Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging the optic nerve with optical coherence tomography

Abstract

Optical coherence tomography (OCT) is a non-invasive imaging technology, which may be used to generate in vivo quantitative and qualitative measures of retinal structure. In terms of quantitative metrics, peripapillary retinal nerve fiber layer (pRNFL) thickness provides an indirect evaluation of axonal integrity within the optic nerve. Ganglion layer measures derived from macular scans indirectly reflect retinal ganglion cell status. Notably, ganglion layer indices are platform dependent and may include macular ganglion cell inner plexiform layer (mGCIPL), ganglion cell layer (GCL), and ganglion cell complex (GCC) analyses of thickness or volume. Interpreted together, pRNFL thickness and ganglion layer values can be used to diagnose optic neuropathies, monitor disease progression, and gauge response to therapeutic interventions for neuro-ophthalmic conditions. Qualitative assessments of the optic nerve head, using cross-sectional transverse axial, en face, and circular OCT imaging, may help distinguish papilledema from pseudopapilloedema, and identify outer retinal pathology. Innovations in OCT protocols and approaches including enhanced depth imaging (EDI), swept source (SS) techniques, and angiography (OCTA) may offer future insights regarding the potential pathogenesis of different optic neuropathies. Finally, recent developments in artificial intelligence (AI) utilizing OCT images may overcome longstanding challenges, which have plagued non-vision specialists who often struggle to perform reliable ophthalmoscopy. In this review, we aim to discuss the benefits and pitfalls of OCT, consider the practical applications of this technology in the assessment of optic neuropathies, and highlight scientific discoveries in the realm of optic nerve imaging that will ultimately change how neuro-ophthalmologists care for patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical coherence tomography (OCT Spectralis, Heidelberg Engineering, Heidelberg, German) showing optic disc drusen with an infrared imaging (left) and EDI-OCT (right).
Fig. 2: A cross-sectional image of an optic nerve with optic disc drusen.
Fig. 3: Optic nerve head volume protocol on the spectralis Heidelberg engineeringTM OCT device shows resolution of papilloedema.
Fig. 4: Cross-sectional images of an optic nerve with moderate papilledema and peripapillary hyperreflective ovoid mass structure (PHOMS).
Fig. 5: Optical coherence tomography (Cirrus HD-OCT 5000, Carl Zeiss Meditec Inc., Germany) findings for a patient with bilateral optic neuropathy secondary to chiasmal compression from a pituitary adenoma.
Fig. 6: Optical Coherence Tomography (Spectralis, Heidelberg Engineering, Heidelberg, Germany) findings in a patient with left optic nerve compression from a tuberculum sella meningioma.
Fig. 7: A case of NA-AION with serous macular detachment caused by subretinal in the left eye.
Fig. 8: Optical coherence tomography (spectralis, Heidelberg engineering, Heidelberg, Germany) testing in a patient with optic neuropathy secondary to an ethambutol use.
Fig. 9: Representative case of paracentral acute middle maculopathy (PAMM) in the right eye.
Fig. 10: Optical coherence tomography (spectralis, Heidelberg engineering, Heidelberg, Germany) findings in a case of acute macular neuroretinopathy (AMN) affecting the left eye.
Fig. 11: A case of optic disc pit maculopathy in the left eye.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the preparation of this review.

References

  1. Costello F, Chen JJ. The role of optical coherence tomography in the diagnosis of afferent visual pathway problems: A neuroophthalmic perspective. Handb Clin Neurol. 2021;178:97–113.

    Article  PubMed  Google Scholar 

  2. Costello F, Hamann S. Advantages and pitfalls of the use of optical coherence tomography for papilledema. Curr Neurol Neurosci Rep. 2024;24:55–64.

    Article  PubMed  Google Scholar 

  3. Galetta SL, Balcer LJ. The optic nerve should be included as one of the typical CNS regions for establishing dissemination in space when diagnosing MS – Yes. Mult Scler J. 2018;24:121–2.

    Article  Google Scholar 

  4. Costello F, Burton JM. Retinal imaging with optical coherence tomography: a biomarker in multiple sclerosis? Eye Brain. 2018;10:47–63.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nakayama LF, Ribeiro LA, de Oliveira JAE, Mitchell WG, Malerbi FK, et al. Fairness and generalizability of OCT normative databases: a comparative analysis. Int J Retin Vitr. 2023;9:48.

    Article  Google Scholar 

  6. Balk LJ, Coric D, Knier B, Zimmermann HG, Behbehani R, Alroughani R, et al. Retinal inner nuclear layer volume reflects inflammatory disease activity in multiple sclerosis; a longitudinal OCT study. Mult Scler J Exp Transl Clin. 2019;5:2055217319871582.

    PubMed  PubMed Central  Google Scholar 

  7. Gelfand JM, Nolan R, Schwartz DM, Graves J, Green AJ. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain. 2012;135:1786–93.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saidha S, Sotirchos ES, Ibrahim MA, Crainceanu CM, Gelfand J, Sepah YJ. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: A retrospective study. Lancet Neurol. 2012;11:963–72.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kessel L, Hamann S, Wegener M, Tong J, Fraser CL. Microcystic macular oedema in optic neuropathy: case series and literature review. Clin Exp Ophthalmol. 2018;46:1075–86.

    Article  PubMed  Google Scholar 

  10. de Carlo TE, Romano A, Waheed K, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retin Vitr. 2015;1:5.

    Article  Google Scholar 

  11. De Carvalho ER, Maloca PM. Review of optical coherence tomography in neuro-ophthalmology. Ann Eye Sci. 2020;5:14.

    Article  Google Scholar 

  12. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.

    Article  PubMed  Google Scholar 

  13. Costello F, Rothenbuehler SP, Sibony PA, Hamann S. Optic Disc Drusen Studies Consortium. Diagnosing Optic Disc Drusen in the Modern Imaging Era: A Practical Approach. Neuroophthalmology 2020;45:1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yan Y, Liao YJ. Updates on ophthalmic imaging features of optic disc drusen, papilledema, and optic disc edema. Curr Opin Neurol. 2021;34:108–15.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Youn S, Loshusan B, Armstrong JJ, Fraser JA, Hamann S, Bursztyn LLCD. A comparison of diagnostic accuracy of imaging modalities to detect optic disc drusen: the age of enhanced depth imaging optical coherence tomography. Am J Ophthalmol. 2023;248:137–44.

    Article  PubMed  Google Scholar 

  16. Sergott RC Optical Coherence Tomography and Neurology. 2021. https://practicalneurology.com/articles/2021-nov-dec/optical-coherence-tomography-neurology (Accessed November 9, 2023)

  17. Chen JJ, Kardon RH. Avoiding Clinical misinterpretation and artifacts of optical coherence tomography analysis of the optic nerve, retinal nerve fiber layer, and ganglion cell layer. J Neuro-Ophthalmol. 2016;36:417–38.

    Article  Google Scholar 

  18. Mackay DD, Garza PS, Bruce BB, Newman NJ, Biousse V. The demise of direct ophthalmoscopy: A modern clinical challenge. Neurol Clin Pr. 2015;5:150–7.

    Article  Google Scholar 

  19. Scott CJ, Kardon RH, Lee AG, Frisén L, Wall M. Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch Ophthalmol. 2010;128:705–11.

    Article  PubMed  Google Scholar 

  20. Sibony PA, Kupersmith MJ, Kardon RH. Optical coherence tomography neuro-toolbox for the diagnosis and management of papilledema, optic disc edema, and pseudopapilledema. J Neuroophthalmol. 2021;41:77–92.

    Article  PubMed  Google Scholar 

  21. Optical Coherence Tomography Substudy Committee; NORDIC Idiopathic Intracranial Hypertension Study Group. Papilledema outcomes from the optical coherence tomography substudy of the idiopathic intracranial hypertension treatment trial. Ophthalmology. 2015;122:1939–45.

    Article  Google Scholar 

  22. Dreesbach M, Joachimsen L, Küchlin S, Reich M, Gross NJ, Brandt AU, et al. Optic nerve head volumetry by optical coherence tomography in papilledema related to idiopathic intracranial hypertension. Transl Vis Sci Technol. 2020;9:24.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vijay V, Mollan SP, Mitchell JL, Bilton E, Alimajstorovic Z, Markey KA, et al. Using optical coherence tomography as a surrogate of measurements of intracranial pressure in idiopathic intracranial hypertension. JAMA Ophthalmol. 2020;138:1264–71.

    Article  PubMed  Google Scholar 

  24. Chen JJ, Thurtell MJ, Longmuir RA, Garvin MK, Wang JK, Wall M, et al. Causes and prognosis of visual acuity loss at the time of initial presentation in idiopathic intracranial hypertension. Invest Ophthalmol Vis Sci. 2015;56:3850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hyder YF, Homer V, Thaller M, Byrne M, Tsermoulas G, Piccus R, et al. Defining the phenotype and prognosis of people with idiopathic intracranial hypertension after cerebrospinal fluid diversion surgery. Am J Ophthalmol. 2023;250:70–81.

    Article  PubMed  Google Scholar 

  26. Chen JJ, Sotirchos ES, Henderson AD, Vasileiou ES, Flanagan EP, Bhatti MT, et al. OCT retinal nerve fiber layer thickness differentiates acute optic neuritis from MOG antibody-associated disease and multiple sclerosis: RNFL thickening in acute optic neuritis from MOGAD vs MS. Mult Scler Relat Disord. 2022;58:103525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bennett JL, Costello F, Chen JJ, Petzold A, Biousse V, Newman NJ, et al. Optic neuritis and autoimmune optic neuropathies: advances in diagnosis and treatment. Lancet Neurol. 2023;22:89–100.

    Article  CAS  PubMed  Google Scholar 

  28. Costello F, Pan YI, Yeh EA, Hodge W, Burton JM, Kardon R. The temporal evolution of structural and functional measures after acute optic neuritis. J Neurol Neurosurg Psychiatry. 2015;86:1369–73.

    Article  PubMed  Google Scholar 

  29. Costello F, Hodge W, Pan YI, Eggenberger E, Coupland S, Kardon RH. Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography. Mult Scler. 2008;14:893–905.

    Article  CAS  PubMed  Google Scholar 

  30. Petzold A, Fraser CL, Abegg M, Alroughani R, Alshowaeir D, Alvarenga R, et al. Diagnosis and classification of optic neuritis. Lancet Neurol. 2022;21:1120–34.

    Article  PubMed  Google Scholar 

  31. Kenney RC, Liu M, Hasanaj L, Joseph B, Abu Al-Hassan A, Balk LJ, et al. The role of optical coherence tomography criteria and machine learning in multiple sclerosis and optic neuritis diagnosis. Neurology. 2022;99:e1100–e1112.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Malmqvist L, Bursztyn L, Costello F, Digre K, Fraser JA, Fraser C, et al. The Optic Disc Drusen Studies Consortium Recommendations for Diagnosis of Optic Disc Drusen Using Optical Coherence Tomography. J Neuroophthalmol. 2018;38:299–307.

    Article  PubMed  Google Scholar 

  33. Skougaard M, Heegaard S, Malmqvist L, Hamann S. Prevalence and histopathological signatures of optic disc drusen based on microscopy of 1713 enucleated eyes. Acta Ophthalmol. 2020;98:195–200.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Ye Z, Wang M, Qiao N. Ganglion cell complex loss precedes retinal nerve fiber layer thinning in patients with pituitary adenoma. J Clin Neurosci. 2017;43:274–7.

    Article  PubMed  Google Scholar 

  35. Jørstad OK, Wigers AR, Marthinsen PB, Moe MC, Evang JA. Loss of horizontal macular ganglion cell complex asymmetry: an optical coherence tomography indicator of chiasmal compression. BMJ Open Ophthalmol. 2018;3:e000195.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yum HR, Park SH, Park HY, Shin SY. Macular ganglion cell analysis determined by Cirrus HD optical coherence tomography for early detecting chiasmal compression. PLoS One. 2016;11:e0153064.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zehnder S, Wildberger H, Hanson JVM, Lukas S, Pelz S, Landau K, et al. Retinal ganglion cell topography in patients with visual pathway pathology. J Neuroophthalmol. 2018;38:172–8.

    Article  PubMed  Google Scholar 

  38. Keller K, Sánchez-Dalmau BF, Villoslada P. Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. PLoS One. 2014;9:e97444.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dinkin M. Trans-synaptic Retrograde Degeneration in the Human Visual System: Slow, Silent, and Real. Curr Neurol Neurosci Rep. 2017;17:16.

    Article  PubMed  Google Scholar 

  40. Tieger MG, Hedges TR, Ho J, Erlich-Malona NK, Vuong LN, Athappilly GK, et al. Ganglion cell complex loss in chiasmal compression by brain tumors. J Neuroophthalmol. 2016;37:7–12.

    Article  Google Scholar 

  41. Kurian DE, Rajshekhar V, Horo S, Chacko AG, Prabhu K, Mahasampath G, et al. Predictive value of retinal nerve fibre layer thickness for postoperative visual improvement in patients with pituitary macroadenoma. BMJ Open Ophthalmol. 2022;7:e000964.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee GI, Kim J, Lee D, Park KA, Oh SY, Kong DS, et al. Ganglion cell inner plexiform layer thickness measured by optical coherence tomography to predict visual outcome in chiasmal compression. Sci Rep. 2022;12:14826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohkubo S, Higashide T, Takeda H, Murotani E, Hayashi Y, Sugiyama K. Relationship between macular ganglion cell complex parameters and visual field parameters after tumor resection in chiasmal compression. Jpn J Ophthalmol. 2012;56:68–75.

    Article  PubMed  Google Scholar 

  44. Xiao H, Liu X, Lian P, Liao LL, Zhong YM. Different damage patterns of retinal nerve fiber layer and ganglion cell-inner plexiform layer between early glaucoma and non-glaucomatous optic neuropathy. Int J Ophthalmol. 2020;13:893–901.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fard MA, Moghimi S, Sahraian A, Ritch R. Optic nerve head cupping in glaucomatous and non-glaucomatous optic neuropathy. Br J Ophthalmol. 2019;103:374–8.

    Article  PubMed  Google Scholar 

  46. Sibony P, Strachovsky M, Honkanen R, Kupersmith MJ. Optical coherence tomography shape analysis of the peripapillary retinal pigment epithelium layer in presumed optic nerve sheath meningiomas. J Neuroophthalmol. 2014;34:30–6.

    Article  Google Scholar 

  47. Dotan G, Goldstein M, Kesler A, Skarf B. Long-term retinal nerve fiber layer changes following nonarteritic anterior ischaemic optic neuropathy. Clin Ophthalmol. 2013;7:735–40.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Contreras I, Rebolleda G, Noval S, Muñoz-Negrete FJ. Ischemic optic neuropathy. Ophthalmology. 2009;116:814.

    Article  PubMed  Google Scholar 

  49. Salvetat ML, Pellegrini F, Spadea L, Salati C, Zeppieri M. Non-Arteritic Anterior ischemic optic neuropathy (NA-AION): a comprehensive overview. Vis (Basel). 2023;7:72.

    Google Scholar 

  50. Kupersmith MJ, Garvin MK, Wang JK, Durbin M, Kardon R. Ganglion cell layer thinning within one month of presentation for non-arteritic anterior ischemic optic neuropathy. Invest Opthalmol Vis Sci. 2016;57:3588–93.

    Article  CAS  Google Scholar 

  51. Akbari M, Abdi P, Fard MA, Afzali M, Ameri A, Yazdani-Abyaneh A, et al. Retinal ganglion cell loss precedes retinal nerve fiber thinning in nonarteritic anterior ischemic optic neuropathy. A Comp study J Neuroophthalmol. 2016;36:141–6.

    Article  Google Scholar 

  52. Dompablo ED, Garcia-Montesinos J, Munoz-Negrete FJ, Rebolleda G. Ganglion cell analysis at acute episode of nonarteritic anterior ischemic optic neuropathy to predict irreversible damage. A prospective study. Graefes Arch Clin Exp Ophthalmol. 2016;254:1793–800.

    Article  PubMed  Google Scholar 

  53. Contreras I, Noval S, Rebolleda G, Muñoz-Negrete FJ. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology. 2007;114:2338–44.

    Article  PubMed  Google Scholar 

  54. Rebolleda G, Sanchez-Sanchez C, Gonzalez-Lopez JJ, Contreras I, Munoz-Negrete FJ. Papillomacular bundle and inner retinal thicknesses correlate with visual acuity in nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2015;56:682–92.

    Article  PubMed  Google Scholar 

  55. Hedges TR, Vuong LN, Gonzalez-Garcia AO, Mendoza-Santiesteban CE, Amaro-Quierza ML. Subretinal fluid from anterior ischemic optic neuropathy demonstrated by optical coherence tomography. Arch Ophthalmol. 2008;126:812–5.

    Article  PubMed  Google Scholar 

  56. Dotan G, Goldenberg D, Kesler A, Naftaliev E, Loewenstein A, Goldstei M. The use of spectral-domain optical coherence tomography for differentiating long-standing central retinal artery occlusion and nonarteritic anterior ischemic optic neuropathy. Ophthalmic Surg Lasers Imaging Retin. 2014;45:38–44.

    Article  Google Scholar 

  57. Danesh-Meyer HV, Savino PJ, Sergott RC. The prevalence of cupping in end-stage arteritic and nonarteritic anterior ischemic optic neuropathy. Ophthalmology. 2001;108:593–8.

    Article  CAS  PubMed  Google Scholar 

  58. Pellegrini M, Giannaccare G, Bernabei F, Moscardelli F, Schiavi C, Campos EC. Choroidal vascular changes in arteritic and nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 2019;205:43–9.

    Article  PubMed  Google Scholar 

  59. Wang MY, Sadun AA. Drug-related mitochondrial optic neuropathies. J Neuroophthalmol. 2013;33:172–8.

    Article  CAS  PubMed  Google Scholar 

  60. Kim US, Hwang JM. Optical coherence tomography can measure axonal loss in patients with ethambutol-induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2005;243:410–6.

    Article  Google Scholar 

  61. Sheng WY, Su LY, Ge W, Wu SQ, Zhu LW. Analysis of structural injury patterns in peripapillary retinal nerve fibre layer and retinal ganglion cell layer in ethambutol-induced optic neuropathy. BMC Ophthalmol. 2021;21:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee JY, Choi JH, Park KA, Oh SY. Ganglion cell layer and inner plexiform layer as predictors of vision recovery in ethambutol-induced optic neuropathy: a longitudinal OCT analysis. Invest Ophthalmol Vis Sci. 2018;9:2104–09.

    Article  Google Scholar 

  63. Han JN, Byun MK, Lee JW, Han SY, Lee JB, Han SH. Longitudinal analysis of retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in ethambutol-induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2015;253:2293–9.

    Article  CAS  PubMed  Google Scholar 

  64. Orssaud C, Roche O, Dufier JL. Nutritional optic neuropathies. J Neurol Sci. 2007;262:158–64.

    Article  CAS  PubMed  Google Scholar 

  65. Enright J, Van Stavern G. Application of optical coherence tomography in hereditary, toxic and metabolic optic neuropathies. Ann Eye Sci. 2020;5:14.

    Article  Google Scholar 

  66. Ahuja S, Kumar PS, Kumar VP, Kattimani S, Akkilagunta S. Effect of chronic alcohol and tobacco use on retinal nerve fibre layer thickness: a case–control study. BMJ Open Ophthalmol. 2017;1:e000003.

    Article  PubMed  Google Scholar 

  67. Türkyılmaz K, Öner V, Türkyılmaz AK, Kırbaş A, Kırbaş S, Şekeryapan B. Evaluation of peripapillary retinal nerve fiber layer thickness in patients with vitamin B12 deficiency using spectral domain optical coherence tomography. Controlled Clin Trial Curr Eye Res. 2013;38:680–4.

    Google Scholar 

  68. Meyerson C, Stavern CV, McClelland C. Leber hereditary optic neuropathy: current perspectives. Clin Ophthalmol. 2015;26:1165–76.

    Google Scholar 

  69. Moster SJ, Moster ML, Bryan MS, Sergott RC. Retinal ganglion cell and inner plexiform layer loss correlate with visual acuity loss in LHON: a longitudinal, segmentation OCT analysis. Invest Ophthalmol Vis Sci. 2016;57:3872–83.

    Article  CAS  PubMed  Google Scholar 

  70. Balducci N, Cascavilla ML, Ciardella A, Morgia CL, Triolo G, Parisi V, et al. Peripapillary vessel density changes in Leber’s hereditary optic neuropathy: a new biomarker. Clin Exp Ophthalmol. 2018;46:1055–62.

    Article  PubMed  Google Scholar 

  71. Vosoughi AR, Donaldson L, Micieli JA, Margolin EA. Maculopathies referred to neuro-ophthalmology clinic as optic neuropathies: a case series. J Neuroophthalmol. 2023 https://doi.org/10.1097/WNO.0000000000001950 [Epub ahead of print].

  72. Sarraf D, Rahimy E, Fawzi AA, Sohn E, Barbazetto I, Zacks DN, et al. Paracentral acute middle maculopathy: A new variant of acute macular neuroretinopathy associated with retinal capillary ischemia. JAMA Ophthalmol. 2013;131:1275–87.

    Article  PubMed  Google Scholar 

  73. Bhavsar KV, Lin S, Rahimy E, Joseph A, Freund KB, Sarraf D, et al. Acute macular neuroretinopathy: A comprehensive review of the literature. Surv Ophthalmol. 2016;61:538–65.

    Article  PubMed  Google Scholar 

  74. Iovino C, Au A, Ramtohul P, Bacci T, AlBahlal A, Khan AM, et al. Coincident PAMM and AMN and insights into a common pathophysiology. Am J Ophthalmol. 2022;236:136–46.

    Article  PubMed  Google Scholar 

  75. Sridhar J, Shahlaee A, Rahimy E, Hong BK, Khan MA, Maguire JI, et al. Optical coherence tomography angiography and en face optical coherence tomography features of paracentral acute middle maculopathy. Am J Ophthalmol. 2015;160:1259–68.

    Article  PubMed  Google Scholar 

  76. Fisher MJ, Loguidice M, Gutmann DH, Listernick R, Ferner RE, Ullrich NJ, et al. Visual outcomes in children with neurofibromatosis type I-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro Oncol. 2012;14:790–7.

    Article  PubMed  PubMed Central  Google Scholar 

  77. de Blank PMK, Fisher MJ, Liu GT, Gutmann DH, Listernick R, Ferner RE, et al. Optic pathway gliomas in neurofibromatosis type 1: an update: surveillance, treatment indications, and biomarkers of vision. J Neuroophthalmol. 2017;37:23–32.

    Article  Google Scholar 

  78. Parrozzani R, Miglionico G, Leonardi F, Pulze S, Trevisson E, Clementi M, et al. Correlation of peripapillary retinal nerve fibre layer thickness with visual acuity in paediatric patients affected by optic pathway glioma. Acta Ophthalmol. 2018;96:e1004–9.

    Article  CAS  PubMed  Google Scholar 

  79. Avery RA, Mansoor A, Idrees R, Trimboli-Heidler C, Ishikawa H, Packer RJ, et al. Optic pathway glioma volume predicts retinal axon degeneration in neurofibromatosis type 1. Neurology. 2016;87:2403–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fard MA, Fakhree S, Eshraghi B. Correlation of optical coherence tomography parameters with clinical and radiological progression in patients with symptomatic optic pathway gliomas. Graefes Arch Clin Exp Ophthalmol. 2013;251:2429–36.

    Article  PubMed  Google Scholar 

  81. Arnljots U, Nilsson M, Sandvik U, Myrberg IH, Munoz DM, Blomgren K, et al. Optical coherence tomography identifies visual pathway involvement earlier than visual function tests in children with MRI-verified optic pathway gliomas. Cancers Basel. 2022;14:318.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Origlieri C, Geddie B, Karwoski B, Berl MM, Elling N, McClintock W, et al. Optical coherence tomography to monitor vigabatrin toxicity in children. J AAPOS. 2016;20:136–40.

    Article  PubMed  Google Scholar 

  83. Buncic JR, Westall CA, Panton CM, Munn JR, MacKeen LD, Logan WJ. Characteristic retinal atrophy with secondary “inverse” optic atrophy identifies vigabatrin toxicity in children. Ophthalmology. 2004;111:1935–42.

    Article  PubMed  Google Scholar 

  84. Unoki K, Ohba M, Hoyt WF. Optical coherence tomography of superior segmental optic hypoplasia. Br J Ophthalmol. 2002;86:910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Skriapa-Manta A, Nilsson M, Svoboda J, Olsson M, Nilsson M, Fahnehjelm KT. Optical coherence tomography can predict visual acuity in children with optic nerve hypoplasia. Clin Ophthalmol. 2022;16:3785–94.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ohno-Matsui K, Hirakata A, Inoue M, Akiba M, Ishibashi T. Evaluation of congenital optic disc pits and optic disc colobomas by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:7769–78.

    Article  PubMed  Google Scholar 

  87. Milea D, Najjar RP, Zhubo J, Ting D, Vasseneix C, Xu X, et al. Artificial intelligence to detect papilledema from ocular fundus photographs. N. Engl J Med. 2020;30:1687–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HJS and FC were responsible for performing the literature review, extracting and analyzing data, interpreting results, updating reference lists, creating the tables and figures, and authoring this review.

Corresponding author

Correspondence to Fiona Costello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, H.J., Costello, F. Imaging the optic nerve with optical coherence tomography. Eye (2024). https://doi.org/10.1038/s41433-024-03165-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41433-024-03165-3

Search

Quick links