Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

Why do patients with cancer die?

Abstract

Cancer is a major cause of global mortality, both in affluent countries and increasingly in developing nations. Many patients with cancer experience reduced life expectancy and have metastatic disease at the time of death. However, the more precise causes of mortality and patient deterioration before death remain poorly understood. This scarcity of information, particularly the lack of mechanistic insights, presents a challenge for the development of novel treatment strategies to improve the quality of, and potentially extend, life for patients with late-stage cancer. In addition, earlier deployment of existing strategies to prolong quality of life is highly desirable. In this Roadmap, we review the proximal causes of mortality in patients with cancer and discuss current knowledge about the interconnections between mechanisms that contribute to mortality, before finally proposing new and improved avenues for data collection, research and the development of treatment strategies that may improve quality of life for patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The proximal causes of mortality in patients with cancer.
Fig. 2: Recommendations for improving understanding of causes of cancer mortality.

Similar content being viewed by others

References

  1. Dillekås, H., Rogers, M. S. & Straume, O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 8, 5574–5576 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Seyfried, T. N. & Huysentruyt, L. C. On the origin of cancer metastasis. Crit. Rev. Oncog. 18, 43–73 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schnurman, Z. et al. Causes of death in patients with brain metastases. Neurosurgery 93, 986–993 (2023).

    Article  PubMed  Google Scholar 

  4. Gallardo-Valverde, J. M. et al. Obstruction in patients with colorectal cancer increases morbidity and mortality in association with altered nutritional status. Nutr. Cancer 53, 169–176 (2005).

    Article  PubMed  Google Scholar 

  5. Swanton, C. et al. Embracing cancer complexity: hallmarks of systemic disease. Cell 187, 1589–1616 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Wheatley-Price, P., Blackhall, F. & Thatcher, N. The influence of sex in non-small cell lung cancer. Onkologie 32, 547–548 (2009).

    Article  PubMed  Google Scholar 

  7. Abu-Sbeih, H. et al. Immune checkpoint inhibitor therapy in patients with preexisting inflammatory bowel disease. J. Clin. Oncol. 38, 576 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Neugut, A. I. et al. Duration of adjuvant chemotherapy for colon cancer and survival among the elderly. J. Clin. Oncol. 24, 2368–2375 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Sullivan, D. R. et al. Association of early palliative care use with survival and place of death among patients with advanced lung cancer receiving care in the Veterans Health Administration. JAMA Oncol. 5, 1702–1709 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sallnow, L. et al. Report of the Lancet Commission on the value of death: bringing death back into life. Lancet 399, 837–884 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Abdel-Karim, I. A., Sammel, R. B. & Prange, M. A. Causes of death at autopsy in an inpatient hospice program. J. Palliat. Med. 10, 894–898 (2007).

    Article  PubMed  Google Scholar 

  12. Pautex, S. et al. Anatomopathological causes of death in patients with advanced cancer: association with the use of anticoagulation and antibiotics at the end of life. J. Palliat. Med. 16, 669–674 (2013).

    Article  PubMed  Google Scholar 

  13. Khorana, A. A., Francis, C. W., Culakova, E., Kuderer, N. M. & Lyman, G. H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 5, 632–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Levi, M. & Scully, M. How I treat disseminated intravascular coagulation. Blood 131, 845–854 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Cines, D. B., Liebman, H. & Stasi, R. Pathobiology of secondary immune thrombocytopenia. Semin. Hematol. 46, S2 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ghanavat, M. et al. Thrombocytopenia in solid tumors: prognostic significance. Oncol. Rev. 13, 43–48 (2019).

    Article  CAS  Google Scholar 

  17. Anker, M. S. et al. Advanced cancer is also a heart failure syndrome: a hypothesis. J. Cachexia Sarcopenia Muscle 12, 533 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Asdahl, P. H. et al. Cardiovascular events in cancer patients with bone metastases — a Danish population-based cohort study of 23,113 patients. Cancer Med. 10, 4885–4895 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sinn, D. H. et al. Different survival of Barcelona clinic liver cancer stage C hepatocellular carcinoma patients by the extent of portal vein invasion and the type of extrahepatic spread. PLoS ONE 10, e0124434 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zisman, A. et al. Renal cell carcinoma with tumor thrombus extension: biology, role of nephrectomy and response to immunotherapy. J. Urol. 169, 909–916 (2003).

    Article  PubMed  Google Scholar 

  21. Suárez, C. et al. Carotid blowout syndrome: modern trends in management. Cancer Manag. Res. 10, 5617 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lin, A. L. & Avila, E. K. Neurologic emergencies in the cancer patient: diagnosis and management. J. Intensive Care Med. 32, 99 (2017).

    Article  PubMed  Google Scholar 

  23. Gamburg, E. S. et al. The prognostic significance of midline shift at presentation on survival in patients with glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 48, 1359–1362 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Mokri, B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology 56, 1746–1748 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Mastall, M. et al. Survival of brain tumour patients with epilepsy. Brain 144, 3322–3327 (2021).

    Article  PubMed  Google Scholar 

  26. Steindl, A. et al. Neurological symptom burden impacts survival prognosis in patients with newly diagnosed non-small cell lung cancer brain metastases. Cancer 126, 4341–4352 (2020).

    Article  PubMed  Google Scholar 

  27. Girard, N. et al. Comprehensive histologic assessment helps to differentiate multiple lung primary nonsmall cell carcinomas from metastases. Am. J. Surg. Pathol. 33, 1752–1764 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee, P. et al. Metabolic tumor burden predicts for disease progression and death in lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 69, 328–333 (2007).

    Article  PubMed  Google Scholar 

  29. Kookoolis, A. S., Puchalski, J. T., Murphy, T. E., Araujo, K. L. & Pisani, M. A. Mortality of hospitalized patients with pleural effusions. J. Pulm. Respir. Med. 4, 184 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Cousins, S. E., Tempest, E. & Feuer, D. J. Surgery for the resolution of symptoms in malignant bowel obstruction in advanced gynaecological and gastrointestinal cancer. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD002764 (2016).

  31. Baker, M. L. et al. Mortality after acute kidney injury and acute interstitial nephritis in patients prescribed immune checkpoint inhibitor therapy. J. Immunother. Cancer 10, e004421 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bhave, P., Buckle, A., Sandhu, S. & Sood, S. Mortality due to immunotherapy related hepatitis. J. Hepatol. 69, 976–978 (2018).

    Article  PubMed  Google Scholar 

  33. Lameire, N. H., Flombaum, C. D., Moreau, D. & Ronco, C. Acute renal failure in cancer patients. Ann. Med. 37, 13–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Ries, F. & Klastersky, J. Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am. J. Kidney Dis. 8, 368–379 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Wong, J. L. & Evans, S. E. Bacterial pneumonia in patients with cancer: novel risk factors and management. Clin. Chest Med. 38, 263–277 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee, L. Y. W. et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet 395, 1919–1926 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Williamson, E. J. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 584, 430–436 (2020). This study used a platform of 17.4 million pseudo-anonymized health-care records to determine risk factors for COVID-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pelosof, L. C. & Gerber, D. E. Paraneoplastic syndromes: an approach to diagnosis and treatment. Mayo Clin. Proc. 85, 838–854 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Donovan, P. J. et al. PTHrP-mediated hypercalcemia: causes and survival in 138 patients. J. Clin. Endocrinol. Metab. 100, 2024–2029 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Burtis, W. J. et al. Immunochemical characterization of circulating parathyroid hormone-related protein in patients with humoral hypercalcemia of cancer. N. Engl. J. Med. 322, 1106–1112 (1990). First study to show that patients with cancer-associated hypercalcaemia had elevated concentrations of plasma parathyroid hormone-related protein.

    Article  CAS  PubMed  Google Scholar 

  41. Ellison, D. H. & Berl, T. The syndrome of inappropriate antidiuresis. N. Engl. J. Med. 356, 2064–2072 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Okabayashi, T. et al. Diagnosis and management of insulinoma. World J. Gastroenterol. 19, 829–837 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Giometto, B. et al. Paraneoplastic neurologic syndrome in the PNS Euronetwork database: a European study from 20 centers. Arch. Neurol. 67, 330–335 (2010).

    Article  PubMed  Google Scholar 

  44. Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Feng, S. et al. Pembrolizumab-induced encephalopathy: a review of neurological toxicities with immune checkpoint inhibitors. J. Thorac. Oncol. 12, 1626–1635 (2017).

    Article  PubMed  Google Scholar 

  46. Coustal, C. et al. Prognosis of immune checkpoint inhibitors-induced myocarditis: a case series. J. Immunother. Cancer 11, e004792 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kuderer, N. M., Dale, D. C., Crawford, J., Cosler, L. E. & Lyman, G. H. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 106, 2258–2266 (2006).

    Article  PubMed  Google Scholar 

  48. Agarwal, M. A. et al. Ventricular arrhythmia in cancer patients: mechanisms, treatment strategies and future avenues. Arrhythm. Electrophysiol. Rev. 12, e16 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zafar, A. et al. The incidence, risk factors, and outcomes with 5-fluorouracil-associated coronary vasospasm. JACC CardioOncol. 3, 101–109 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Polk, A. et al. Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity: a retrospective study of 452 consecutive patients with metastatic breast cancer. BMJ Open 6, e012798 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Safdar, A., Bodey, G. & Armstrong, D. Infections in patients with cancer: overview. Princip. Pract. Cancer Infect. Dis. https://doi.org/10.1007/978-1-60761-644-3_1 (2011).

  52. Foster, D. S., Jones, R. E., Ransom, R. C., Longaker, M. T. & Norton, J. A. The evolving relationship of wound healing and tumor stroma. JCI Insight 3, e99911 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Park, S. J. & Bejar, R. Clonal hematopoiesis in cancer. Exp. Hematol. 83, 105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liebman, H. A. Thrombocytopenia in cancer patients. Thromb. Res. https://doi.org/10.1016/S0049-3848(14)50011-4 (2014).

  55. Chakraborty, R. et al. Characterisation and prognostic impact of immunoparesis in relapsed multiple myeloma. Br. J. Haematol. 189, 1074–1082 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Allen, B. M. et al. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat. Med. 26, 1125–1134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Munn, D. H. & Bronte, V. Immune suppressive mechanisms in the tumor microenvironment. Curr. Opin. Immunol. 39, 1–6 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Kochar, R. & Banerjee, S. Infections of the biliary tract. Gastrointest. Endosc. Clin. N. Am. 23, 199–218 (2013).

    Article  PubMed  Google Scholar 

  59. Valvani, A., Martin, A., Devarajan, A. & Chandy, D. Postobstructive pneumonia in lung cancer. Ann. Transl. Med. 7, 357–357 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rolston, K. V. I. Infections in cancer patients with solid tumors: a review. Infect. Dis. Ther. 6, 69–83 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wu, X. et al. The association between major complications of immobility during hospitalization and quality of life among bedridden patients: a 3 month prospective multi-center study. PLoS One 13, e0205729 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. The clinicopathological and prognostic role of thrombocytosis in patients with cancer: a meta-analysis. Oncol. Lett. 13, 5002–5008 (2017).

  63. Kasthuri, R. S., Taubman, M. B. & Mackman, N. Role of tissue factor in cancer. J. Clin. Oncol. 27, 4834 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wade, J. C. Viral infections in patients with hematological malignancies. Hematology 2006, 368–374 (2006).

    Article  Google Scholar 

  65. Ersvaer, E., Liseth, K., Skavland, J., Gjertsen, B. T. & Bruserud, Ø. Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1, TH1, TH17 and TREG cells. BMC Immunol. 11, 1–12 (2010).

    Article  Google Scholar 

  66. Kuter, D. J. Treatment of chemotherapy-induced thrombocytopenia in patients with non-hematologic malignancies. Haematologica 107, 1243 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rodgers, G. M. et al. Cancer- and chemotherapy-induced anemia. J. Natl Compr. Canc. Netw. 10, 628–653 (2012).

    Article  PubMed  Google Scholar 

  68. Nesher, L. & Rolston, K. V. I. The current spectrum of infection in cancer patients with chemotherapy related neutropenia. Infection 42, 5–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Blijlevens, N. M. A., Logan, R. M. & Netea, M. G. Mucositis: from febrile neutropenia to febrile mucositis. J. Antimicrob. Chemother. 63, i36–i40 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Petrelli, F. et al. Association of steroid use with survival in solid tumours. Eur. J. Cancer 141, 105–114 (2020).

    Article  PubMed  Google Scholar 

  71. Bolton, K. L. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat. Genet. 52, 1219–1226 (2020). This study identified the molecular characteristics of clonal haematopoiesis that increased risk of therapy-related myeloid neoplasms, with different characteristics associated with different treatment exposures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bhatia, R. et al. Do cancer and cancer treatments accelerate aging? Curr. Oncol. Rep. 24, 1401 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Eisenstein, T. K. The role of opioid receptors in immune system function. Front. Immunol. 10, 485158 (2019).

    Article  Google Scholar 

  74. Böll, B. et al. Central venous catheter-related infections in hematology and oncology: 2020 updated guidelines on diagnosis, management, and prevention by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann. Hematol. 100, 239 (2021).

    Article  PubMed  Google Scholar 

  75. Ruiz-Giardin, J. M. et al. Blood stream infections associated with central and peripheral venous catheters. BMC Infect. Dis. 19, 1–9 (2019).

    Article  CAS  Google Scholar 

  76. Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brahmer, J. R. et al. Safety profile of pembrolizumab monotherapy based on an aggregate safety evaluation of 8937 patients. Eur. J. Cancer 199, 113530 (2024). Analysis of the toxicity profile of anti-PD1 therapy in more than 8,000 patients.

    Article  CAS  PubMed  Google Scholar 

  78. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Vozy, A. et al. Increased reporting of fatal hepatitis associated with immune checkpoint inhibitors. Eur. J. Cancer 123, 112–115 (2019).

    Article  PubMed  Google Scholar 

  80. Palaskas, N., Lopez-Mattei, J., Durand, J. B., Iliescu, C. & Deswal, A. Immune checkpoint inhibitor myocarditis: pathophysiological characteristics, diagnosis, and treatment. J. Am. Heart Assoc. 9, e013757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Janssen, J. B. E. et al. Immune checkpoint inhibitor-related Guillain–Barré syndrome: a case series and review of the literature. J. Immunother. 44, 276–282 (2021).

    Article  PubMed  Google Scholar 

  82. Camelliti, S. et al. Mechanisms of hyperprogressive disease after immune checkpoint inhibitor therapy: what we (don’t) know. J. Exp. Clin. Cancer Res. 39, 236 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kitamura, W. et al. Bone marrow microenvironment disruption and sustained inflammation with prolonged haematologic toxicity after CAR T-cell therapy. Br. J. Haematol. 202, 294–307 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Seano, G. et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat. Biomed. Eng. 3, 230 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Madhusoodanan, S., Ting, M. B., Farah, T. & Ugur, U. Psychiatric aspects of brain tumors: a review. World J. Psychiatry 5, 273 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gerstenecker, A. et al. Cognition in patients with newly diagnosed brain metastasis: profiles and implications. J. Neurooncol. 120, 179 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Krishna, S. et al. Glioblastoma remodelling of human neural circuits decreases survival. Nature 617, 599–607 (2023). This study demonstrated that high-grade gliomas remodel neural circuits in the human brain, which promotes tumour progression and impairs cognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Taylor, K. R. et al. Glioma synapses recruit mechanisms of adaptive plasticity. Nature 623, 366–374 (2023). This study showed that brain-derived neurotrophic factor (BDNF)–tropomyosin-related kinase B (TRKB) signalling promotes malignant synaptic plasticity and augments tumour progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hanahan, D. & Monje, M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell 41, 573–580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ahles, T. A. & Root, J. C. Cognitive effects of cancer and cancer treatments. Annu. Rev. Clin. Psychol. 14, 425–451 (2018).

  91. Allexandre, D. et al. EEG correlates of central origin of cancer-related fatigue. Neural Plast. 2020, 8812984 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Büttner-Teleagă, A., Kim, Y. T., Osel, T. & Richter, K. Sleep disorders in cancer — a systematic review. Int. J. Environ. Res. Public Health 18, 11696 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Walsh, D. & Nelson, K. A. Autonomic nervous system dysfunction in advanced cancer. Support. Care Cancer 10, 523–528 (2002).

    Article  PubMed  Google Scholar 

  94. Ghandour, F. et al. Presenting psychiatric and neurological symptoms and signs of brain tumors before diagnosis: a systematic review. Brain Sci. 11, 1–20 (2021).

    Article  Google Scholar 

  95. Akechi, T. et al. Somatic symptoms for diagnosing major depression in cancer patients. Psychosomatics 44, 244–248 (2003).

    Article  PubMed  Google Scholar 

  96. Nho, J. H., Kim, S. R. & Kwon, Y. S. Depression and appetite: predictors of malnutrition in gynecologic cancer. Support. Care Cancer 22, 3081–3088 (2014).

    Article  PubMed  Google Scholar 

  97. Thaker, P. H. et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med. 12, 939–944 (2006). This study linked chronic behavioural stress to higher levels of tissue catecholamines and tumour angiogenesis, resulting in greater tumor burden and invasion in ovarian cancer.

    Article  CAS  PubMed  Google Scholar 

  98. Chang, A. et al. Beta-blockade enhances anthracycline control of metastasis in triple-negative breast cancer. Sci. Transl. Med. 15, eadf1147 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013). This study showed that the formation of autonomic nerve fibres in the prostate gland regulates prostate cancer development and dissemination in mouse models.

    Article  PubMed  Google Scholar 

  100. Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Prim. 4, 17105 (2018).

    Article  PubMed  Google Scholar 

  101. Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011). International consensus definitions of cancer cachexia.

    Article  PubMed  Google Scholar 

  102. Bossi, P., Delrio, P., Mascheroni, A. & Zanetti, M. The spectrum of malnutrition/cachexia/sarcopenia in oncology according to different cancer types and settings: a narrative review. Nutrients 13, 1980 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Farkas, J. et al. Cachexia as a major public health problem: frequent, costly, and deadly. J. Cachexia Sarcopenia Muscle 4, 173–178 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Dennison, E. M., Sayer, A. A. & Cooper, C. Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat. Rev. Rheumatol. 13, 340–347 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Farasat, M. et al. Long-term cardiac arrhythmia and chronotropic evaluation in patients with severe anorexia nervosa (LACE-AN): a pilot study. J. Cardiovasc. Electrophysiol. 31, 432–439 (2020).

    Article  PubMed  Google Scholar 

  106. Mehler, P. S., Anderson, K., Bauschka, M., Cost, J. & Farooq, A. Emergency room presentations of people with anorexia nervosa. J. Eat. Disord. 11, 16 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ferrer, M. et al. Cachexia: a systemic consequence of progressive, unresolved disease. Cell 186, 1824–1845 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bourke, C. D., Berkley, J. A. & Prendergast, A. J. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol. 37, 386–398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tisdale, M. J. Biology of cachexia. J. Natl Cancer Inst. 89, 1763–1773 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Babic, A. et al. Adipose tissue and skeletal muscle wasting precede clinical diagnosis of pancreatic cancer. Nat. Commun. 14, 4754 (2023).

    Article  Google Scholar 

  111. Waning, D. L. et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat. Med. 21, 1262 (2015). This study showed that bone metastases cause TGFβ to be released from the bone marrow, resulting in leakage of calcium from skeletal muscle cells contributing to muscle weakness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Greco, S. H. et al. TGF-β blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia. PLoS ONE 10, e0132786 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Johnen, H. et al. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat. Med. 13, 1333–1340 (2007). This study showed that GDF15 was elevated in patients with cancer-associated weight loss and that this was a central regulator of appetite and therefore a potential therapeutic target.

    Article  CAS  PubMed  Google Scholar 

  114. Al-Sawaf, O. et al. Body composition and lung cancer-associated cachexia in TRACERx. Nat. Med. 29, 846–858 (2023). This study showed an association among lower skeletal muscle area, subcutaneous adipose tissue and visceral adipose tissue and decreased survival in patients with non-small-cell lung cancer and these were associated with higher levels of circulating GDF15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ahmed, D. S., Isnard, S., Lin, J., Routy, B. & Routy, J. P. GDF15/GFRAL pathway as a metabolic signature for cachexia in patients with cancer. J. Cancer 12, 1125–1132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rebbapragada, A., Benchabane, H., Wrana, J. L., Celeste, A. J. & Attisano, L. Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis. Mol. Cell. Biol. 23, 7230 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Queiroz, A. L. et al. Blocking ActRIIB and restoring appetite reverses cachexia and improves survival in mice with lung cancer. Nat. Commun. 13, 1–17 (2022).

    Article  Google Scholar 

  118. Loumaye, A. et al. Role of activin A and myostatin in human cancer cachexia. J. Clin. Endocrinol. Metab. 100, 2030–2038 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Barton, B. E. & Murphy, T. F. Cancer cachexia is mediated in part by the induction of IL-6-like cytokines from the spleen. Cytokine 16, 251–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Webster, J. M., Kempen, L. J. A. P., Hardy, R. S. & Langen, R. C. J. Inflammation and skeletal muscle wasting during cachexia. Front. Physiol. 11, 597675 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Strassmann, G., Masui, Y., Chizzonite, R. & Fong, M. Mechanisms of experimental cancer cachexia local involvement of 11-1 in colon-26 tumor. J. Immunol. 150, 2341–2345 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Stovroff, M. C., Fraker, D. L., Swedenborg, J. A. & Norton, J. A. Cachectin/tumor necrosis factor: a possible mediator of cancer anorexia in the rat. Cancer Res. 48, 4567–4572 (1988).

    CAS  PubMed  Google Scholar 

  123. Wyke, S. M. & Tisdale, M. J. NF-κB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin–proteasome system in skeletal muscle. Br. J. Cancer 92, 711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cai, D. et al. IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell 119, 285–298 (2004). This study showed that activation of NF-κB, through muscle-specific transgenic expression of activated inhibitor of NF-κB kinase subunit β (IKKβ), causes profound muscle wasting in mice.

    Article  CAS  PubMed  Google Scholar 

  125. Patel, H. J. & Patel, B. M. TNF-α and cancer cachexia: molecular insights and clinical implications. Life Sci. 170, 56–63 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Mergenthaler, P., Lindauer, U., Dienel, G. A. & Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 36, 587 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sillos, E. M. et al. Lactic acidosis: a metabolic complication of hematologic malignancies case report and review of the literature. Cancer 92, 2237–46 (2000).

    Article  Google Scholar 

  128. Rampello, E., Fricia, T. & Malaguarnera, M. The management of tumor lysis syndrome. Nat. Clin. Pract. Oncol. 3, 438–447 (2006).

    Article  PubMed  Google Scholar 

  129. Delano, M. J. & Moldawer, L. L. The origins of cachexia in acute and chronic inflammatory diseases. Nutr. Clin. Pract. 21, 68–81 (2006).

    Article  PubMed  Google Scholar 

  130. Lombardi, A., Villa, S., Castelli, V., Bandera, A. & Gori, A. T-cell exhaustion in Mycobacterium tuberculosis and nontuberculous mycobacteria infection: pathophysiology and therapeutic perspectives. Microorganisms 9, 2460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Moldawer, L. L. & Sattler, F. R. Human immunodeficiency virus-associated wasting and mechanisms of cachexia associated with inflammation. Semin. Oncol. 25, 73–81 (1998).

    CAS  PubMed  Google Scholar 

  132. von Kobbe, C. Targeting senescent cells: approaches, opportunities, challenges. Aging 11, 12844 (2019).

    Article  Google Scholar 

  133. Shafqat, S., Chicas, E. A., Shafqat, A. & Hashmi, S. K. The Achilles’ heel of cancer survivors: fundamentals of accelerated cellular senescence. J. Clin. Invest. 132, e158452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 22, 340–355 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Terry, W., Olson, L. G., Ravenscroft, P., Wilss, L. & Boulton-Lewis, G. Hospice patients’ views on research in palliative care. Intern. Med. J. 36, 406–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. White, C. & Hardy, J. What do palliative care patients and their relatives think about research in palliative care? A systematic review. Support. Care Cancer 18, 905–911 (2010).

    Article  PubMed  Google Scholar 

  137. Foster, B., Bagci, U., Mansoor, A., Xu, Z. & Mollura, D. J. A review on segmentation of positron emission tomography images. Comput. Biol. Med. 50, 76–96 (2014).

    Article  PubMed  Google Scholar 

  138. Bera, K., Braman, N., Gupta, A., Velcheti, V. & Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 19, 132–146 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Kaczanowska, S. et al. Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy. Cancer Cell 42, 35–51.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  140. Dutta, S. & Sengupta, P. Men and mice: relating their ages. Life Sci. 152, 244–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25, 487–495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gyawali, B., Hey, S. P. & Kesselheim, A. S. Evaluating the evidence behind the surrogate measures included in the FDA’s table of surrogate endpoints as supporting approval of cancer drugs. eClinicalMedicine 21, 100332 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hong, W. et al. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc. Natl Acad. Sci. USA 112, E5351–E5360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bowden, M. B. et al. Demographic and clinical factors associated with suicide in gastric cancer in the United States. J. Gastrointest. Oncol. 8, 897–901 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zaorsky, N. G. et al. Suicide among cancer patients. Nat. Commun. 10, 1–7 (2019).

    CAS  Google Scholar 

  147. Hu, X. et al. Suicide risk among individuals diagnosed with cancer in the US, 20002016. JAMA Netw. Open 6, e2251863 (2023).

    Google Scholar 

  148. Abdel-Rahman, O. Socioeconomic predictors of suicide risk among cancer patients in the United States: a population-based study. Cancer Epidemiol. 63, 101601 (2019).

    Article  PubMed  Google Scholar 

  149. Pinquart, M. & Duberstein, P. R. Depression and cancer mortality: a meta-analysis. Psychol. Med. 40, 1797–1810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fitzgerald, P. et al. The relationship between depression and physical symptom burden in advanced cancer. BMJ Support. Palliat. Care 5, 381–388 (2015).

    Article  PubMed  Google Scholar 

  151. Chida, Y., Hamer, M., Wardle, J. & Steptoe, A. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat. Clin. Pract. Oncol. 5, 466–475 (2008).

    Article  PubMed  Google Scholar 

  152. He, X. Y. et al. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 42, 474–486.e12 (2024). This study found that chronic stress shifts the normal circadian rhythm of neutrophils resulting in increased neutrophil extracellular trap (NET) formation via glucocorticoid release, resulting in a metastasis-promoting microenvironment.

    Article  CAS  PubMed  Google Scholar 

  153. Fann, J. R., Ell, K. & Sharpe, M. Integrating psychosocial care into cancer services. J. Clin. Oncol. 30, 1178–1186 (2012).

    Article  PubMed  Google Scholar 

  154. Jacobsen, P. B. & Wagner, L. I. A new quality standard: the integration of psychosocial care into routine cancer care. J. Clin. Oncol. 30, 1154–1159 (2012).

    Article  PubMed  Google Scholar 

  155. Gorin, S. S. et al. Meta-analysis of psychosocial interventions to reduce pain in patients with cancer. J. Clin. Oncol. 30, 539–547 (2012).

    Article  Google Scholar 

  156. Li, M. et al. Systematic review and meta-analysis of collaborative care interventions for depression in patients with cancer. Psychooncology 26, 573–587 (2017).

    Article  PubMed  Google Scholar 

  157. Bova, G. S. et al. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications. Mol. Biotechnol. 29, 119–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015). This study found that metastasis-to-metastasis spread was common in prostate cancer evolution and that lesions affecting tumour suppressor genes occurred as single events, whereas mutations in genes involved in androgen receptor signalling commonly involved multiple, convergent events in different metastases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594.e12 (2018). This study examined evolutionary trajectories of 100 renal cancers and found that metastasis competence was driven by chromosome complexity, not by driver mutation load, and that loss of 9p and 14q was a common driver.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Spain, L. et al. Late-stage metastatic melanoma emerges through a diversity of evolutionary pathways. Cancer Discov. 13, 1364–1385 (2023). This study examined evolutionary trajectories of melanoma metastasis and observed frequent whole-genome doubling and widespread loss of heterozygosity, often involving antigen-presentation machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.B. is funded by National Institutes of Health/National Cancer Institute P30 CA008748 and R01-CA245499. K.B. is employed by the UK National Health Service. T.R.C. acknowledges funding support from the National Health and Medical Research Council (NHMRC) Ideas (2000937), Project (1129766, 1140125), Development (2013881) and Fellowship (1158590) schemes, a Cancer Institute NSW Career Development Fellowship (CDF171105), Cancer Council NSW project support (RG19-09, RG23-11) and Susan G. Komen for the Cure (CCR17483294). T.G. is funded by the Cancer Prevention and Research Institute of Texas Grant 00011633. M.J.-H. has received funding from CRUK, NIH National Cancer Institute, IASLC International Lung Cancer Foundation, Lung Cancer Research Foundation, Rosetrees Trust, UKI NETs and NIHR. T.J. acknowledges funding from Cancer Grand Challenges (NIH: 1OT2CA278690-01; CRUK: CGCATF-2021/100019), the Mark Foundation for Cancer Research (20-028-EDV), the Osprey Foundation, Fortune Footwear, Cold Spring Harbour Laboratory (CSHL) and developmental funds from CSHL Cancer Center Support Grant 5P30CA045508. R.K. is funded by the Intramural Research Program, the National Cancer Institute, NIH Clinical Center and the National Institutes of Health (NIH NCI ZIABC011332-06 and NIH NCI ZIABC011334-10). R.L. is supported by a Wellcome Early Career Investigator Award (225724/Z/22/Z). E.S. is supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (CC2040), the UK Medical Research Council (CC2040) and the Wellcome Trust (CC2040) and the European Research Council (ERC Advanced Grant CAN_ORGANISE, Grant agreement number 101019366). E.S. reports personal grants from Mark Foundation and the European Research Council. C.S. is a Royal Society Napier Research Professor (RSRP\R\210001). His work is supported by the Francis Crick Institute that receives its core funding from Cancer Research UK (CC2041), the UK Medical Research Council (CC2041) and the Wellcome Trust (CC2041) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (ERC Advanced Grant PROTEUS Grant agreement number 835297). M.G.V.H. reports support from the Lustgarten Foundation, the MIT Center for Precision Cancer Medicine, the Ludwig Center at MIT and NIH grants R35 CA242379 and P30 CA1405141.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. A.B., K.B., T.R.C., T.G., T.J., C.S., M.G.V.H, R.K., M.J.-H. and E.S. contributed substantially to discussion of the content. T.C., R.L. and E.S. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Thomas R. Cox or Erik Sahai.

Ethics declarations

Competing interests

A.B. is an inventor on pending patents 63/449,817, 63/052,139 as well as awarded patents 11,305,014 and 10,413,522; all issued to the Sloan Kettering Institute. She has received personal fees from Apelis Pharmaceuticals and serves as an unpaid member of the Evren Technologies SAB. K.B., T.R.C., T.G., T.J. and R.K. declare no competing interests. M.J.-H. reports support from Achilles Therapeutics Scientific Advisory Board and Steering Committee, Pfizer, Astex Pharmaceuticals, Oslo Cancer Cluster and Bristol Myers Squibb outside the submitted work. R.L. reports personal fees from Pierre Fabre and has research funding from BMS, Astra Zeneca and Pierre Fabre outside the submitted work. E.S. reports grants from Novartis, Merck Sharp Dohme, AstraZeneca and personal fees from Phenomic outside the submitted work. C.S. reports grants and personal fees from Bristol Myers Squibb, AstraZeneca, Boehringer-Ingelheim, Roche-Ventana, personal fees from Pfizer, grants from Ono Pharmaceutical, Personalis, grants, personal fees and other support from GRAIL, other support from AstraZeneca and GRAIL, personal fees and other support from Achilles Therapeutics, Bicycle Therapeutics, personal fees from Genentech, Medixci, China Innovation Centre of Roche (CiCoR) formerly Roche Innovation Centre, Metabomed, Relay Therapeutics, Saga Diagnostics, Sarah Canon Research Institute, Amgen, GlaxoSmithKline, Illumina, MSD, Novartis, other support from Apogen Biotechnologies and Epic Bioscience outside the submitted work; in addition, C.S. has a patent for PCT/US2017/028013 licensed to Natera Inc., UCL Business, a patent for PCT/EP2016/059401 licensed to Cancer Research Technology, a patent for PCT/EP2016/071471 issued to Cancer Research Technology, a patent for PCT/GB2018/051912 pending, a patent for PCT/GB2018/052004 issued to Francis Crick Institute, University College London, Cancer Research Technology Ltd, a patent for PCT/GB2020/050221 issued to Francis Crick Institute, University College London, a patent for PCT/EP2022/077987 pending to Cancer Research Technology, a patent for PCT/GB2017/053289 licensed, a patent for PCT/EP2022/077987 pending to Francis Crick Institute, a patent for PCT/EP2023/059039 pending to Francis Crick Institute and a patent for PCT/GB2018/051892 pending to Francis Crick Institute. C.S. is Co-chief Investigator of the NHS Galleri trial funded by GRAIL. He is Chief Investigator for the AstraZeneca MeRmaiD I and II clinical trials and Chair of the Steering Committee. C.S. is cofounder of Achilles Therapeutics and holds stock options. M.G.V.H. is a scientific adviser for Agios Pharmaceuticals, iTeos Therapeutics, Sage Therapeutics, Faeth Therapeutics, Droia Ventures and Auron Therapeutics on topics unrelated to the presented work.

Peer review

Peer review information

Nature Reviews Cancer thanks Vickie Baracos, Clare M. Isacke, who co-reviewed with Amanda Fitzpatrick and Erica Sloan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis

An autoimmune encephalitis characterized by complex neuropsychiatric features and the presence of immunoglobulin G (IgG) antibodies against the NR1 subunit of the NMDA receptors in the central nervous system.

Atelectasis

Partial collapse or incomplete inflation of the lung.

Brain herniation

Pressure-induced movement of brain tissue.

Clonal haematopoiesis

An ageing-associated process in which haematopoiesis becomes dominated by one or a small number of genetically distinct stem or progenitor cells. Clonal haematopoiesis is linked to an increased risk of haematological malignancies.

Congestive heart failure

Inability of the heart to pump blood properly.

Coronary vasospasm

Constriction of the arteries that supply blood to the heart.

Corticotropin-releasing hormone

(CRH). One of the major factors that drives the response of the body to stress.

Disseminated intravascular coagulation

(DIC). A rare but serious condition in which abnormal blood clotting occurs throughout the blood vessels of the body.

Encephalitis

Inflammation of the brain.

Fistula

An abnormal connection that forms between two body parts, such as an organ or blood vessel and another often unrelated structure in close proximity.

Guillain–Barré syndrome

A rare disorder in which the immune system of a body attacks the nerves, which can lead to paralysis.

Haemostasis

The stopping of flow of blood, typically associated with the bodies response to prevent and stop bleeding.

Hydrocephalus

A build-up of fluid within the cavities of the brain.

Hypercalcaemia

Elevated calcium levels in the blood, often caused by overactive parathyroid glands. Hypercalcaemia is linked to kidney stones, weakened bones, altered digestion and potentially altered cardiac and brain function.

Hyperprogressive disease

(HPD). Rapid tumour progression sometimes observed during immune checkpoint inhibitor treatment.

Hyponatraemia

The condition that occurs when the level of sodium in the blood is low.

Iatrogenic effects

Harm, which is often unavoidable, caused by cancer treatments.

Immunoparesis

The marked suppression of polyclonal immunoglobulins in the body.

Lambert–Eaton myasthenic syndrome

(LEMS). A neuromuscular junction disorder affecting communication between nerves and muscles, which manifests as a result of a paraneoplastic syndrome or a primary autoimmune disorder. Many cases are associated with small-cell lung cancer.

Leptomeningeal metastases

When cancer cells spread to the tissue layers covering the brain and spinal cord (the leptomeninges).

Lung oedema

Also known as pulmonary oedema is a condition caused by excess fluid in the lungs. This fluid collects in the alveoli compromising function and making it difficult to breathe.

Midline shift

The observation of displacement of brain tissue across the centre line of the brain, suggestive of uneven intracranial pressure.

Myocardial infarction

Decreased blood flow to the myocardium, commonly called a heart attack.

Myocarditis

Inflammation specifically of the middle layer of the heart wall.

Paraneoplastic syndromes

A group of rare disorders that occur when the immune system reacts to changes in the body triggered by the presence of a neoplasm.

Peripheral nervous system

A dense network of nerves that transmit information from the brain (efferent neurons) to the periphery and conversely transmit information from the periphery to the brain (afferent neurons). A component of the peripheral nervous system is the autonomic nervous system.

Pleural effusion

A build-up of fluid between the tissues that line the lungs and the chest wall.

Sarcopenia

A condition characterized by loss of skeletal muscle mass and function.

Thromboembolism

The lodging of a circulating blood clot within a vessel leading to obstruction. Thromboembolisms may occur in veins (venous thromboembolism) and arteries (arterial thromboembolism).

Tissue factor

A key component of the pathway regulating blood clotting, specifically the receptor and cofactor for factor VII/VIIa.

Tumour lysis syndrome

A syndrome occurs when tumour cells release their contents into the bloodstream, either spontaneously or more typically, in response to therapeutic intervention.

Wearable technologies

Devices worn on the body, typically in the form of accessories or clothing, that incorporate advanced electronics and technology to monitor, track or enhance various aspects of human life. Examples include smartwatches and fitness trackers.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boire, A., Burke, K., Cox, T.R. et al. Why do patients with cancer die?. Nat Rev Cancer (2024). https://doi.org/10.1038/s41568-024-00708-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41568-024-00708-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer