Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Habitat amount modulates biodiversity responses to fragmentation

Abstract

Anthropogenic habitat destruction leads to habitat loss and fragmentation, both of which interact to determine how biodiversity changes at the landscape level. While the detrimental effects of habitat loss are clear, there is a long-standing debate about the role of habitat fragmentation per se. We identify the influence of the total habitat amount lost as a modulator of the relationship between habitat fragmentation and biodiversity. Using a simple metacommunity model characterized by colonization–competition (C–C) trade-offs, we show that the magnitude of habitat loss can induce a unimodal response of biodiversity to habitat fragmentation. When habitat loss is low, habitat fragmentation promotes coexistence by suppressing competitively dominant species, while habitat fragmentation at high levels of habitat loss can shape many smaller isolated patches that drive extinctions of superior competitors. While the C–C trade-off is not the only mechanism for biodiversity maintenance, the modulation of habitat fragmentation effects by habitat loss is probably common. Reanalysis of a globally distributed dataset of fragmented animal and plant metacommunities shows an overall pattern that supports this hypothesis, suggesting a resolution to the debate regarding the relative importance of positive versus negative fragmentation effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Species richness as a function of mean patch size at the same total habitat amount.
Fig. 2: Average species relative abundances as a function of mean patch size on the landscape scale.
Fig. 3: Species richness as a function of mean patch size at steady state.
Fig. 4: Empirical analysis of biodiversity responses to mean patch size.

Similar content being viewed by others

Data availability

All empirical data are already published and publicly available on Zenodo at https://doi.org/10.5281/zenodo.3862409 (ref. 19).

Code availability

All numerical simulation code is available on Zenodo at https://doi.org/10.5281/zenodo.10462497 (ref. 94).

References

  1. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    Article  PubMed  Google Scholar 

  3. Pimm, S. L. & Askins, R. A. Forest losses predict bird extinctions in eastern North America. Proc. Natl Acad. Sci. USA 92, 9343–9347 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kinzig, A. P. & Harte, J. Implications of endemics–area relationships for estimates of species extinctions. Ecology 81, 3305–3311 (2000).

    Google Scholar 

  5. He, F. & Hubbell, S. P. Species–area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–371 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Article  Google Scholar 

  7. Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

    Article  Google Scholar 

  8. Rybicki, J. & Hanski, I. Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 16, 27–38 (2013).

    Article  PubMed  Google Scholar 

  9. Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).

    Article  PubMed  Google Scholar 

  11. Lindenmayer, D. B. & Fischer, J. Tackling the habitat fragmentation panchreston. Trends Ecol. Evol. 22, 127–132 (2007).

    Article  PubMed  Google Scholar 

  12. Villard, M. A. & Metzger, J. P. Review: beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J. Appl. Ecol. 51, 309–318 (2014).

    Article  Google Scholar 

  13. Hanski, I. Habitat fragmentation and species richness. J. Biogeogr. 42, 989–993 (2015).

    Article  Google Scholar 

  14. Rosenzweig, M. L. Reconciliation ecology and the future of species diversity. Oryx 37, 194–205 (2003).

    Article  Google Scholar 

  15. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).

    Article  Google Scholar 

  17. Fahrig, L. et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 230, 179–186 (2019).

    Article  Google Scholar 

  18. Fletcher, R. J. Jr et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15 (2018).

    Article  Google Scholar 

  19. Riva, F. & Fahrig, L. Landscape-scale habitat fragmentation is positively related to biodiversity, despite patch-scale ecosystem decay. Ecol. Lett. 26, 268–277 (2023).

    Article  PubMed  Google Scholar 

  20. Fletcher, R. J. Jr et al. Addressing the problem of scale that emerges with habitat fragmentation. Glob. Ecol. Biogeogr. 32, 828–841 (2023).

    Article  Google Scholar 

  21. Diamond, J. M. The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol. Conserv. 7, 129–145 (1975).

    Article  Google Scholar 

  22. Bender, D. J., Contreras, T. A. & Fahrig, L. Habitat loss and population decline: a meta-analysis of the patch size effect. Ecology 79, 517–533 (1998).

    Article  Google Scholar 

  23. Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).

    Article  CAS  Google Scholar 

  24. Hanski, I. Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40, 248–255 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Haddad, N. M. et al. Habitat fragmentation and its lasting impact on earth. Sci. Adv. 1, e1500052 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. Vol. 1. Monographis in Population Biology (Princeton Univ. Press, 1967).

  28. Honnay, O. et al. Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecol. Lett. 5, 525–530 (2002).

    Article  Google Scholar 

  29. Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Mortelliti, A., Amori, G. & Boitani, L. The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163, 535–547 (2010).

    Article  PubMed  Google Scholar 

  31. Seabloom, E. W., Dobson, A. P. & Stoms, D. M. Extinction rates under nonrandom patterns of habitat loss. Proc. Natl Acad. Sci. USA 99, 11229–11234 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tilman, D., Lehman, C. L. & Yin, C. Habitat destruction, dispersal, and deterministic extinction in competitive communities. Am. Nat. 149, 407–435 (1997).

    Article  Google Scholar 

  33. Groppe, K., Steinger, T., Schmid, B., Baur, B. & Boller, T. Effects of habitat fragmentation on choke disease (Epichloë bromicola) in the grass Bromus erectus. J. Ecol. 89, 247–255 (2001).

    Article  Google Scholar 

  34. González-Gómez, P. L., Estades, C. F. & Simonetti, J. A. Strengthened insectivory in a temperate fragmented forest. Oecologia 148, 137–143 (2006).

    Article  PubMed  Google Scholar 

  35. Arnold, J. P. & Fonseca, C. R. Herbivory, pathogens, and epiphylls in Araucaria Forest and ecologically-managed tree monocultures. For. Ecol. Manage. 262, 1041–1046 (2011).

    Article  Google Scholar 

  36. Cordeiro, N. J. & Howe, H. F. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc. Natl Acad. Sci. USA 100, 14052–14056 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodríguez-Cabal, M. A., Aizen, M. A. & Novaro, A. J. Habitat fragmentation disrupts a plant–disperser mutualism in the temperate forest of South America. Biol. Conserv. 139, 195–202 (2007).

    Article  Google Scholar 

  38. Marjakangas, E. L. et al. Fragmented tropical forests lose mutualistic plant–animal interactions. Divers. Distrib. 26, 154–168 (2020).

    Article  Google Scholar 

  39. Fahrig, L. Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol. Appl. 12, 346–353 (2002).

    Google Scholar 

  40. Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. R. Soc. B 284, 20170507 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Arroyo‐Rodríguez, V. et al. Multiple successional pathways in human‐modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 92, 326–340 (2017).

    Article  PubMed  Google Scholar 

  42. Henle, K., Davies, K. F., Kleyer, M., Margules, C. & Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251 (2004).

    Article  Google Scholar 

  43. Rybicki, J., Abrego, N. & Ovaskainen, O. Habitat fragmentation and species diversity in competitive communities. Ecol. Lett. 23, 506–517 (2020).

    Article  PubMed  Google Scholar 

  44. Kruess, A. & Tscharntke, T. Habitat fragmentation, species loss, and biological control. Science 264, 1581–1584 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. May, F., Rosenbaum, B., Schurr, F. M. & Chase, J. M. The geometry of habitat fragmentation: effects of species distribution patterns on extinction risk due to habitat conversion. Ecol. Evol. 9, 2775–2790 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Arroyo‐Rodríguez, V. et al. Designing optimal human‐modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).

    Article  PubMed  Google Scholar 

  47. Arroyo‐Rodríguez, V. et al. Preserving 40% forest cover is a valuable and well‐supported conservation guideline: reply to Banks‐Leite et al. Ecol. Lett. 24, 1114–1116 (2021).

    Article  PubMed  Google Scholar 

  48. Banks‐Leite, C., Larrosa, C., Carrasco, L. R., Tambosi, L. R. & Milner‐Gulland, E. J. The suggestion that landscapes should contain 40% of forest cover lacks evidence and is problematic. Ecol. Lett. 24, 1112–1113 (2021).

    Article  PubMed  Google Scholar 

  49. Riva, F. & Fahrig, L. The disproportionately high value of small patches for biodiversity conservation. Conserv. Lett. 15, e12881 (2022).

    Article  Google Scholar 

  50. Chase, J. M. et al. FragSAD: a database of diversity and species abundance distributions from habitat fragments. Ecology 100, 2861 (2019).

    Article  Google Scholar 

  51. Watling, J. I. et al. Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecol. Lett. 23, 674–681 (2020).

    Article  PubMed  Google Scholar 

  52. Soranno, P. A. et al. Cross-scale interactions: quantifying multi-scaled cause–effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).

    Article  Google Scholar 

  53. Prevedello, J. A., Gotelli, N. J. & Metzger, J. P. A stochastic model for landscape patterns of biodiversity. Ecol. Monogr. 86, 462–479 (2016).

    Article  Google Scholar 

  54. Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. Species–fragmented area relationship. Proc. Natl Acad. Sci. USA 110, 12715–12720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).

    Article  Google Scholar 

  56. Pardini, R., de Arruda Bueno, A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Loke, L. H. L., Chisholm, R. A. & Todd, P. A. Effects of habitat area and spatial configuration on biodiversity in an experimental intertidal community. Ecology 100, e02757 (2019).

    Article  PubMed  Google Scholar 

  58. Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).

    Article  Google Scholar 

  59. Yu, D. W. & Wilson, H. B. The competition–colonization trade-off is dead; long live the competition–colonization trade-off. Am. Nat. 158, 49–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Calcagno, V., Mouquet, N., Jarne, P. & David, P. Coexistence in a metacommunity: the competition–colonization trade‐off is not dead. Ecol. Lett. 9, 897–907 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Liao, J., Barabás, G. & Bearup, D. Competition–colonization dynamics and multimodality in diversity–disturbance relationships. Ecology 103, e3672 (2022).

    Article  PubMed  Google Scholar 

  62. Zhang, H. et al. Complex nonmonotonic responses of biodiversity to habitat destruction. Ecology 104, e4177 (2023).

    Article  PubMed  Google Scholar 

  63. Hiebeler, D. Populations on fragmented landscapes with spatially structured heterogeneities: landscape generation and local dispersal. Ecology 81, 1629–1641 (2000).

    Article  Google Scholar 

  64. Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).

    Article  Google Scholar 

  65. Plitzko, S. J. & Drossel, B. The effect of dispersal between patches on the stability of large trophic food webs. Theor. Ecol. 8, 233–244 (2015).

    Article  Google Scholar 

  66. Rojas-Echenique, J. R. & Allesina, S. Interaction rules affect species coexistence in intransitive networks. Ecology 92, 1174–1180 (2011).

    Article  PubMed  Google Scholar 

  67. Laird, R. A. & Schamp, B. S. Competitive intransitivity promotes species coexistence. Am. Nat. 168, 182–193 (2006).

    Article  PubMed  Google Scholar 

  68. Laird, R. A. & Schamp, B. S. Does local competition increase the coexistence of species in intransitive networks? Ecology 89, 237–247 (2008).

    Article  PubMed  Google Scholar 

  69. Soliveres, S. et al. Intransitive competition is widespread in plant communities and maintains their species richness. Ecol. Lett. 18, 790–798 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gallien, L., Zimmermann, N. E., Levine, J. M., Adler, P. B. & Wootton, T. The effects of intransitive competition on coexistence. Ecol. Lett. 20, 791–800 (2017).

    Article  PubMed  Google Scholar 

  71. Simberloff, D. S. & Abele, L. G. Island biogeography theory and conservation practice. Science 191, 285–286 (1976).

    Article  CAS  PubMed  Google Scholar 

  72. Simberloff, D. S. & Abele, L. G. Refuge design and island biogeographic theory: effects of fragmentation. Am. Nat. 120, 41–50 (1982).

    Article  Google Scholar 

  73. Fahrig, L. et al. Resolving the SLOSS dilemma for biodiversity conservation: a research agenda. Biol. Rev. 97, 99–114 (2022).

    Article  PubMed  Google Scholar 

  74. Chase, J. M. Towards a really unified theory for metacommunities. Funct. Ecol. 19, 182–186 (2005).

    Article  Google Scholar 

  75. Thompson, P. L. et al. A process‐based metacommunity framework linking local and regional scale community ecology. Ecol. Lett. 23, 1314–1329 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Guzman, L. M. et al. Accounting for temporal change in multiple biodiversity patterns improves the inference of metacommunity processes. Ecology 103, e3683 (2022).

    Article  PubMed  Google Scholar 

  77. Mouquet, N. & Loreau, M. Community patterns in source–sink metacommunities. Am. Nat. 162, 544–557 (2003).

    Article  PubMed  Google Scholar 

  78. Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).

    Article  Google Scholar 

  79. Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    Article  PubMed  Google Scholar 

  80. Ben-Hur, E. & Kadmon, R. Heterogeneity–diversity relationships in sessile organisms: a unified framework. Ecol. Lett. 23, 193–207 (2020).

    Article  PubMed  Google Scholar 

  81. Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22‐year investigation. Conserv. Biol. 16, 605–618 (2002).

    Article  Google Scholar 

  82. Fletcher, R. J. Jr, Smith, T. A., Kortessis, N., Bruna, E. M. & Holt, R. D. Landscape experiments unlock relationships among habitat loss, fragmentation, and patch‐size effects. Ecology 104, e4037 (2023).

    Article  PubMed  Google Scholar 

  83. Chisholm, R. A. et al. Species–area relationships and biodiversity loss in fragmented landscapes. Ecol. Lett. 21, 804–813 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fahrig, L. How much habitat is enough? Biol. Conserv. 100, 65–74 (2001).

    Article  Google Scholar 

  85. De Camargo, R. X., Boucher-Lalonde, V. & Currie, D. J. At the landscape level, birds respond strongly to habitat amount but weakly to fragmentation. Divers. Distrib. 24, 629–639 (2018).

    Article  Google Scholar 

  86. Haddad, N. M. et al. Experimental evidence does not support the habitat amount hypothesis. Ecography 40, 48–55 (2017).

    Article  Google Scholar 

  87. Saura, S. The habitat amount hypothesis implies negative effects of habitat fragmentation on species richness. J. Biogeogr. 48, 11–22 (2021).

    Article  Google Scholar 

  88. Harada, Y. & Iwasa, Y. Analyses of spatial patterns and population processes of clonal plants. Popul. Ecol. 38, 153–164 (1996).

    Article  Google Scholar 

  89. Ellner, S. P. Pair approximation for lattice models with multiple interaction scales. J. Theor. Biol. 210, 435–447 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Luo, M., Wang, S., Saavedra, S., Ebert, D. & Altermatt, F. Multispecies coexistence in fragmented landscapes. Proc. Natl Acad. Sci. USA 119, e2201503119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, Y., Bearup, D. & Liao, J. Habitat loss alters effects of intransitive higher-order competition on biodiversity: a new metapopulation framework. Proc. R. Soc. B 287, 20201571 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Liao, J. & Zhang, H. Fragmentation effects on biodiversity switch from positive to negative with increasing habitat loss. Zenodo https://doi.org/10.5281/zenodo.10462497 (2024).

  95. Fahrig, L. Why do several small patches hold more species than few large patches? Glob. Ecol. Biogeogr. 29, 615–628 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

J.L. was supported by the National Natural Science Foundation of China (No. 32271548) and Yunnan Fundamental Research Projects (No. 202401BF070001-027). J.M.C. gratefully acknowledges the support of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (DFG–FZT 118, 202548816). We thank F. Riva for providing the empirical dataset; S. Blowes for advice on statistical analyses; and D. Chen, W. Fagan, N. Haddad, J. Lai, D. Bearup, J. Measey and G. Barabás for constructive comments and suggestions on early versions of the paper.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. performed simulations and analysed the results. J.M.C. contributed to the overall framework and analysis, and contributed substantially to rewriting and editing the draft. J.L. conceived this study, built the model, analysed the results and wrote the first draft.

Corresponding author

Correspondence to Jinbao Liao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Figs. 1–10 and Table 1.

Reporting Summary.

Peer Review File

Supplementary Data 1

Summary of simple linear regression for each scenario on the relationship between species richness and mean patch size. There are 71 empirical fragmented metacommunities (each with up to seven scenarios; see more details in Methods), classified into five taxonomic groups: amphibians and reptiles, birds, invertebrates, mammals, and plants.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chase, J.M. & Liao, J. Habitat amount modulates biodiversity responses to fragmentation. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02445-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02445-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing