyst through one-step ball milling process. Sustain. Mater. Technol. 21, e00101 (2019).

    CAS  Google Scholar 

  146. Niu, B. et al. Utilizing e-waste for construction of magnetic and core–shell Z-scheme photocatalysts: an effective approach to e-waste recycling. Environ. Sci. Technol. 55, 1279–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Ma, C. et al. Recent advancements in pyrolysis of halogen-containing plastics for resource recovery and halogen upcycling: a state-of-the-art review. Environ. Sci. Technol. 58, 1423–1440 (2024).

    Article  CAS  PubMed  Google Scholar 

  148. Das, P. et al. Enhanced extraction of brominated flame retardants from e-waste plastics. Chem. Eng. J. 469, 144126 (2023).

    Article  CAS  Google Scholar 

  149. Zhang, L., Song, Q., Xu, X. & Xu, Z. Process simulation of Ohno continuous casting for single crystal copper prepared from scrap copper in waste printed circuit boards. Waste Manag. 124, 94–101 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Li, J., Jiang, Y. & Xu, Z. Eddy current separation technology for recycling printed circuit boards from crushed cell phones. J. Clean. Prod. 141, 1316–1323 (2017).

    Article  CAS  Google Scholar 

  151. Zhou, L. et al. Study on magnetic field intensification of cobalt leaching from anode powder of used lithium battery. Conserv. Util. Miner. Resour. 41, 127–131 (2021).

    Google Scholar 

  152. Liu, Y. et al. Magnetic field intensified electrodeposition of low-concentration copper ions in aqueous solution. Electrochim. Acta 432, 141201 (2022).

    Article  CAS  Google Scholar 

  153. Nowakowski, P. & Pamuła, T. Application of deep learning object classifier to improve e-waste collection planning. Waste Manag. 109, 1–9 (2020).

    Article  PubMed  Google Scholar 

  154. Xia, D. et al. Sustainable route for Nd recycling from waste electronic components featured with unique element-specific sorting enabling simplified hydrometallurgy. Chem. Eng. J. 441, 135886 (2022).

    Article  CAS  Google Scholar 

  155. Lu, Y., Yang, B., Gao, Y. & Xu, Z. An automatic sorting system for electronic components detached from waste printed circuit boards. Waste Manag. 137, 1–8 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Niu, B., E, S., Wang, X., Xu, Z. & Qin, Y. Intelligent leaching rare earth elements from waste fluorescent lamps. Proc. Natl Acad. Sci. USA 121, e2308502120 (2024).

    Article  CAS  PubMed  Google Scholar 

  157. Armenise, S. et al. Application of computational approach in plastic pyrolysis kinetic modelling: a review. React. Kinet. Mech. Catal. 134, 591–614 (2021).

    Article  CAS  Google Scholar 

  158. Wang, R., Hou, Y. & Xu, Z. In-situ reaction for recycling indium from waste liquid crystal display panels by vaccum reduction with pyrolytic carbon as reductant. Waste Manag. 85, 538–547 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Zhang, L., Wu, B., Chen, Y. & Xu, Z. Energy and valuable resource recovery from waste liquid crystal display panels by an environment-friendly technological process: pyrolysis of liquid crystals and preparation of indium product. J. Clean. Prod. 162, 141–152 (2017).

    Article  CAS  Google Scholar 

  160. Dhawan, N. & Tanvar, H. A critical review of end-of-life fluorescent lamps recycling for recovery of rare earth values. Sustain. Mater. Technol. 32, e00401 (2022).

    CAS  Google Scholar 

  161. Vinayagamoorthi, R. et al. Recycling of end of life photovoltaic solar panels and recovery of valuable components: a comprehensive review and experimental validation. J. Environ. Chem. Eng. 12, 111715 (2024).

    Article  CAS  Google Scholar 

  162. Lu, T. & Chen, W.-T. Material recycling of acrylonitrile butadiene styrene (ABS) from toy waste using density separation and safer solvents. Resour. Conserv. Recycl. 197, 107090 (2023).

    Article  CAS  Google Scholar 

  163. Singh, N., Duan, H., Yin, F., Song, Q. & Li, J. Characterizing the materials composition and recovery potential from waste mobile phones: a comparative evaluation of cellular and smart phones. ACS Sustain. Chem. Eng. 6, 13016–13024 (2018).

    Article  CAS  Google Scholar 

  164. Niu, B., Xu, Z., Xiao, J. & Qin, Y. Recycling hazardous and valuable electrolyte in spent lithium-ion batteries: urgency, progress, challenge, and viable approach. Chem. Rev. 123, 8718–8735 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22208082) and Hebei Agricultural University (YJ2021053).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of the content and writing and editing of the manuscript.

Corresponding author

Correspondence to Bo Niu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Lucio-Cardozo-Filho, Muammer Kaya, Endalkachew Sahle-Demessie, Paul Anderson and Abbey Jarvis for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, B., E, S., Song, Q. et al. Physicochemical reactions in e-waste recycling . Nat Rev Chem (2024). https://doi.org/10.1038/s41570-024-00616-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41570-024-00616-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing