Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Worldwide greenhouse gas emissions of green hydrogen production and transport

Abstract

Large-scale introduction of green hydrogen is envisioned to play an important role in reaching net-zero greenhouse gas emissions. The production and transport of green hydrogen itself is, however, not free from emissions. Here we assess the life-cycle greenhouse gas emissions for 1,025 planned green hydrogen facilities, covering different electrolyser technologies and renewable electricity sources in 72 countries. We demonstrate that the current exclusion of life-cycle emissions of renewables, component manufacturing and hydrogen leakage in regulations gives a false impression that green hydrogen can easily meet emission thresholds. Evaluating different hydrogen production configurations, we find median production emissions in the most optimistic configuration of 2.9 kg CO2 equivalents (CO2e) kg H2−1 (0.8–4.6 kgCO2e kg H2−1, 95% confidence interval). Including 1,000 km transport via pipeline or liquid hydrogen shipping adds another 1.5 or 1.8 kgCO2e kg H2−1, respectively. We conclude that achieving low-emission green hydrogen at scale requires well-chosen production configurations with substantial emission reductions along the supply chain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Contribution of production steps to the overall GHG emissions of green hydrogen produced from various electricity sources.
Fig. 2: Relation between green hydrogen production GHG emissions and electricity source and production configuration.
Fig. 3: Spatial variation in cradle-to-production gate GHG emissions of green hydrogen produced with wind and solar power.
Fig. 4: Contributions of production, conversion, transport, reconversion and storage to cradle-to-point of delivery emissions of green hydrogen.
Fig. 5: GHG emissions of green hydrogen production and transport over increasing transport distances.
Fig. 6: GHG emission–supply curves for green hydrogen.

Similar content being viewed by others

Data availability

All data used to produce the outputs presented in this paper can be accessed via Zenodo (https://doi.org/10.5281/zenodo.11203454)85. We used publicly available data from the IEA Hydrogen Projects Database (version of October 2022) for hydrogen facility-specific information on electricity source, electrolyser technology, location and project size (accessible via https://www.iea.org/data-andstatistics/data-product/hydrogen-projects-database). For the calculation of location-specific emissions of solar electricity, we used the solar irradiance map available from Global Solar Atlas 2.0, a free, web-based application developed and operated by the company Solargis s.r.o. on behalf of the World Bank Group, utilizing Solargis data, with funding provided by the Energy Sector Management Assistance Program (ESMAP). For additional information, see https://globalsolaratlas.info. For the calculation of location-specific emissions of wind electricity, we used wind speed maps available from the Global Wind Atlas 3.0, a free, web-based application developed, owned and operated by the Technical University of Denmark (DTU). The Global Wind Atlas 3.0 is released in partnership with the World Bank Group, utilizing data provided by Vortex, using funding provided by the Energy Sector Management Assistance Program (ESMAP). For additional information, see https://globalwindatlas.info. To calculate the emissions of wind electricity based on wind speed and the onshore and offshore location, we created a generalized linear model based on wind turbine data from https://doi.org/10.1111/jiec.13325 (ref. 24). We used the GHG intensities of national 2030 grid mixes modelled for a 2 °C policy scenario published by Knobloch et al. 26 at https://doi.org/10.1038/s41893-020-0488-7. For calculating sea water desalination requirements, we used publicly available data on country-level water stress scores from the World Resources Institute (https://doi.org/10.46830/writn.18.00146)27.

Code availability

All code used to produce the outputs presented in this paper can be accessed via Zenodo (https://doi.org/10.5281/zenodo.11203454)85.

References

  1. Global Hydrogen Review 2022. International Energy Agency https://doi.org/10.1787/39351842-en (2022).

  2. Global Hydrogen Trade to Meet the 1.5 °C Climate Goal: Part IITechnology Review of Hydrogen Carriers (International Renewable Energy Agency, 2022).

  3. Inflation Reduction Act of 2022, H.R.5376, 117th Cong. (US House of Representatives, 2022).

  4. Net Zero Ambition Progress Update (BP, 2023).

  5. Proposal for a Regulation of the European Parliament and of the Council on Establishing a Framework of Measures for Strengthening Europe’s Net-Zero Technology Products Manufacturing Ecosystem (Net Zero Industry Act). COM(2023) 161 Final (European Commission, 2023).

  6. G20 Energy Transitions Ministers. G20 Energy Transitions Ministers’ Meeting Outcome Document and Chair’s Summary, 22 July 2023, Goa, India (The Government of India, 2023).

  7. Babiker, M. et al. Cross-sectoral perspectives. In Climate Change 2022: Mitigation of Climate change. Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) Ch. 12 (Cambridge Univ. Press, 2022).

  8. Geopolitics of the Energy Transformation: The Hydrogen Factor (International Renewable Energy Agency, 2022).

  9. Van de Graaf, T., Overland, I., Scholten, D. & Westphal, K. The new oil? The geopolitics and international governance of hydrogen. Energy Res. Soc. Sci. 70, 101667 (2020).

    Article  Google Scholar 

  10. Towards Hydrogen Definitions Based on Their Emissions Intensity (International Energy Agency, 2023).

  11. Bareiß, K., de la Rua, C., Möckl, M. & Hamacher, T. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Appl. Energy 237, 862–872 (2019).

    Article  Google Scholar 

  12. Mac Dowell, N. et al. The hydrogen economy: a pragmatic path forward. Joule 5, 2524–2529 (2021).

    Article  Google Scholar 

  13. Gerloff, N. Comparative life-cycle-assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. J. Energy Storage 43, 102759 (2021).

    Article  Google Scholar 

  14. Terlouw, T., Bauer, C., McKenna, R. & Mazzotti, M. Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy Environ. Sci. 15, 3583–3602 (2022).

    Article  Google Scholar 

  15. Tsiklios, C., Hermesmann, M. & Müller, T. E. Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and environmental assessment of repurposed and new pipeline configurations. Appl. Energy 327, 120097 (2022).

    Article  Google Scholar 

  16. Al-Breiki, M. & Bicer, Y. Investigating the technical feasibility of various energy carriers for alternative and sustainable overseas energy transport scenarios. Energy Convers. Manag. 209, 112652 (2020).

    Article  Google Scholar 

  17. Vilbergsson, K. V. et al. Can remote green hydrogen production play a key role in decarbonizing Europe in the future? A cradle-to-gate LCA of hydrogen production in Austria, Belgium, and Iceland. Int. J. Hydrogen Energy https://doi.org/10.1016/j.ijhydene.2023.01.081 (2023).

  18. Ishimoto, Y. et al. Large-scale production and transport of hydrogen from Norway to Europe and Japan: value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers. Int. J. Hydrog. Energy 45, 32865–32883 (2020).

    Article  Google Scholar 

  19. Velazquez Abad, A. & Dodds, P. E. Green hydrogen characterisation initiatives: definitions, standards, guarantees of origin, and challenges. Energy Policy 138, 111300 (2020).

    Article  Google Scholar 

  20. Lebrouhi, B. E., Djoupo, J. J., Lamrani, B., Benabdelaziz, K. & Kousksou, T. Global hydrogen development—a technological and geopolitical overview. Int. J. Hydrog. Energy 47, 7016–7048 (2022).

    Article  Google Scholar 

  21. Odenweller, A., Ueckerdt, F., Nemet, G. F., Jensterle, M. & Luderer, G. Probabilistic feasibility space of scaling up green hydrogen supply. Nat. Energy 7, 854–865 (2022).

    Article  Google Scholar 

  22. Hydrogen Projects Database. International Energy Agency https://www.iea.org/data-and-statistics/data-product/hydrogen-projects-database (2022).

  23. Bosmans, J. H. C. C., Dammeier, L. C. & Huijbregts, M. A. J. J. Greenhouse gas footprints of utility-scale photovoltaic facilities at the global scale. Environ. Res. Lett. 16, 094056 (2021).

    Article  Google Scholar 

  24. Dammeier, L. C., Bosmans, J. H. C. & Huijbregts, M. A. J. Variability in greenhouse gas footprints of the global wind farm fleet. J. Ind. Ecol. 27, 272–282 (2023).

    Article  Google Scholar 

  25. Kadiyala, A., Kommalapati, R. & Huque, Z. Evaluation of the life cycle greenhouse gas emissions from hydroelectricity generation systems. Sustainability 8, 1–14 (2016).

    Google Scholar 

  26. Knobloch, F. et al. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nat. Sustain. 3, 437–447 (2020).

    Article  Google Scholar 

  27. Hofste, R. et al. Aqueduct 3.0: updated decision-relevant global water risk indicators. World Resources Institute https://doi.org/10.46830/writn.18.00146. (2019)

  28. Palmer, G., Roberts, A., Hoadley, A., Dargaville, R. & Honnery, D. Life-cycle greenhouse gas emissions and net energy assessment of large-scale hydrogen production via electrolysis and solar PV. Energy Environ. Sci. 14, 5113–5131 (2021).

    Article  Google Scholar 

  29. Kolb, S., Müller, J., Luna-Jaspe, N. & Karl, J. Renewable hydrogen imports for the German energy transition—a comparative life cycle assessment. J. Clean. Prod. 373, 133289 (2022).

  30. Schill, W. P. Residual load, renewable surplus generation and storage requirements in Germany. Energy Policy 73, 65–79 (2014).

    Article  Google Scholar 

  31. Daggash, H. A. et al. Closing the carbon cycle to maximise climate change mitigation: power-to-methanol vs. power-to-direct air capture. Sustain. Energy Fuels 2, 1153–1169 (2018).

    Article  Google Scholar 

  32. Sternberg, A. & Bardow, A. Power-to-what?—Environmental assessment of energy storage systems. Energy Environ. Sci. 8, 389–400 (2015).

    Article  Google Scholar 

  33. Reuß, M., Grube, T., Robinius, M. & Stolten, D. A hydrogen supply chain with spatial resolution: comparative analysis of infrastructure technologies in Germany. Appl. Energy 247, 438–453 (2019).

    Article  Google Scholar 

  34. Bauer, C. et al. On the climate impacts of blue hydrogen production. Sustain. Energy Fuels 6, 66–75 (2022).

    Article  Google Scholar 

  35. Tahan, M. R. Recent advances in hydrogen compressors for use in large-scale renewable energy integration. Int. J. Hydrog. Energy 47, 35275–35292 (2022).

    Article  Google Scholar 

  36. Ocko, I. B. & Hamburg, S. P. Climate consequences of hydrogen emissions. Atmos. Chem. Phys. 22, 9349–9368 (2022).

    Article  Google Scholar 

  37. Warwick, N. et al. Atmospheric implications of increased hydrogen use. Department of Business, Energy and Industrial Strategy https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1067144/atmospheric-implications-of-increased-hydrogen-use.pdf#:~:text=%60Atmospheric implications of increased hydrogen use An increase,stratospheric %28%3E40 (2022).

  38. Pressure drop in pipelines transporting compressed hydrogen gas. Fraunhofer IFF https://doi.org/10.13140/RG.2.2.17431.96168 (2023).

  39. Wijayanta, A. T., Oda, T., Purnomo, C. W., Kashiwagi, T. & Aziz, M. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review. Int. J. Hydrog. Energy 44, 15026–15044 (2019).

    Article  Google Scholar 

  40. Al-Breiki, M. & Bicer, Y. Comparative life cycle assessment of sustainable energy carriers including production, storage, overseas transport and utilization. J. Clean. Prod. 279, 123481 (2021).

    Article  Google Scholar 

  41. Global Hydrogen Review 2021. International Energy Agency https://doi.org/10.1787/39351842-en (2021).

  42. Tracking Clean Energy Progress 2023. International Energy Agency https://www.iea.org/reports/tracking-clean-energy-progress-2023 (2023).

  43. Forster, P. M. et al. Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 15, 2295–2327 (2023).

    Article  Google Scholar 

  44. Rogelj, J. et al. Credibility gap in net-zero climate targets leaves world at high risk. Science 380, 1014–1016 (2023).

    Article  Google Scholar 

  45. European Commission. Commission Delegated Regulation (EU) 2023/1185 of 10 February 2023 supplementing Directive (EU) 2018/2001 of the European Parliament and of the Council by Establishing a Minimum Threshold for Greenhouse Gas Emissions Savings of Recycled Ccarbon Fuels and by Specifying a Methodology for Assessing Greenhouse Gas Emissions Savings from Renewable Liquid and Gaseous Transport Fuels of Non-Biological Origin and from Recycled Carbon Fuels (2023).

  46. U.S. Department of Energy Clean Hydrogen Production Standard (CHPS) Draft Guidance. US Department of Energy https://www.hydrogen.energy.gov/clean-hydrogen-production-standard.html (2023).

  47. de Kleijne, K., de Coninck, H., van Zelm, R., Huijbregts, M. A. J. & Hanssen, S. V. The many greenhouse gas footprints of green hydrogen. Sustain. Energy Fuels 6, 4383–4387 (2022).

    Article  Google Scholar 

  48. Dillman, K. & Heinonen, J. Towards a safe hydrogen economy: an absolute climate sustainability assessment of hydrogen production. Climate 11, 1–18 (2023).

    Article  Google Scholar 

  49. Cheng, W. & Lee, S. How green are the national hydrogen strategies? Sustainability 14, 1–33 (2022).

    Google Scholar 

  50. Dillman, K. J. & Heinonen, J. A. ‘Just’ hydrogen economy: a normative energy justice assessment of the hydrogen economy. Renew. Sustain. Energy Rev. 167, 112648 (2022).

    Article  Google Scholar 

  51. Scita, R., Raimondi, P. P. & Noussan, M. Green hydrogen: the holy grail of decarbonisation? An analysis of the technical and geopolitical implications of the future hydrogen economy. FEEM Working Paper no. 13.2020 (2020).

  52. Vogl, V., Åhman, M. & Nilsson, L. J. Assessment of hydrogen direct reduction for fossil-free steelmaking. J. Clean. Prod. 203, 736–745 (2018).

    Article  Google Scholar 

  53. Osman, A. I. et al. Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20, 153–188 (2022).

    Article  Google Scholar 

  54. Vartiainen, E. et al. True cost of solar hydrogen. Sol. RRL 6, 2100487 (2022).

    Article  Google Scholar 

  55. Devlin, A., Kossen, J., Goldie-Jones, H. & Yang, A. Global green hydrogen-based steel opportunities surrounding high quality renewable energy and iron ore deposits. Nat. Commun. 14, 2578 (2023).

    Article  Google Scholar 

  56. Smolinka, T. et al. Studie IndWEDe: Industrialisierung der Wasserelektrolyse in Deutschland: Chancen und Herausforderungen für nachhaltigen Wasserstoff für Verkehr, Strom und Wärme. Fraunhofer https://www.ipa.fraunhofer.de/de/Publikationen/studien/studie-indWEDe.html (2018).

  57. Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S. J. & Ulgiati, S. Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies. Environments 5, 24 (2018).

  58. Brigljević, B. et al. When bigger is not greener: ensuring the sustainability of power-to-gas hydrogen on a national scale. Environ. Sci. Technol. 56, 12828–12837 (2022).

    Article  Google Scholar 

  59. Integration of Hydrohub gigawatt electrolysis facilities in five industrial clusters in the Netherlands. Hydrohub https://ispt.eu/media/ISPT-samenvattend-rapport-GigaWatt-online-def.pdf (2020).

  60. Schmidt, T. S. et al. Additional emissions and cost from storing electricity in stationary battery systems. Environ. Sci. Technol. 53, 3379–3390 (2019).

    Article  Google Scholar 

  61. Bauer, C. et al. Electricity storage and hydrogen—technologies, costs and impacts on climate change. Paul Scherrer Institut https://www.psi.ch/de/media/72878/download?attachment (2022).

  62. Lenzen, M. Life cycle energy and greenhouse gas emissions of nuclear energy: a review. Energy Convers. Manag. 49, 2178–2199 (2008).

    Article  Google Scholar 

  63. IPCC. Technology-specific cost and performance parameters. In Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report (ed. Intergovernmental Panel on Climate Change) 1329–1356 (Cambridge Univ. Press, 2015).

  64. Pomponi, F. & Hart, J. The greenhouse gas emissions of nuclear energy—life cycle assessment of a European pressurised reactor. Appl. Energy 290, 116743 (2021).

    Article  Google Scholar 

  65. Davis, N. et al. Global Wind Atlas v3. DTU https://doi.org/10.11583/DTU.9420803.v1 (2019).

  66. Bosmans, J. H. C., Dammeier, L. C. & Huijbregts, M. A. J. Corrigendum: greenhouse gas footprints of utility-scale photovoltaic facilities at the global scale (2021 Environ. Res. Lett. 16 094056). Environ. Res. Lett. 18, 059501 (2023).

    Article  Google Scholar 

  67. Global photovoltaic power potential by country. ESMAP http://documents.worldbank.org/curated/en/466331592817725242/Global-Photovoltaic-Power-Potential-by-Country (2020).

  68. Documentation: methodology. Solargis https://solargis.com/docs/methodology (2023).

  69. Bosmans, J. et al. Determinants of the distribution of utility-scale photovoltaic power facilities across the globe. Environ. Res. Lett. 17, 114006 (2022).

    Article  Google Scholar 

  70. Uusitalo, V., Väisänen, S., Inkeri, E. & Soukka, R. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis. Energy Convers. Manag. 134, 125–134 (2017).

    Article  Google Scholar 

  71. Koj, J. C., Wulf, C., Linssen, J., Schreiber, A. & Zapp, P. Utilisation of excess electricity in different power-to-transport chains and their environmental assessment. Transp. Res. Part D 64, 23–35 (2018).

    Article  Google Scholar 

  72. Rumayor, M., Dominguez-Ramos, A. & Irabien, A. Formic acid manufacture: carbon dioxide utilization alternatives. Appl. Sci. 8, 914 (2018).

    Article  Google Scholar 

  73. Bareschino, P. et al. Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization. Renew. Sustain. Energy Rev. 130, 109962 (2020).

    Article  Google Scholar 

  74. Sternberg, A. & Bardow, A. Life cycle assessment of power-to-gas: syngas vs methane. ACS Sustain. Chem. Eng. 4, 4156–4165 (2016).

    Article  Google Scholar 

  75. Meylan, F. D., Piguet, F. P. & Erkman, S. Power-to-gas through CO2 methanation: assessment of the carbon balance regarding EU directives. J. Energy Storage 11, 16–24 (2017).

    Article  Google Scholar 

  76. Biernacki, P., Röther, T., Paul, W., Werner, P. & Steinigeweg, S. Environmental impact of the excess electricity conversion into methanol. J. Clean. Prod. 191, 87–98 (2018).

    Article  Google Scholar 

  77. Jens, C. M., Müller, L., Leonhard, K. & Bardow, A. To Integrate or not to integrate—techno-economic and life cycle assessment of CO2 capture and conversion to methyl formate using methanol. ACS Sustain. Chem. Eng. 7, 12270–12280 (2019).

    Google Scholar 

  78. d’Amore-Domenech, R., Meca, V. L., Pollet, B. G. & Leo, T. J. On the bulk transport of green hydrogen at sea: comparison between submarine pipeline and compressed and liquefied transport by ship. Energy 267, 126621 (2023).

    Article  Google Scholar 

  79. Stolzenburg, K. & Mubbala, R. Integrated design for demonstration of efficient liquefaction of hydrogen (IDEALHY). Fuel Cells and Hydrogen Joint Undertaking (FCH JU). IDEALHY https://www.idealhy.eu/uploads/documents/IDEALHY_D3-16_Liquefaction_Report_web.pdf (2013).

  80. Egerer, J., Grimm, V., Niazmand, K. & Runge, P. The economics of global green ammonia trade—‘Shipping Australian wind and sunshine to Germany’. SSRN Electron. J. 334, 120662 (2022).

    Google Scholar 

  81. Armijo, J. & Philibert, C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina. Int. J. Hydrog. Energy 45, 1541–1558 (2020).

    Article  Google Scholar 

  82. McKinlay, C. J., Turnock, S. R. & Hudson, D. A. Route to zero emission shipping: hydrogen, ammonia or methanol? Int. J. Hydrog. Energy 46, 28282–28297 (2021).

    Article  Google Scholar 

  83. European Commission Commission Delegated Regulation (EU) 2021/2139 of 4 June 2021. Off. J. Eur. Union 442, 1–349 (2021).

    Google Scholar 

  84. Wang, M. et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes? Energy Environ. Sci. 14, 2535–2548 (2021).

    Article  Google Scholar 

  85. de Kleijne, K. et al. Data and code for ‘Worldwide greenhouse gas emissions of green hydrogen production and transport’. Zenodo https://doi.org/10.5281/zenodo.11203454 (2024).

Download references

Acknowledgements

M.A.J.H. was financed by Grant 016.Vici.170.190 from the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

K.d.K., S.V.H., M.A.J.H. and H.d.C. conceived and designed the study; K.d.K. performed the research; K.d.K. analysed the data with contributions from S.V.H., M.A.J.H. and J.P.H.; K.d.K., S.V.H. and F.K. wrote the manuscript; K.d.K., M.A.J.H., F.K., R.v.Z., J.P.H., H.d.C. and S.V.H. provided revisions to the manuscript.

Corresponding authors

Correspondence to Kiane de Kleijne or Steef V. Hanssen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Kevin Dillman, Petra Zapp and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–6 and Tables 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Kleijne, K., Huijbregts, M.A.J., Knobloch, F. et al. Worldwide greenhouse gas emissions of green hydrogen production and transport. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41560-024-01563-1

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene